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Abstract.

Background: The motor impairment in Parkinson’s disease (PD) can be managed but effective treatments for stopping
or slowing the disease process are lacking. The advent of transcriptomics studies in PD shed light on the development of
promising measures to predict disease progression and discover novel therapeutic strategies.

Objective: To reveal the potential role of transcripts in the motor impairment progression of patients with PD via transcriptome
analysis.

Methods: We separately analyzed the differentially expressed genes (DEGs) between PD cases and healthy controls in two
cohorts using whole blood bulk transcriptome data. Based on the intersection of DEGs, we established a prognostic signature
by regularized regression and Cox proportional hazards analysis. We further performed immune cell analysis and single-cell
RNA sequencing analysis to study the biological features of this signature.

Results: We identified a two-gene-based prognostic signature that links to PD motor progression and the two-gene signature-
derived risk score was associated with several types of immune cells in blood. Notably, the fraction of neutrophils increased
5% and CD4" T cells decreased 7% in patients with high-risk scores compared to that in patients with low-risk scores,
suggesting these two types of immune cells might play key roles in the prognosis of PD. We also observed the downregulated
genes in PD patients with high-risk scores that enriched in PD-associated pathways from iPSC-derived dopaminergic neurons
single-cell RNA sequencing analysis.

Conclusion: We identified a two-gene signature linked to the motor progression in PD, which provides new insights into the
motor prognosis of PD.
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INTRODUCTION
Parkinson’s disease (PD) is the most common
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ISSN 1877-7171 © 2023 — The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).


mailto:liugq3@mail.sysu.edu.cn
https://creativecommons.org/licenses/by-nc/4.0/

26 W. Li et al. / A two-Gene Motor Prognostic Signature in PD

progressive loss of nigral dopamine neurons and the
accumulation of a-synuclein containing inclusions
called Lewy bodies [2]. To date, lack of effective
treatments that can slow the disease process, it is
crucial to identify promising measures predictive
of PD progression to advance disease management
and therapeutics developments [3, 4]. Previous stud-
ies have identified various predictive factors for PD
motor progression, including age [5], sex [6], blood
pressure [7], cerebrospinal fluid (CSF) biomarkers
[6], apolipoprotein E (APOE) €4 [8], and neurofila-
ment light chain (NfL) levels in the blood [9]. The
advent of omics big data in PD longitudinal studies
provides us opportunities to uncover novel progres-
sion biomarkers and new measures to predict motor
impairment.

Many transcriptomics studies have indicated the
change in RNA abundance correlates with neu-
rological disease phenotypes [10, 11] and blood
transcriptome analysis is a powerful and low-invasive
approach to identifying diagnostic or prognostic pre-
dictors in PD [12-14]. Based on the Parkinson’s
Progression Marker Initiative (PPMI) cohort data [3],
Kern et al. [13] have reported dysregulated microR-
NAs in the blood are associated with PD. In another
blood-based transcriptomics study from GENomic
Biomarkers for PARKinson’s Disease (GENEPARK
consortium), Shamir et al. [14] uncovered a sig-
nature of 87 genes that can discriminate patients
with idiopathic PD (iPD) from healthy controls.
These transcriptomics studies are primarily focused
on gene expression in case-control comparison [11],
and exploring the role of transcripts in the progression
of motor impairment in patients with PD is urgently
needed.

In this study, we presented whole blood gene
expression profiles from the PPMI and GENEPARK
cohorts that generated a prognostic signature of two
genes (LILRB3, LRRN3), which was successfully
applied to predict the motor progression (progres-
sion to Hoehn and Yahr (H&Y) stage 3) in patients
with PD. Further analyses indicated that the two-gene
signature-derived risk score was associated with spe-
cific immune cells in the blood, including increased
neutrophils and decreased CD4™ T cells in PD
patients with high-risk scores. We replicated relevant
findings for the two-gene signature in an indepen-
dent cohort from the Parkinson’s Disease Biomarkers
Program (PDBP) [15]. Additionally, we observed
significant expression alterations of genes enriched
in PD-associated pathways in the high-risk score
PD patients’ iPSC-derived dopaminergic neurons

(DaNs) by single-cell RNA sequencing (scRNA-seq)
analysis.

MATERIALS AND METHODS

Data collection

Longitudinally clinical records and bulk RNA
sequencing (RNA-seq) data (counts and transcripts
per million (TPM) matrix data) of two cohorts used
in this study were obtained through the Acceler-
ating Medicine Partnership in Parkinson’s Disease
(AMP PD, https://amp-pd.org/). The Parkinson’s
Progression Marker Initiative (PPMI) cohort [16]
(594 healthy controls and 691 PD patients) was used
as the discovery cohort and the PDBP cohort [15]
(458 healthy controls and 702 PD patients) for exter-
nal replication. In the PPMI cohort, 691 PD patients
include 166 Genetic Registry PD, 158 Genetic Cohort
PD, and 367 PD; 594 healthy controls include 203
Genetic Registry Unaffected Healthy Control, 215
Genetic Cohort Unaffected Healthy Control, and
176 Healthy Control (the definition method was
mentioned in previous literature [17, 18]). Another
whole blood gene expression dataset (GSE99039)
[14] consisting of 233 healthy controls and 205 PD
patients from the GENomic Biomarkers for PARKin-
son’s Disease (GENEPARK) cohort was downloaded
from the Gene Expression Omnibus (GEO) database
[19] (https://www.ncbi.nlm.nih.gov/geo). In addi-
tion, one single-cell sequencing (scRNA-seq) dataset
of iPSC-derived dopaminergic neurons on day 65
including six healthy controls and twelve PD patients
was attained from the PPMI data repository [16]
(https://www.ppmi-info.org/). The demographic and
clinical characteristics of these participants are pre-
sented in Supplementary Table 1.

Differential gene expression and prediction
models analyses

To identify the differentially expressed genes
(DEGs) between patients with PD and healthy con-
trols in the PPMI and GENEPARK (GSE99039
dataset) cohorts, we used the limma [20] v3.42.2R
package with the voom method to analyze raw counts
as previously described [17], adjusting by covariates
of age at baseline, sex, and available RNA integrity
number (RIN). Genes with an adjusted p<0.05 (p
values adjusted by the Benjamini-Hochberg method)
and absolute log2 (fold change)>0.1 were consid-
ered to be differentially expressed.
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Three regularized regression models (Elastic-
Net, Lasso, and Ridge regression) were built using
the glmnet [21] v4.1-1R package to discriminate
case/control status based on differential gene expres-
sion analysis results. According to the previous
method [22], the penalty parameter lambda (1) was
evaluated with tenfold cross-validation on the discov-
ery dataset using the caret [23] v6.0-90R package,
and set to lambda.min. The models fitted to the PPMI
cohort were applied to the replication dataset (PDBP
cohort data) using the “predict” function. We used the
area under the curve (AUC) of the receiver operating
characteristic curve (ROC) to assess the precision of
the models, which was implemented by the pROC
[24] v1.17.0.1 R package.

Prognostic signature construction

Hoehn and Yahr (H&Y) scale is a simple staging
assessment that estimates the overall severity of PD
based on bilateral motor involvement and the compro-
mise of gait and balance [25]. Previous studies used
the transition from baseline H&Y stage 1 or stage
2 to the endpoint of motor disability with balance
deficits (H&Y stage 3) as the index of motor progres-
sion in PD [4, 26]. The H&Y stage used in this study
was the modified H&Y and patients were assessed
during the off period. To develop a prognostic gene
signature, we excluded PD patients who had reached
H&Y stage 3 at baseline, and patients with less than
three visits or missing clinical measurements (such
as age at visit, sex, years of education, and the dura-
tion of disease) in both PPMI and PDBP cohorts.
A total of 438 patients in PPMI and 250 patients in
PDBP were kept. We assigned patients from the PPMI
and PDBP to the discovery and replication cohorts,
respectively, for two reasons. Firstly, patients in PPMI
are de novo within one year of diagnosis (temporally
close to diagnosis and pre-treatment) and confirmed
by DatScan, while PDBP recruits those within 5 years
of receiving a diagnosis regardless of medication sta-
tus and without DatScan confirmation [17]. Secondly,
after excluding right censor events in the Cox regres-
sion model, more patients in the PPMI cohort make
the trained model more robust.

In the discovery cohort, we adopted the univariate
Cox proportional hazards model to assess the associ-
ation between 257 DEGs and the time to reach H&Y
stage 3. Only 22 genes with a p <0.05 were consid-
ered to be potential prognostic genes. The glmnet
[21] v4.1-1 R package was then employed to perform
the Least Absolute Shrinkage and Selector Opera-

tion (LASSO) analysis for variable selection and to
minimize the risk of overfitting. We used the optimal
penalty parameter lambda (A) determined by tenfold
cross-validation using minimum criteria to identify
the most potential genes affecting patients’ prognosis.
Subsequently, a multivariate Cox regression analy-
sis was performed using the survival [27] v3.2-13R
package to construct the gene signature for predicting
the disease progression and adjusting for the covari-
ates of age, sex, years of education, and the duration
of disease.

Based on the signature, the risk score of each
patient was calculated as the following formula:
Risk score = Y7 Expi * coeffi (n: potential prog-
nostic genes; Expi: the expression value of gene in
individual patient; coeffi: the regression coefficient of
gene). The “surv_cutpoint” function in the survminer
package was used to determine the optimal cutoff
value of the risk scores. Patients were then divided
into the high- and low-risk score groups according to
the optimal cutoff value. Finally, Cox proportional
hazards analysis, time-dependent receiver operat-
ing characteristic (ROC) analysis, and linear mixed
effects model analysis were performed using R pack-
ages to test the predictive capacity of the signature.
Additionally, similar analyses as described above
were applied to the replication cohort to confirm the
prognostic value of the signature.

Biological and functional analysis of DEGs

Gene ontology (GO) analysis was conducted to
insight into biological features of the DEGs using
the ClusterProfiler [28] v3.18.1R package. Only
terms with an adjusted p<0.05 were considered
significantly enriched. Gene set enrichment anal-
ysis (GSEA) was further performed to identify
significantly correlated gene sets with the thresh-
old set at adjusted p<0.05 and |NES|>1. The
gene set “c2.cp.kegg.v7.1.symbols.gmt” down-
loaded from the Molecular Signatures Database
(https://www.gsea-msigdb.org/gsea/msigdb/)  was
chosen as the reference gene set. Furthermore, to
identify the source of DEGs at the cell type level
from bulk RNA-seq data, we employed the LRcell
[29] v1.2.0R package, a complementary tool to
cell type deconvolution, with the linear regression
method and pre-embedded marker genes from
peripheral blood mononuclear cell (PBMC) [30].
Results with false discovery rate (FDR) <0.05 were
considered reliable.
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Estimation of the fraction of immune cell types
from bulk RNA-seq data

We used the CIBERSORT [31] algorithm to esti-
mate the fraction of 22 types of immune cells based
on bulk RNA-seq data. These 22 immune cell types
were then reclassified into 12 major cell types accord-
ing to the previous literature [32]. To identify the
relationship between 12 major cell types and the
two-gene signature, we employed the “cor.test” func-
tion in R to conduct Pearson’s correlation analysis.
All tests with adjusted p<0.05 and Pearson coeffi-
cient > 0.2 were considered significantly associated.
We used the multivariable linear regression analy-
sis to test the differences of immune cells distributed
among healthy controls, patients in the high- and
low-risk score groups adjusted by covariates of age,
sex, and the duration of disease, and the “ci.mean”
function in the Publish v.2020.12.23 R package to
calculate the percentage of change. The Benjamini-
Hochberg method was performed for multiple testing
and adjusted p <0.05 were considered significant.

Single-cell RNA sequencing data analysis

The filtered unique molecular identifier (UMI)
feature-barcode counts for six healthy controls, six
PD patients with high-risk scores, and six PD patients
with low-risk scores were processed with the Seurat
[33] v4.1.0R package. In the quality control pro-
cess, we set the following criteria [34] for each cell
of all PD patients and healthy controls: the num-
ber of genes between 1,000 and 9,000; the number
of UMIs>2,000 and mitochondrial gene percent-
age <20%. After filtering, a gene UMI counts matrix
was integrated with the “SCTransform” function
in Seurat to remove batch effects across different
samples. The uniform manifold approximation and
projection [35] (UMAP) was performed on the top
30 principal components and 0.5 resolution for visu-
alizing cells. Thereafter, to compare the differential
expression in different clusters or conditions, we used
the “FindAllMarkers” function (MAST [36] method)
with default parameters. Genes with an adjusted
p<0.05 (p values adjusted by false discovery rate)
and absolute log2 (fold change) >0.25 were consid-
ered to be differentially expressed.

Statistical analysis

The R v4.0.3 (https://www.R-project.org) was
used for all statistical analyses. To compare clinical

characteristics between patients with PD and healthy
controls, we used the Mann-Whitney test for con-
tinuous variables and the Chi-Square ( x?) test for
categorical variables. p values referred to in this study
were further adjusted using the Benjamini-Hochberg
method to control the false discovery rate (FDR), and
adjusted p <0.05 were considered significant unless
stated otherwise.

RESULTS

Comparison of whole blood gene expression
profiles between PD and healthy controls

The flowchart of this study is shown in Supple-
mentary Figure 1. To identify the DEGs between
patients with PD and healthy controls (HC) in the
blood, one whole blood bulk RNA-seq dataset (PPMI
cohort) and one whole blood microarray dataset
(GENEPARK cohort: GSE99039 dataset) were sep-
arately analyzed. We observed 2,432 DEGs in the
PPMI cohort and 969 DEGs in the GSE99039 dataset,
respectively (Fig. 1A, B). A total of 257 overlapping
DEGs with the concordant direction of expression
change in both cohorts remained for subsequent anal-
ysis, of which 243 genes were upregulated and 14
genes were downregulated in PD cases, including a
known PD risk gene SNCA [37] (Fig. 1C).

To further investigate the diagnostic potentiality
of 257 DEGs, we built three regularized regression
models based on the PPMI cohort, and the param-
eters from the trained models were applied to the
PDBP cohort to evaluate their performance. In the
PPMI cohort, the ridge regression model including
all DEGs had the best classification accuracy (AUC:
0.81,95% CI: 0.79-0.84) compared to the other mod-
els (Supplementary Figure 2A), but only achieved an
AUC 0f 0.69 (95% CI: 0.66-0.72) in the PDBP cohort
(Supplementary Figure 2B). Overall, these results
indicated DEGs, as potential biomarkers, can mod-
erately discriminate between patients with PD and
healthy controls.

Identification of a two-gene-based prognostic
signature in PD

We next explored the relationship between the
DEGs and the motor impairment (progression to
H&Y stage 3 balance deficits) in patients with PD
and carried out a univariate Cox regression analy-
sis for each of these 257 DEGs in the PPMI cohort.
There were 22 genes (nominal p <0.05) that were
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Fig. 1. Identification of blood-based differentially expressed genes between PD patients and health controls. Volcano plots presented the
differentially expressed genes (DEGs) between patients with Parkinson’s disease (PD) and healthy controls (HC) in the PPMI cohort (691
PD, 594 HC) (A) and the GENEPARK cohort (GSE99039 dataset: 203 PD, 233 HC) (B). Magenta dots represented significantly upregulated
DEGs and cyan dots represented downregulated DEGs. The p values were adjusted by the Benjamini-Hochberg method. (C) Scatter-plot
showed the value of log, (fold change) of the overlapped DEGs in the PPMI and GENEPARK cohorts.
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HY3, Hoehn and Yahr stage 3.

significantly associated with the prognosis of patients
with PD. Then, the LASSO Cox regression analysis
was performed for further shrinkage and selection,
and we found that Leukocyte Immunoglobulin Like
Receptor B3 (LILRB3) and Leucine Rich Repeat
Neuronal 3 (LRRN3) were the most valuable genes
with prognostic power (Supplementary Figure 3A,
B). Based on the expression levels and regression
coefficients of LILRB3 and LRRN3 (Supplementary
Table 2), we calculated a risk score for each patient,
and patients were classified into high- or low-risk
groups according to the optimal cutoff value of risk
scores (Methods, Supplementary Figure 3C). The
Cox proportional hazards analysis suggested that
patients with PD in the high-risk score group had

a more severe motor disability than those in the low-
risk score group during study (HR=3.51, 95% CI
3.17-5.68, p=3.38 x 1077, Fig. 2A). We observed
the risk score prior to year three since the study
resulted in the highest time-dependent AUC of 0.78
(95% CI 0.71-0.87, Supplementary Figure 4A, B).
We next compared longitudinal MDS-UPDRS Part
IIT scores of patients in the high- and low-risk score
groups using a linear mixed effects model (Supple-
mentary Methods) in the PPMI cohort. We did not
observe a significant difference in the baseline MDS-
UPDRS Part IIT scores between these two groups
(p=0.24, Supplementary Figure 5A), but patients in
the high-risk score group had a rapid progression
of motor disability over time compared to those in
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the low-risk score group (8=0.97, p=0.002, Sup-
plementary Figure 5B).

We evaluated the prognostic power of this two-
gene signature in the replication cohort. For each
patient, the risk score was calculated using the
formula and coefficients identified with the PPMI
cohort, and patients were classified into high- or
low-risk score groups. The pattern of survival curves
for the PDBP cohort was similar to that in the
PPMI cohort, where the high-risk score group had
a faster progression to H&Y stage 3 than the low-risk
score group (HR =2.54, 95% CI 1.02-6.29, p=0.04,
Fig. 2B) and the risk score prior to year three had
a time-dependent AUC of 0.73 (95% CI 0.64-0.84,
Supplementary Figure 4C, D). These results sug-
gested that the two-gene signature has a robust
potential to predict the motor prognosis of PD.

The PD prognostic two-gene signature links to
specific types of immune cells in peripheral blood

To further explore the underlying mechanism of
the two-gene signature in PD progression, we per-
formed differential gene expression analysis between
the high- and low-risk score groups at baseline.
A total of 2,228 DEGs (adjusted p<0.05, [log2
(fold change)|>0.5) were identified in the PPMI
cohort, including 1,781 up- and 447 downregulated
genes. The GO analysis revealed that neutrophil
activation involved in immune response genes and
neutrophil degranulation genes were significantly
upregulated in patients with high-risk scores (Sup-
plementary Figure 6A). Conversely, downregulated
genes were implicated in protein translation and
ribosome-related terms (Supplementary Figure 6B).
Additionally, we found that CD14" and CDI16™
monocytes could be the DEGs-driving cell types
(Fig. 3A).

The above analyses indicated that the different
gene expression patterns between the high- and
low-risk score groups might be associated with
immune cells. We next utilized the CIBERSORT
algorithm to estimate the relative abundances of 12
major types of immune cells in peripheral blood
for each participant in the PPMI cohort. The Pear-
son’s correlation analysis showed the estimation
results were positively correlated with the fraction
of immune cells obtained from the available clinical
cell count data, like neutrophils (Pearson’s R=0.62,
p<2.20 x 10_16, Fig. 3B). We further evaluated the
relationship between the two-gene signature-derived
risk score and the immune microenvironment. The

risk score was negatively correlated with B cells,
CD4™ T cells and dendritic cells, and positively cor-
related with plasma cells, NK cells, monocytes, and
neutrophils (Fig. 3C).

We also observed differences in the fraction of
cell types between the high- and low-risk score
groups in peripheral blood. Compared to the low-
risk score group, the fraction of neutrophils showed
a 5% (95% CI:. 3-7%, adjusted p=7.62 x 1077,
Fig. 3D) increase in the high-risk group. While the
fraction of CD41 T cells was decreased 7% (95%
CI: 5-8%, adjusted p=5.44 x 10~ 13, Fig. 3D) in the
high-risk group. The fraction of B cells (adjusted
p=1.29 x 10™*) was also decreased in the high-risk
group, but the fraction was very low in all samples,
and it is difficult to determine whether it was truly
associated with the two-gene signature (Fig. 3D).
Notably, we observed the fractions differences of
neutrophils or CD4™ T cells in peripheral blood
were consistent between the high- and low-risk score
groups during the progression of PD (Supplemen-
tary Figure 7A, B). The independent PDBP cohort
presented similar patterns between seven types of
immune cells (B cells, plasma cells, CD41 T cells,
NK cells, monocytes, dendritic cells, neutrophils)
and the risk score (Supplementary Figure 8A), the
increase in the fraction of neutrophils, and the
decrease in the CD4™ T cells and B cells fractions
in the high-risk group (Supplementary Figure 8B).
Collectively, we revealed neutrophils and CD4" T
cells may play key roles in the motor prognosis of
PD.

Downregulated genes in iPSC-derived
dopamin-ergic neurons of PD patients with
high-risk scores compared to patients with
low-risk scores were enriched in PD-associated
pathways

Based on bulk RNA-seq data from peripheral
blood, we observed a two-gene signature linked to
the motor progression of PD and the alterations of
immune cells between the high- and low-risk score
groups. To further explore the molecular features of
these two groups in the midbrain dopamine neu-
rons, we carried out a single-cell RNA sequencing
(scRNA-seq) analysis on the induced pluripotent
stem cells (iPSC) derived dopaminergic neurons
(DaNs) from six healthy controls, six PD patients
with low-risk scores, and six PD patients with high-
risk scores. There were no significant differences
in age, sex, and years of education among the
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three groups (Supplementary Table 3). After quality-
control filtering, a total of 91,887 cells were retained
(Methods), of which 33,546 cells were from the
healthy controls, 28,689 cells were from the low-
risk group, and 29,652 cells from the high-risk group.
Unbiased clustering of iPSC-derived DaNs generated
18 clusters, covering seven different cell types that
were identified based on well-known markers (Sup-
plementary Figure 9A, B). Major cell types, including
early-neuron progenitors (ENP, 28,998 cells, 31.56%
of total cells), late-neuro progenitors (LNP, 22,495
cells, 24.48% of total cells), dopaminergic neurons
(DaNs, 17,524 cells, 19.07% of total cells), immature
DaNs (15,232 cells, 16.58% of total cells), proliferat-
ing floor plate progenitors (PFPP, 3,815 cells, 4.15%
of total cells), ependymal-like cells (Epe-like, 2,379
cells, 2.59% of total cells) and neuroepithelia-like
cells (Neu-like, 1,444 cells, 1.57% of total cells),
contained cells from most samples (Supplementary
Figure 9C). We did not observe any difference in the
proportion of DaNs between the high- and low-risk
score groups.

To understand whether transcripts altered in
DaNs of patients with high-risk scores, we ana-
lyzed gene expression levels of DaNs between the
two risk groups. Compared to patients with low-
risk scores, 127 genes were upregulated and 107
genes were downregulated in DaNs of patients with
high-risk scores (Fig. 4A). These genes included
PD-associated GWAS loci (e.g., RIT2, INPP5F, and
NUCKS]), associated with mitochondrial function
(e.g.,MT-CO1,MT-CO2, ATP5FIE), oxidative phos-
phorylation (e.g., NDUFB6, NDUFBI11, NDUFAII),
glucose metabolism (e.g., GAPDH, RBM3) and
involved in synaptic vesicle regulation by calcium
signaling (e.g., SYT1, SYT4) (Fig. 4B).

We further investigated the up- and downreg-
ulated genes in DaNs via functional enrichment
analysis. The downregulated genes in patients with
high-risk scores were enriched in 129 significant
GO terms, including ATP metabolic process, mito-

chondrial respiratory chain complex I, oxidative
phosphorylation, and canonical glycolysis (Fig. 4C)
in addition to inflammatory-related pathways such as
interleukin-12-mediated signaling pathway (adjusted
p=0.007), response to interleukin-12 (adjusted
p=0.008) and positive regulation of leukocyte
chemotaxis (adjusted p=0.04). Conversely, 15
upregulated biological processes such as response
to topologically incorrect protein, response to cal-
cium ion, and cellular response to unfolded protein
were identified (Fig. 4C). We also estimated the
affected KEGG pathways: the downregulated genes
in DaNs from patients with high-risk scores were
enriched in neurodegenerative disorder (Parkin-
son’s disease, Alzheimer’s disease, and Huntington’s
disease) associated pathways, oxidative phosphory-
lation pathway, and glycolysis and gluconeogenesis
pathway (Fig. 4D). These analyses suggested that
transcripts significantly altered in DaNs between the
high- and low-risk score groups. For the downreg-
ulated genes, we noted these genes were enriched
in PD-associated pathways, indicating the two-gene
signature provides an opportunity to reveal the molec-
ular mechanisms associated with PD pathogenesis.

DISCUSSION

In this study, we identified a reliable two-gene sig-
nature that links to the motor progression in patients
with PD from the whole blood gene expression pro-
files using well-study cohorts, and the prognostic
ability of this two-gene signature was replicated in
an independent cohort. The signature two genes,
LILRB3 and LRRN3, were differentially expressed
between patients with PD and HC in agreement
with a previous study [17]. LILRB3, a member of
the leukocyte immunoglobulin-like receptor (LIR)
family, is expressed on immune cells where it
binds to major histocompatibility complex (MHC)
class I molecules and is involved in the regula-
tion of immune responses, inflammatory responses,

Fig. 3. The relationship between the PD prognostic two-gene signature and immune cells in blood. (A) LRcell result of mapping the
differentially expressed genes between the high- (N =347) and low-risk (N=91) score groups to human peripheral blood mononuclear cell
(PBMC). CD14" monocyte is the most significant cell type. The x-axis represents various cell types. Inset: Volcano plot indicated the
DEGs between the high- and low-risk score groups. Magenta dots represented significantly upregulated DEGs and cyan dots represented
downregulated DEGs. (B) Correlation between the fraction of neutrophils estimated from bulk RNA-seq data and the available clinical cell
count data from 1,130 participants. (C) Correlations between the risk scores and 12 major immune cell fractions from 438 patients with PD.
Negative correlation was marked with cyan and positive correlation with magenta. (D) Differences of the 12 major types of immune cells
among healthy controls (N=594), PD patients with low-risk scores (N=347), and PD patients with high-risk scores (N=91). The upper
and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value. For (C) and (D)
the asterisks represented the statistical p value (*p <0.05, **p <0.01, ***p <0.001, n.s. not significant). The p values were adjusted by the

Benjamini-Hochberg method.
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Fig. 4. Downregulated genes in iPSC-derived dopaminergic neurons from PD patients with high-risk scores were enriched in PD-associated
pathways. (A) Volcano plot showed the up- and downregulated genes in dopaminergic neurons (DaNs) between six PD patients with high-
risk scores and six PD patients with low-risk scores. Red points represented significantly upregulated genes and blue points represented
downregulated genes. (B) Heatmap presented the representative up- and downregulated genes in DaNs between the high- and low-risk
score groups. (C) GO enrichment analysis of the upregulated and downregulated genes in DaNs. The lollipop plots displayed the top 15
enriched GO terms for upregulated and downregulated genes, respectively. (D) Gene set enrichment analysis (GSEA) uncovered genes
enriched in PD-associated pathways that were downregulated in patients with high-risk scores. Genes were ranked by the value of log,
(fold change) generated by differential expression analysis between the high- and low-risk score patients. The p values were adjusted by the

Benjamini-Hochberg method. NES, normalized enrichment score.

and cytotoxicity [38—41]. Moreover, a study of
sepsis showed that LILRB3 was significantly upreg-
ulated in the peripheral blood mononuclear cells of
patients compared to healthy controls and inhibited
macrophage-mediated bacterial killing and antigen
presentation [41]. LRRN3 is highly expressed in the
brain, which plays a role in the development and
maintenance of the nervous system [42]. Mutations
in LRRN3 are strongly associated with autism spec-

trum disorder [43], and the sustained expression of
LRRN3 has been reported to maintain normal T cell
function during chronic antigenic simulation [44].
Based on the two-gene signature, we observed
the high-risk score patients with poorer progno-
sis (fast progression to H&Y stage 3) contained a
higher fraction of neutrophils and a lower fraction
of CD4% T cells in the blood than the low-risk
score patients across all visits (Supplementary Fig-
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ure 7A, B). Whereas, the fractions of these cell types
were remarkably similar between the low-risk score
patients and healthy controls (Fig. 3D). The immune
cells in peripheral blood have been documented that
contribute to the development of PD by infiltrat-
ing the central nervous system (CNS) through an
impaired blood-brain barrier, which implies a crit-
ical role of the activation of the immune system
in PD pathogenesis [45, 46]. Previous studies have
shown that monocytes [47] and neutrophils [17] are
increased, while CD471 T cells [48] are decreased in
the circulation of PD patients. The peripheral mono-
cyte infiltration of the brain in animal models was
demonstrated to be an important step in inflamma-
tion and neurodegeneration induced by a-synuclein,
infiltrating monocytes promote disease progression
[47, 49]. We observed the high-risk score patients
with increased monocytes compared to the low-risk
score patients (nominal p <0.05, but no statistical
significance after multiple testing correction) were
correlated with the severity progression of motor
symptoms in PD. Several studies have demonstrated
that neutrophils or the neutrophil-to-lymphocyte ratio
(NLR) were increased in patients with PD compared
to healthy controls [50-52], and Solmaz et al. [53]
found a positive correlation between the NLR and
H&Y stage. Our study showed a significant increase
in neutrophils with a concomitant decrease in B
cells and CD4™ T cells in PD cases with high-risk
scores, which is in line with previous reports [53,
54]. Accumulated evidence showed that CD4+ T
cells can infiltrate the brain to induce dopaminer-
gic toxicity and contribute to neurodegeneration in
PD [55, 56]. Recent studies have illustrated that the
elevated a-synuclein-specific CD41 T cell reactiv-
ity was present in the preclinical phase (before the
onset of motor symptoms) of PD then decreased
after disease onset [57], and the number of CD4+
T cells was negatively correlated with H&Y stage
[58], which are consistent with our findings. An addi-
tional study reported that three transcription factor
genes (STATI, NR4A2, STAT6) involved in CD4™ T
cells development were associated with motor com-
plications in PD [59], and STAT6 was confirmed
in our analyses. Altogether, our two-gene signature
endorses the association between the immune system
and PD [60].

We did not observe a significant loss of DaNs
in patients with high-risk scores when assessing
DaNs in the two risk groups using scRNA-seq data.
Several reasons can contribute to the underrepresen-
tation of DaNs. Firstly, as the disease progresses,

dopamine neurons vulnerability combined with the
immune system might create an environment for
selective DaN loss in the high-risk score patients [61].
Secondly, iPSC-derived DaNs provided a valuable
model of PD but lacked the complex composition and
dynamics found in the human brain [62]. Moreover,
the technical limitation may be another important
factor causing the underrepresentation of DaNs in
the transcriptomic data. Our differential expression
analysis showed altered transcripts in iPSC-derived
DaNs between the high- and low-risk groups. Fur-
ther functional enrichment analysis indicated that the
downregulated genes in DaNs of patients with high-
risk scores were mainly enriched in PD-associated
pathways, such as mitochondrial function, oxidative
phosphorylation, glycolysis, and gluconeogenesis, as
well as inflammatory-related pathways. These molec-
ular pathways and the associated genes have been
reported to be dysregulated in PD and are thought
to involve in the acceleration of the progression of
the disease. For example, defective mitochondrial can
lead to the accumulation of a-synuclein or impair
energy metabolism and cause oxidative stress [63].
Moreover, an imbalance of glucose metabolism has
been linked to faster progression of motor symptoms
in PD [64]. The interactions of affected pathways
indicated that a cascade of several molecular events
happens and then causes progressive neurodegenera-
tion [65].

Our study has some limitations. Firstly, nearly all
PD patients from PPMI were de novo at enrollment,
while patients from PDBP who within 5 years of
receiving a diagnosis regardless of treatment status.
The mediocre performance of the two-gene signa-
ture in the PDBP cohort may be due to the distinct
duration time of disease onset in these two cohorts.
We suggested that future studies with different stages
of PD cases from longitudinal cohorts are needed
to validate our findings. Secondly, we explored the
changes in iPSC-derived DaNs between the two risk
groups, but we did not know detailed cell population
changes and transcriptional changes of the interested
immune cell types at the single-cell level in the two
risk groups. We suggested further careful targeted
analysis of immune cell populations and single-cell
transcriptional changes are required.

This study identified a two-gene signature linked
to the motor progression in Parkinson’s disease, and
patients with PD in the two risk groups exhibited
prominent changes in neutrophils and CD47 cells in
the blood. In addition, the downregulated genes in
DaNs of patients with high-risk scores were mainly
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enriched in PD-associated pathways. We proposed
that these results provide new insights into the motor
prognosis for PD.
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