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Aggregation of amyloid-b (Ab) peptides is a characteristic pathological feature of Alzheimer's disease. We
have exploited the relationship between solvent exposure and intrinsic fluorescence of a single tyrosine
residue, Tyr10, in the Ab sequence to probe structural features of the monomeric, oligomeric and fibrillar
forms of the 42-residue Ab1-42. By monitoring the quenching of Tyr10 fluorescence upon addition of
water-soluble acrylamide, we show that in Ab1-42 oligomers this residue is solvent-exposed to a similar
extent to that found in the unfolded monomer. By contrast, Tyr10 is significantly shielded from acryl-
amide quenching in Ab1-42 fibrils, consistent with its proximity to the fibrillar cross-b core. Furthermore,
circular dichroism measurements reveal that Ab1-42 oligomers have a considerably lower b-sheet content
than the Ab1-42 fibrils, indicative of a less ordered molecular arrangement in the former. Taken together
these findings suggest significant differences in the structural assembly of oligomers and fibrils that are
consistent with differences in their biological effects.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Alzheimer's disease (AD) and a range of related disorders are
associated with the self-assembly, aggregation, and fibril formation
of disease-specific peptides and proteins [1]; in the case of AD such
processes are involved with aggregation of the amyloid-b (Ab)
peptide [2,3]. In its fibrillar form, this peptide is the main protein-
aceous component of the extracellular plaque deposits that are
characteristic of AD pathology [4,5], but in the brain Ab also exists
in a variety of monomeric and oligomeric forms [6]. It has been
reported that soluble Ab concentrations correlatemore closely with
dementia than the amount of amyloid plaques [7,8], and indeed
soluble Ab oligomers are now thought to be themain culprits in the
pathogenesis of AD and related conditions [9], particularly since
they have been associated with impaired cognitive function
[10e12] and have been shown to induce cellular toxicity [13e17].
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Unfortunately, the small size and lowabundance of Ab oligomers, in
combination with their considerable heterogeneity and high
sensitivity to environmental changes, has rendered them chal-
lenging to characterise. Although a detailed molecular model of a
stabilised Ab1-42 protofibril has been recently reported [18], little is
known in detail how monomers arrange to build up the smaller,
globular oligomers that are populated during Ab aggregation re-
actions and which can form in the AD brain [19].

In the present paper we have used fluorescence and circular
dichroism spectroscopies to examine structural differences,
particularly related to the microenvironment around the N-termi-
nal region, to compare soluble, globular Ab1-42 oligomers, prepared
in vitro, with monomers and fibrils formed by both Ab1-40 and Ab1-
42. The oligomers were prepared using established methods for
producing stable oligomers of a type that is often referred to as
amyloid-derived diffusible ligands (ADDLs) [19]. These ADDLs have
been reported to be neurotoxic [20] and it has been found that
antibodies raised against in vitro prepared oligomers of this type
also recognise oligomeric species that are elevated in AD brains
[21], suggesting their resemblance to naturally occurring forms.
Although it has been proposed that oligomers of this type could be
of a fibrillar nature [22,23], it is not known how monomers are
present within these oligomer assemblies or to what extent the
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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microscopic architecture resembles that found in mature fibrils. To
address this issue, we have taken advantage of the fact that the Ab
peptide contains only a single intrinsically fluorescent residue,
tyrosine at position 10 (Tyr10), which is located in between the b-
core and the flexible N-terminus of fibrillar Ab1-40 and Ab1-42
[24e28] (Fig. 1A). This residue, therefore, has the potential to report
on the participation of this region of the Ab peptide in the different
aggregated states. In this study, we have exploited the intrinsic
fluorescent properties of Tyr10 and also its susceptibility to fluo-
rescence quenching by water-soluble acrylamide to examine the
characteristics of the monomeric, oligomeric and fibrillar forms of
Ab. Our results indicate that Ab1-42 oligomers show the presence of
a degree of b-sheet structure, but that they are distinctly less or-
dered than fibrils, and this is confirmed by a substantially higher
degree of solvent exposure around Tyr10. Taken together these re-
sults highlight significant differences in the molecular architecture
of the oligomeric versus the fibrillar forms of the Ab peptides which
may offer new insights into the differential biological activities.
2. Materials and methods

2.1. Materials

Synthetic Ab1-40 and Ab1-42 peptides were acquired as lyophi-
lised powders from Anaspec EGT (Fremont, USA) and were
Fig. 1. (A) Schematic representation of the Ab1-42 peptide sequence. The arrows show the
[24e28], with the unstructured N-terminus marked in green and the b-sheet regions par
microscopy image of oAb1-42. (CeD) TEM image of oAb1-42 at higher magnification. (E) TEM
absence of aggregates in the monomeric preparation. (For interpretation of the references t
prepared for use as described below. All other reagents were pur-
chased from SigmaeAldrich (Dorset, UK).
2.2. Sample preparation

The Ab peptide powders were dissolved in ice-cold trifluoro-
acetic acid, sonicated (30 s, on ice), flash frozen and again lyophi-
lised. The samples were redissolved in ice-cold
hexafluoroisopropanol (1 mL) and the solutions were kept on ice
(10 min) then divided into aliquots (50 mL) whilst working at 4 �C,
and dried by rotary evaporation. The peptide concentration was
determined by amino acid analysis and all experiments were per-
formed in 50 mM sodium phosphate buffer (pH 7.4). The mono-
meric form of the Ab peptides was obtained by dissolving a fresh
peptide aliquot to a final concentration of 5 mM directly in buffer.
The solution was analysed immediately to minimise the formation
of aggregates. Fibrillar Ab samples were prepared by incubation at
room temperature for 48 h under shaking conditions (1400 rpm in
a Titramax 100 shaker, Heidolph Instruments GmbH, Schwabach,
Germany). Oligomers of Ab1-42 were prepared by resuspending
peptide aliquots in DMSO (2 mL), followed by dilution in ice-cold
buffer (10 mM NaCl, 10 mM sodium phosphate, pH 7.4), to a final
peptide concentration of 100 mM followed by incubation (over-
night, 4 �C under quiescent conditions) [20]. The solutions were
diluted in 50 mM sodium phosphate buffer (pH 7.4) (5 mMbased on
reported engagement of different parts of the sequence in the mature amyloid fibrils
ticipating in the core marked in orange. Tyr10 is highlighted in red. (B) Atomic force

image of fAb1-40. (F) TEM image of fAb1-42. (G) TEM image of mAb1-40 showing the
o colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 2. Circular dichroism spectra of different Ab species; mAb1-40 (red), mAb1-42
(green), oAb1-42 (black), fAb1-40 (purple) and fAb1-42 (orange). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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monomer concentration) prior to experimental analysis. The olig-
omer yield was determined by amino acid analysis following sep-
aration of the oligomers from residual monomer by
ultracentrifugation (1 h, 90,000 g) using an Optima TLX ultracen-
trifuge (Beckman Coulter Inc, Brea, USA).

2.3. Fluorescence spectroscopy

Fluorescence spectra were recorded on a Cary Eclipse fluorim-
eter (Agilent Technologies, Stockport, UK) using a reduced path-
length quartz cuvette (4 mm excitation/10 mm emission). The
excitation wavelength was 275 nm and emission spectra were
recorded at 1 nm increments between 290 and 350 nm, with
excitation and emission slit widths of 5 nm and 10 nm, respectively,
and a scan rate of 60 nm/min. Samples were subjected to an
acrylamide gradient following additions of a 0.2 M stock solution
(10 mL aliquots), the fluorescence spectra being recorded immedi-
ately after the addition of the acrylamide aliquots. The recorded
spectra were corrected for the background contributions and the
fluorescence intensity in each case was taken as the sum of the
intensities in a 6 nm range centred around the emissionmaxima, to
increase signal-to-noise. Data were analysed using the Stern-
Volmer equation [29].

F0
F

¼ 1þ KSV ½Q � (1)

where F0 and F are the fluorescence intensities in the absence and
presence of quencher, [Q] is the concentration of quencher, and KSV

the SterneVolmer constant. All experiments were performed in
triplicate and are reported as mean ± SD. As acrylamide absorbs
significantly at the excitation wavelength of tyrosine and therefore
acts as an inner filter, corrections were made using separate ex-
periments in which a non-quenching molecule (here DNA) was
titrated into solutions of tyrosine at the same absorbance in-
crements in order to determine correction factors for primary inner
filter effects.

2.4. Circular dichroism (CD) spectroscopy

CD spectra were recorded on a JASCO J-810 spectropolarimeter
(JASCO Inc. Tokyo, Japan) between 190 and 250 nm using a 1 mm
quartz cuvette. 10 scans were recorded and averaged using a
bandwidth of 2 nm and a scan speed of 50 nm/min. The peptide
concentration was 30 mM and all spectra were corrected for back-
ground contributions by subtracting buffer blanks.

2.5. Transmission electron microscopy (TEM)

Ab samples were adsorbed (2 min) onto carbon-coated copper
grids (Taab Laboratories Equipment Ltd, Berks, UK). The grids were
blotted, washed with milliQ water (2X) and negatively stained with
2% (w/v) uranyl acetate. Samples were imaged on a FEI Tecnai G2
transmission electron microscope (Eindhoven, Netherlands) and
images were analysed using the SIS Megaview II Image Capture
system (EMSIS GmbH, Muenster, Germany).

2.6. Atomic force microscopy (AFM)

AFM measurements were performed using a NanoWizard AFM
system (JPK Instruments AG, Berlin, Germany). Samples were
diluted using dH2O and deposited onto freshly cleaved mica sur-
faces and slowly dried before imaging. AFM imaging was carried
out in the intermittent (air) contact mode using a silicon nitride
cantilever (mmasch, NSC36/No Al, 65e130 kHz, 0.6e2 N/m). AFM
images were analysed using Gwyddion software package (http://
gwyddion.net/).

3. Results and discussion

The intrinsic fluorescence of Tyr10 in combination with circular
dichroism spectroscopy has been used to examine five different
preparations of Ab1-40 and Ab1-42; monomers (mAb1-40 and mAb1-
42), fibrils (fAb1-40 fAb1-42) and Ab1-42 oligomers (oAb1-42) in order
to assess the conformational differences between the various forms
of Ab1-42, and also to explore potential differences between Ab1-40
and Ab1-42 fibrils.

Prior to spectroscopic characterisation the morphology of the
different Ab species was examined (Fig. 1BeG). Analysis of the
oligomeric oAb1-42 samples by AFM (Fig. 1B) and TEM (Fig. 1CeD)
showed that they contain a relatively homogeneous population of
small aggregates with approximately spherical morphology; anal-
ysis of the TEM images indicates that their approximate diameters
were 10e20 nm. The fibrillar fAb1-40 and fAb1-42 samples contained
typical amyloid fibrils; importantly no such fibrillar structures were
detected in the oligomeric samples used in this study and no
discernible aggregates were observed in the monomeric samples
(Fig. 1G,).

Next, the secondary structure content in the different Ab prep-
arations was assessed (Fig. 2); the monomeric samples displayed
CD spectra typical of random coils with negative peaks centred at
195 nm, consistent with their intrinsically disordered nature and
confirming the absence of amyloid aggregates in the monomer
preparations. The oligomeric and fibrillar samples, by contrast,
exhibited characteristic b-sheet features with CD spectra displaying
a negative peak at ~218 nm and a positive peak at ~196 nm. The CD
signal from the oligomers, however, was considerably weaker than
that of the fibrils indicating that they have significantly less b-sheet
content.

The fluorescence spectra of the various Ab samples were
recorded to monitor the intrinsic emission from Tyr10. Fig. 3A
shows the spectra of the five different Ab preparations along with
corresponding spectra for free tyrosine and for a tyrosine-
containing tri-peptide (VYV), the latter was used to determine
the generic effects on tyrosine emission due to its incorporation
into a polypeptide sequence. It was observed that the tyrosine
emission intensity is decreased by as much as a factor of 2 upon
incorporation into a peptide sequence, consistent with previous
observations where the quenching of tyrosine in proteins has been
attributed to photoinduced electron transfer to the peptide bond in
presence of electron withdrawing groups [30]. All the Ab con-
formers examined, except fAb1-42, were observed to exhibit even
lower intrinsic tyrosine fluorescence intensities than the VYV

http://gwyddion.net/
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Fig. 3. Intrinsic tyrosine fluorescence of different Ab species. (A) Emission spectra of
free tyrosine (blue), VYV (cyan), mAb1-40 (red), mAb1-42 (green), oAb1-42 (black), fAb1-40
(purple), fAb1-42 (orange). (B) Normalised emission intensity, corresponding to the
spectra shown in (A). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Acrylamide quenching of the intrinsic tyrosine fluorescence in the different
species of Ab. (A) Fluorescence emission spectra for free tyrosine (5 mM) titrated with
acrylamide (added in 2 mM increments). The bold line represents the fluorescence of
unquenched tyrosine and the arrow indicates the decrease in fluorescence with
increasing concentration of the quencher. (B) Stern-Volmer plots of the acrylamide
quenching of Tyr10 in the different Ab species showing free tyrosine (blue), VYV (cyan),
mAb1-40 (red), mAb1-42 (green), oAb1-42 (black) fAb1-40 (purple), fAb1-42 (orange). The
error bars represent the standard deviations (n ¼ 3). (C) SterneVolmer quenching
constants (KSV) ±SD calculated from the linear-fit of the data in (B). The statistical
significance of the differences between the various KSV values was tested by one-way
ANOVA with Tukey's post hoc test; ns denotes not significantly different (p > 0.05), ***
(p < 0.001), **** (p < 0.0001). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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control peptide, indicating the existence of additional quenching
interactions within the Ab sequence, attributable to interactions
with neighbouring side-chains. Spectral broadening of the tyrosine
emission peak was observed in all the Ab samples (Fig. 3B); the
broadening on the blue edge of the emission peak is particularly
apparent for fAb1-40, fAb1-42 and oAb1-42 and can be explained by
light scattering by the aggregates present in these solutions,
whereas the red edge broadening, which is mainly apparent for the
monomeric Ab peptides, may be indicative of tyrosinate formation
in the excited state [31,32].

Acrylamide quenching experiments were conducted to explore
the extent to which tyrosine is exposed to solvent in its free form
(Fig. 4A) compared to its exposure when it is incorporated as Tyr10
in the different monomeric and aggregated forms of Ab. The
resulting Stern-Volmer plots (Fig. 4B) were linear in all cases, an
observation consistent with acrylamide being a predominately
collisional quencher [33]. Fig. 4C summarises the calculated
SterneVolmer quenching constants (KSV) and shows that incorpo-
ration of tyrosine into a peptide sequence, even into the short VYV
model peptide which displays a ~30% reduction of the KSV value,
results in shielding from the polar but non-charged water soluble
acrylamide quencher. This effect is likely to be due to steric hin-
drance imparted by the neighbouring residues, which limits the
number of possible quenching interactions but does not reflect
shielding caused by secondary structure constraints. No appre-
ciable differences in the solvent exposure of tyrosine in the
monomeric mAb1-40 and mAb1-42 forms compared to the VYV
peptide were observed. This finding is consistent with other ob-
servations showing that the Ab chain is highly unfolded in solution
[34,35], at least on timescales in the order of the excited state
lifetime of tyrosine (�3.4 ns [36]). Analysis of the Stern-Volmer
plots showed, however, that Tyr10 in fAb1-40 and fAb1-42 is consid-
erably less exposed to acrylamide quenching than in mAb1-40 and
mAb1-42, suggesting that the incorporation of the Abmolecules into
a fibrillar structure protects this residue from solvent even though
existing structural models [24e28] suggest that Tyr10 does not
participate directly in the cross-b core (see summary in Fig. 1). This
effect can, however, be explained by the close packing of monomer
units in the fibril protofilaments [37], which sterically hinders the
acrylamide-Tyr10 collisions, or it may also be a consequence of a
fraction of the Ab N-termini becoming buried within the mature
fibril; indeed, limited proteolysis data for fAb1-40 suggests that at
least 20% of Ab monomers have an N-terminal segment that is
protected within the fibril structure [38]. The considerable simi-
larity observed for fAb1-40 and fAb1-42 is interesting in relation to
hydrogen/deuterium-exchange rates measured by NMR, which
indicate significant differences between the two fibril types with
respect to the amide solvent protection of the N-terminus, whereby
the amide group of Tyr10 is more solvent accessible in fAb1-42 than
in fAb1-40 [26].

Interestingly, the oligomeric oAb1-42 samples exhibit KSV values
that are significantly higher than those observed for the fibrils
(Fig. 4C). This observation suggests that Tyr10 is considerably less
shielded in these globular oligomers than in Ab fibrils and is
consistent with our finding that oAb1-42 species have a lower b-
sheet content than fAb1-42 (Fig. 2A). More surprisingly, we also find
that the KSV values of the oligomers are similar, within experi-
mental error, to those of monomeric Ab implying that Tyr10 is
exposed to a similar extent as in a random coil monomer. To ensure
that the high KSV value truly reflects the structure of the oAb1-42
species and is not attributable to sample heterogeneity, and as it
has been suggested previously that oligomers of the type we
examine here can exist in binary mixtures with monomers, a
further control experiment was performed [39]. Quantitative
amino acid analysis following ultracentrifugation to separate the
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oAb1-42 species from residual monomers showed that, in our
samples, nearly 90% of the Ab monomers were incorporated into
oligomers (Supplementary Information). This result is comparable
to our previous report of the yield in fibril forming reactions with
Ab1-40 and Ab1-42 [40]. Furthermore, these control experiments
confirm that the difference in b-sheet content indicated in the
oAb1-42 and fAb1-42 CD spectra, is indeed related to the oAb1-42
species exhibiting some random coil nature, rather than due to the
presence of significant quantities of unstructured monomers in the
samples. Therefore, this study shows that the Ab1-42 oligomers
differ from fAb1-42, not only in size and shape, but also in secondary
structure content and internal architecture. Our finding that Tyr10
in the oligomers is significantly solvent exposed, and thus likely to
be present on the surface of the oligomers is in agreement with a
previous study of a disc shaped Ab1-42 pentamer [41]. These ob-
servations are also consistent with the conclusion that the Ab1-42
peptides in these oligomers do not adopt the same b-hairpin
arrangement as that formed in the mature Ab fibrils. This sugges-
tion supports the idea that oligomers of this type may accumulate
because their structural properties are such that they are not able to
convert into fibrils [42,43].

In conclusion, this study has set out to examine the fluorescent
properties and the degree of solvent exposure of Tyr10 in Ab to gain
insights into structural similarities and dissimilarities between
different Ab species. We report significant differences between
monomers and fibrils, suggesting that even though Tyr10 is not
directly part of the cross-b core, the side-chain is, on average, well
shielded within the fibrils. In addition, we have shown that Ab1-42
oligomers, due to their lower b-sheet content and extensive
exposure of Tyr10 to solvent, have significantly different structural
properties from those of Ab fibrils.
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