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Abstract

As the demand for forest products and carbon storage in standing timbers increases, intensive 

planting of forest resources is expected to increase. With the increased use of plantation practices, 

it is important to understand the influence that forest plot characteristics have on the likelihood of 

where these practices are occurring. Depending on the goals of a policy or program, increasing 

forest planting could be a desirable outcome or something to avoid. This study estimates a 

spatially explicit logistical regression function to assess the likelihood that forest plots will be 

planted based on physical, climate, and economic factors. The empirical results are used to project 

the potential spatial distribution of forest planting, at the intensive and extensive land-use margins, 

across illustrative future scenarios. Results from this analysis offer insight into the factors that 

have driven forest planting in the United States historically and the potential distribution of new 

forest planting in the coming decades under policy or market scenarios that incentivize improved 

forest productivity or certain ecosystem services provided by intensively managed systems (e.g., 

carbon sequestration).
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Over the past decade, the US forest sector has seen unique changes defined by decreasing 

demand for traditional paper products, volatile housing markets and sawtimber demand, 
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growing markets for packaging materials and biomass for energy generation, and 

environmental change. However, despite these structural changes and future uncertainty in 

market and environmental conditions, investment in the forest resource base has continued to 

grow, with foresters adopting management techniques that increase the productivity of 

forests at some additional cost1. Management intensification in forestry includes planting of 

new forests post-harvest, and managed forest systems in the US are often distinguished 

between planted and naturally regenerated forests, where planted forests are typically 

monoculture systems (e.g., planted pine in the Southeast or Douglas-fir in the Pacific 

Northwest) that offer greater productivity relative to naturally regenerated stands.

Naturally regenerated forests are increasingly being converted to planted and managed 

systems globally to meet the demand for wood, fiber, and ecosystem services, as planted 

forests have greater aboveground growth efficiency and production efficiency than 

unmanaged forests (Noormets et al. 2015). In addition, Row (1996) shows that changes in 

forest management can increase carbon sequestration by 0.6–0.8 tonnes of carbon per acre 

per year. Binkley et al. (2005) estimated that 35 percent of the industrial roundwood 

consumed worldwide in 2000 was supplied by forest plantations, and that by 2020 around 44 

percent of industrial roundwood will be supplied by planted forests. Not only has the timber 

supplied by plantation forest increased, but the area of planted forest has increased despite 

total forest area declining. Between 2010 and 2015, global forest area declined by 3 percent, 

whereas planted forest increased by over 65 percent between 1990 and 2015 (Keenan et al. 

2015). Using projected GDP per capita and roundwood production Nepal et al. (2019a) 

project that planted forest area in the United States could increase between 16.5 percent and 

29.8 percent by 2070.

There are several reasons that management intensity and plantation forestry may continue to 

increase in the United States. First, the demand for traditional forest products is projected to 

increase over time because of increasing population and economic growth (Prestemon et al. 

2015). Additionally, as the demand for renewable energy has increased over the past decade 

in many regions of the world, use of woody biomass for energy production has also 

increased. For instance, demand growth in the European Union for wood chips and pellets 

has partially been met by increased exports of woody biomass from the United States. 

Exports of wood pellets and chips increased by 40 percent between 2013 and 2014, whereas 

total forest exports grew 80 percent between 2010 and 2014 in the United States (USFS 

2015). Biomass energy from forest products and residual by-products could also continue to 

increase in the future under a variety of policy drivers, which creates investment 

opportunities in forestry (e.g., Raunikar et al. 2010, Abt and Abt 2013, Cherubini et al. 2013, 

Latta et al. 2013, Baker et al. 2017, Kim et al. 2018).

Although the demand for forest products has increased overall, the reliance on global forests 

to mitigate the effects of greenhouse gas emissions has also increased. Forests are the largest 

sink of terrestrial carbon, and continued growth of standing timber and afforestation has the 

1.The RPA Assessment 2010 estimated 63.2 million acres of planted forest in 2007 (Smith et al. 2009), whereas the RPA Assessment 
2020 estimated 68.0 million acres of planted forest in 2017 (Oswalt et al. 2019). Similar management trends have been observed in 
other regions (Payn et al. 2015, Sedjo and Sohngen 2015).
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potential to reduce greenhouse gases in the future via carbon sequestration and storage 

(Baker et al. 2017). Recent literature shows, however, that future accumulation of carbon in 

forests could slow in the coming decades because of aging forest stands, economic 

conditions, and continued urban development (Coulston et al. 2015, Latta et al. 2018). 

However, if favorable investment conditions persist as in Tian et al. (2018) or if policies are 

implemented that adequately incentivize increased carbon sequestration from the land-use 

sector, these conditions would create additional incentive not only to promote afforestation 

but to intensively manage forests to maximize carbon sequestration benefits in the near term. 

Such investment could slow down or reverse the projected decline in carbon stocks. Policy 

incentives designed to increase these separate carbon pools can expand forest planting at 

both the intensive margin (or an increase in planted systems within the existing forest land 

base) and the extensive margin (or new forest area added).

Currently in the United States, state agencies such as the California Air Resources Board are 

using market-based programs to reduce greenhouse-gas emissions through different 

mechanisms, including offsets from the land-use sectors. Under offset markets, forest 

landowners have increased incentives to invest in management practices, which improve the 

productivity of forests, such as planting and intensive management, with the goal of 

achieving higher net carbon sinks (Noormets et al. 2015). Greater investment in US forest 

plantations can help meet increased demand for various forests products, offset the need to 

harvest natural forests, and improve aggregate carbon outcomes. Thus, regional forest 

product market expansion and/or the potential emergence of other programs (e.g., voluntary 

offset markets) that seek to enhance terrestrial carbon stocks could expand plantation 

forestry in the United States and beyond.

Finally, forest area is in constant competition with land-use change and natural disturbances. 

Pressure from continued population growth and urban expansion can lead to deforestation, 

whereas natural pressures, including drought, wildfire, invasive species, and outbreaks of 

insects and disease (Tidwell 2016) put landowners at risk of losing their investment. 

Intensive forest planting allows land owners to hedge against these risks by shortening 

rotation lengths and increasing biomass production.

Although forest planting and management intensity of US forest resources have increased 

over time, and will likely continue to expand, limited work to date has focused on site-

specific factors that may drive the decision to replace a naturally regenerated stand with a 

plantation forest post-harvest (intensive margin expansion). One example in previous 

literature is Sohngen and Brown (2006); they used a logistic regression approach to project 

the additional land rental rate that is necessary to prevent intensive expansion of planted 

forest in the South-Central United States. They found that without policy intervention, 

intensive expansion of plantation forests will continue because of market forces (e.g., 

increased demand for forest products, and increased productivity of plantation forests). Alig 

and Butler (2004) use a structural model to project future forest conversion, and project an 

additional 13.8 million acres of planted pine in the Southern United States through 2050. 

Nepal et al. (2019a) use an econometric model to project global expansion of planted forests 

at a regional scale, with the United States projected to have between 75.9 and 84.5 million 

acres of planted forests in 2070. This limited literature is partly due to data limitations, even 
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in the United States; see South (2005) and MacDicken (2015) for additional discussions. We 

seek to fill this critical data gap by performing a detailed spatial analysis on the factors 

currently driving planting decisions in US forestry. Specifically, we use the United States 

Forest Service’s Forest Inventory and Analysis (FIA) data to estimate the probability that 

current unmanaged and naturally regenerated forests will convert to planted forests post-

harvest. A logistic regression function is used to estimate the effects that physical, climate, 

spatial, and economic attributes have on the likelihood that a specific unmanaged forest plot 

will be converted to a planted/managed stand in the future after initial harvest.

By assessing the effects that these characteristics have on the likelihood of forest landowners 

converting their lands to forest plantations, this analysis can provide policymakers and 

industry stakeholders with improved information concerning ways to encourage (or 

discourage) certain forest-management activities, including planting practices. Although 

planted forests can increase the production of forest biomass, they can also lower 

biodiversity compared to naturally forests (Paillet et al. 2010). This phenomenon is due to 

differences in forest structure, composition, and dynamics between unmanaged, natural 

forests and managed, plantation style forests. The results of this research can be used to help 

define areas where conservation easements or limitations on areas of planted forests could 

protect species that rely heavily on natural forests.

Furthermore, there is a growing literature that seeks to project forest management, land use, 

and forest carbon outcomes across alternative future market and policy conditions. These 

analyses use a variety of frameworks, including structural economic models (e.g., Forsell et 

al. 2016, Latta et al. 2018, and Tian et al. 2018), and detailed geospatial simulation 

approaches tied to market models (e.g., Wear and Coulston 2015). These varying approaches 

have led to alternative future trends of the United States forest sector. For example, the most 

recent Renewable Resources Planning Act Assessment (USFS 2012) shows a switch from 

forest carbon sink to source of emissions for most scenarios by 2040, with large carbon 

losses under high bioenergy expansion scenarios. However, this result was based on 

modeling frameworks that did not allow national harvest levels and regional management 

intensification to respond directly to current and anticipated market prices outside the 

Southern United States. Hence, the projected planted forest expansion from the 2010 RPA is 

only indirectly related to expected market and policy conditions, as opposed to dynamic 

optimization models in which management decisions today are based on perfect foresight of 

future conditions. Accounting for management change is critical in land-use projections 

across baseline and policy scenarios, as discussed in Tian et al. (2018), which applies a 

structural dynamic model of the global forest sector to illustrate linkages between 

endogenous land-management decisions and forest carbon stocks. Dynamic models, 

however, may lack the spatial detail for robust projections of management change, as forests 

are often treated as homogeneous systems across large regional aggregates. Our hope is that 

this analysis can be used to better parameterize forest planting possibilities in larger 

economic modeling frameworks by depicting the marginal economic costs of planting 

(which reflects spatial heterogeneity), technoeconomic limits, and the likely spatial 

distribution of future planting in the United States.
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We apply the econometric results to project the spatial distribution of possible forest 

planting across future alternative scenarios. This analysis offers several contributions to the 

literature. First, we offer insight into potential intensive margin expansion in US forestry by 

simulating planting patterns under hypothetical future scenarios, and we compare these 

projections to the current planted area. This approach allows us to evaluate regions or spatial 

hotspots that may see a net increase in forest planting under an “optimal” business-as-usual 

scenario. Furthermore, we can project the potential distribution of forest planting under 

assumed large-scale investment scenarios, illustrating where we are most likely to see 

expansion in planted forest at the expense of naturally regenerated systems in the coming 

decades. Second, we extend the intensive margin framework to offer insight into the possible 

distribution of future extensive margin expansion (afforestation) across alternative land-use 

types, which is an important consideration given the anticipated role of afforestation 

apparent in recently published projections of GHG mitigation potential from the US and 

global land-use sectors (e.g., Fargione et al. 2018).

While we do not evaluate afforestation potential in the context of a structural model and 

defined policy or market conditions, our illustrative simulations nevertheless offer insight 

into potential forest expansion across alternative land-use types that exhibit traits similar to 

current planted forest area. These results demonstrate the importance of accounting for 

spatial heterogeneity in projecting land management and can be used to help create more 

robust projections of forest-management trends.

Data and Methods

As the demand for forest products as well as carbon sequestration from standing forest 

increases in the future, it is important to know where natural forests may be harvested and 

converted to plantation forest. To better understand where these planted forests might be 

located, a binary response function is used to estimate the likelihood that land owners will 

convert forest from unmanaged to managed forest.

Logistic regression models are binary response functions that estimate the probability of an 

event occurring given a set of independent variables. Binary response models have been used 

to estimate stakeholders’ preferences for multiple forest values (Kumar and Kant 2007), to 

estimate how land use may change because of improved infrastructure (Nelson et al. 1999), 

to evaluate the link between land-use projections and forest fragmentation (Plantinga et al. 

2007), and to approximate the harvest choice of different forest land owners (Prestemon and 

Wear 2000). Several articles used similar methods to address the management decisions of 

nonindustrial private forest land owners (Lee 1997, Conway et al. 2000, 2003, Prestemon 

and Wear 2000, Pattanayak et al. 2003). Finally, logistic regression techniques have been 

extensively used in the economics literature to examine factors that influence discrete land-

use change decisions (e.g., Plantinga et al. 1999, Lubowski et al. 2006, and Millington et al. 

2007). Such analyses can be coupled with information on relative economic rents to project 

extensive margin expansion into one land use over another in the presence of policy 

incentives (e.g., carbon sequestration payments for afforestation projects).
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While these studies have offered an insight into factors that have driven land-use change 

historically, especially in a forestry context, there is currently a lack of literature examining 

the factors influencing intensive margin investment of forest resources. This study seeks to 

fill this gap by employing similar empirical methods that have been applied to land-use 

change contexts in the literature. Specifically, this study develops a logistical regression 

model to estimate the likelihood that current unmanaged forest plots will convert to planted 

forests after harvesting based on a wide range of explanatory variables, including physical 

factors of the landscape, climate data, soil data, state-level taxes, market data, and ownership 

type. We recognize that a change from naturally regenerated forests to planted does not 

result in a discrete change in land use per definition of forest land-cover standard, although a 

distinct change from naturally regenerated stands to monoculture systems is a definitive shift 

in land use, making the use of logistical regressions context appropriate. Estimated 

regression coefficients are then used to project the potential spatial distribution of future 

planted forest expansion in the US, under several hypothetical forest-management scenarios.

The econometric framework developed in this analysis is designed to estimate the 

probability that a given forest plot in the US is currently planted based on key physical and 

economic factors. To estimate this logistical regression, four different datasets were used. 

The first is the 2015 FIA National Program, which is collected by the United States Forest 

Service each year2. The second dataset is the Parameter-elevation Regressions on 

Independent Slopes Model (PRISM) data from the Northwest Alliance for Computational 

Science and Engineering (PRISM 2012). This dataset is spatially explicit historical weather 

and climate data throughout the United States. The third dataset is the SSURGO dataset 

from The National Cooperative Soil Survey which includes information on soils throughout 

most of the continental United States. Finally, state-level forestland tax schemes were 

collected from the National Timber Tax website.

Plot-level forest characteristics are gathered from the 2015 FIA National Program, which 

provides a unique census of forest resources in the United States. The dataset includes 

information on location, species, size, and health of trees. In addition, it includes tree 

growth, mortality, and removal from harvest. Especially important for this analysis, the FIA 

data also include designations for forest sites that are currently managed. This designation is 

the dependent variable used in the probability estimation. Overall there are 150,350 

condition classes, or homogenous components of plots included in the FIA dataset, with 

15,711 of those condition classes planted.

This analysis remains agnostic about when forests were converted from naturally 

regenerated to planted systems, which ignores temporal considerations, such as market 

changes, that could drive forest-resource investment. Such considerations would require 

spatially disaggregated information on timber prices, over time, that could be linked to forest 

plots. Given the lack of comprehensive price data across the contiguous US and in order to 

maintain the rich spatial detail in the framework, price information is excluded from the 

analysis. Instead, the model includes longer-term economic factors related to infrastructure, 

2.After the passing of the 1998 Farm Bill, FIA is required to collect data on 20 percent of the plots annually within each state. Thus, 
although the entire inventory is not updated yearly, each plot will be measured every 5 years.
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productivity, and harvest/access costs that drive forest planting. Additionally, research has 

shown that current prices for forest products have limited effect on landowner 

decisionmaking because of the long-time frame between forest planting and harvesting. This 

difficulty in attributing land-use decisions to prices was first recognized by Dennis (1989, 

1990) and Newman and Wear (1993). The latitude/longitude values for the centroid of each 

plot are included in the FIA data. The plot centroids were overlaid with various geospatial 

data sources using a geographic information system (GIS) to provide additional 

characteristics for the forest lands in the model, such as climate, drainage class of the soil, 

and slope.

The role of technology and mechanization is continually expanding in silvicultural choices 

(Silversides 1984). Although originally focused on harvesting (Macdonald et al. 2010), it is 

also important in site preparation and more recently tree-planting decision (Laine and Saksa 

2018). Unlike the potential biological effects of slope, the operational effects of slope related 

to the higher cost associated with working on steep terrain are largely a function of the 

limitations of particular machines. It has been shown that harvesting cost on steep land can 

be almost 37 percent higher than comparable flat land (Amishev et al. 2009). As such, slope 

classes were used rather than actual slope to reflect the discrete costs associated with the use 

of applicable equipment required for working on different slope types. Data for plot level 

slope were used from the FIA and then categorized into groups of 0–15°, 15–30°, 30–45°, 

and >45°.

The FIA data also include information on the ownership of each plot. It is assumed that 

different land owners will have different goals for their forest land, so indicator variables are 

included to account for these differences. Privately managed timberland is most likely to be 

planted, as this land is often managed rotationally to optimize timber outputs, whereas 

publicly managed resources are often managed to maintain a suite of recreational and 

ecosystem services. The following ownership classes are included in the modeling 

framework (the Other federal category is dropped in the regression model to avoid the 

dummy variable trap):

• Private.

• State.

• Bureau of Land Management (BLM).

• US Forest Service.

• Other federal.

Long-term weather observations were collected from PRISM. The PRISM data include 30-

year averages for high, low, and mean temperatures, and 30-year averages for yearly 

precipitation, both of which are incorporated into the regression. The PRISM data are 

composed of high-resolution raster layers that integrate easily into a GIS. The centroids 

from the FIA data were intersected with these spatially explicit data, and the average mean 

temperature and average yearly precipitation were recorded for each plot (PRISM 2012).
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Soil data used in the regression include hydrologic soil groups from the SSURGO dataset. A 

soil’s ability to drain water is paramount in determining the potential productivity of 

different sites (Coops and Waring 2001, Waring et al. (2014). Four hydrologic soil groups 

exist (Groups A–D). These are based off the soil’s runoff potential, where Group A’s 

generally have the smallest runoff potential, and areas in Group D have the highest. Group A 

is sand or sandy loam types of soils and has low runoff potential and high infiltration rates. 

Group B is silt loam and has moderate infiltration rates. Group C includes sandy clay loam 

and has low infiltration rates. The final group, Group D, is clay loam, silty clay loam, silty 

clay, or silt and has a very high runoff potential and very low infiltration rates (in the 

regression model results, Group D is dropped to avoid the dummy variable trap).

The hydrologic soil group for each plot was determined by overlaying the plot centroids 

with the Map Unit shapefile to determine the MUKEY (map unit key) for the plot. Once this 

was determined, the major component for each plot was calculated, and the corresponding 

value for the hydrologic soil group was attributed to the plot. A Point Distance analysis was 

run within Environmental Systems Research Institute’s ArcMap to determine the distance of 

all plot centroids within 10 miles of each individual FIA plot centroid. The resulting 

numbers were divided into managed and unmanaged plots to determine what percentage of 

all surrounding plots were currently managed.

State-level tax schemes were collected in order to see if taxes on forest-related income, 

forest land, and forest products can encourage or inhibit private investment in management 

of forestlands. Greene et al. (2013) found that the presence of federal and State taxes reduces 

the pre-tax value of forest land in the Southern US, from more than one-quarter to nearly 

half. Since all forest plots in this study face the same federal taxes, individually state policies 

are included to see if landowners have a preference to specific tax schemes when deciding to 

pursue active management. Butler et al. (2012) found that tax policies, while not able to 

solely determine how landowners manage forest, can influence management decisions. 

Although investigating the efficacy of tax incentives on encouraging forest landowners to 

pursue sustainable management practices, Greene et al. (2013) found that financial incentive 

programs are generally successful in meeting such goals. To test the effect of tax programs 

on the decision to plant forests, five commonly used tax plans are included in the model. To 

test this, five different tax plans that are relied upon heavily are included. The tax schemes 

are:

• Ad valorem property tax.

• Flat property tax.

• Property tax exemption.

• Yield tax.

• Severance tax.

Ad valorem, or “value-added,” property taxes are based on the value of the land and the 

value of the standing timber. The flat property tax charges the same amount of money per 

acre no matter the value of the timber. In some states (Alaska, Delaware, Iowa, and Rhode 

Island) forestland is exempt from property tax. In addition to property tax, most states 
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charge one of two different types of harvest tax once timber has been cut. A yield tax is 

collected on the value of harvested timber, whereas a severance tax is a flat tax on a specific 

volume harvested. State-level tax schemes are collected from The National Timber Tax 

Website (https://www.timbertax.org/statetaxes/).

Finally, the distance from each forest plot to the nearest port and mill was calculated. This is 

the Euclidean distance between source location and destination location, and has been used 

in part to calculate total harvest costs in previous studies (see Latta et al. 2018). Table 1 

presents summary statistics of the included variables described above.

Model Results

We initially tested multiple regression specifications (including linear specifications for all 

independent variables, using FIA site classes instead of soil drainage class, and including 

regional dummy variables to account for differences across the landscape that would not be 

captured by things such as weather, distance to mills and ports, and local management 

intensity) but found only minor differences in predictive capability, direction and magnitude 

of estimated coefficients, and statistical significance across each specification. The 

regression results presented in Table 2 best capture the combination of physical, economic, 

and spatial characteristics of forest plots considered in this analysis. Both weather variables, 

average yearly temperature and average yearly precipitation, were included in the regression 

as both linear and quadratic terms. This treatment is due to the assumption that the marginal 

effect of either of these variables is nonlinear; that there is a temperature and precipitation 

amount that maximizes the likelihood that a forest plot is planted. Both the linear and 

nonlinear estimated coefficients for the weather variables are statistically significant in the 

results. Coefficients for average slope show that as plots become steeper, the likelihood of 

planting decreases. This result reflects the increased cost in planting and harvesting 

associated with steeper lands (Amishev et al. 2009). The results concerning the land 

ownership classes capture the priorities that different land owners have for forestland. 

Private and state-owned forest are the most likely to convert to planted forests, whereas 

federal lands are the least likely.

The prevalence of local planted forests (Percentage of planted plots within 10 miles) is a 

very robust independent variable in determining whether a plot is planted. This measure 

captures both cost and demand characteristics within a region, and in our results, we show 

that the effects of higher local intensity of planted plots lead to a higher likelihood of 

planting occurring. Distance to mill and distance to port measures are small, negative, and 

statistically significant. This result is expected because of the wide range of values seen in 

the set (range of 1.7–981.6 miles for distance to mill). The coefficients for hydrologic soil 

groups show that soils with higher infiltration rates will likely lead to higher rates of planted 

forest. This soil type typically allows more precipitation to percolate to the root systems of 

standing timber.

Finally, the estimated coefficients for the state-level taxes provide information on the cost 

associated with forest practices. Flat tax rates and ad valorem taxes are the most likely areas 

to see planted forest, although severance taxes and states where forestry is exempt from 
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property taxes are not statistically significant. One reason for this is a lack of observations. 

Only four states exempt forestry practices from taxation, whereas severance taxes are 

included in 10 states, and nine of these states also impose ad valorem taxes, which could 

lead to biases in the regression coefficients because of multicollinearity between 

independent variables.

To assure model significance, correlation coefficients between each independent variable 

were calculated. Five pairwise combinations of independent variables were recognized for 

being highly correlated (we used a coefficient value of >0.5 as our cutoff) flat tax and ad 

valorem (−0.96), USFS ownership and private ownership (−0.75) mean temperature and 

percentage of managed plots within 10 miles (0.64), private ownership and mean 

temperature (0.54), and mean precipitation and percentage of managed plots within 10 miles 

(0.51). Each of these variables exhibits spatial patterns that could lead to these relatively 

high levels of correlation; areas with high percentages of managed plots are located mostly 

in the southeast and northwest where weather patterns are going to be relatively consistent 

across each region. Similarly, most forest plots in the southeast are privately owned where 

mean temperature may not vary greatly across plots. To test for overall significance of the 

full model, a chi-squared test for significance was run on the full model and a restricted 

model that dropped the following independent variables:

• Mean temperature.

• Mean precipitation.

• USFS.

• Private.

• Percentage of managed plots within 10 miles.

• Flat tax.

• Ad valorem tax.

The resulting chi-squared statistic of 4,400 allowed us to reject the null hypothesis that the 

restricted model had greater overall significance than the unrestricted model.

Predictive Ability of the Logistical Regression

To verify the predictive capabilities of the regression, accuracy measures, and two statistical 

measures, the F1 score and relative operating characteristic (ROC) are calculated. 

Additionally, the marginal effects of the independent variables are calculated to better 

understand the individual effects that these independent variables have on the likelihood that 

natural forests will convert to planted forests post-harvest.

The F1 score is the weighted average of precision and sensitivity of a binary classification 

and is measured between 0 and 1 (with 1 being the best and 0 the worst). Overall it is a 

measure of accuracy of the positive results from a binary classification. The F1 score takes 

into account the number of correctly identified planted plots; however, the F1 score does not 

take into account the number of true negatives, which in this example is the number of actual 

naturally regenerated plots that are estimated to be planted. The selected regression results 
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have an F1 score of 0.618. Because the number of true negatives is not accounted for, an 

additional statistical measure is used to determine which regression specification can best 

balance estimating the probability of planting on unmanaged plots successfully.

The ROC is also calculated. Although the use of ROC as a quantitative measure to validate 

land-use change models is relatively new, ROC has been used for decades to validate 

weather forecasting models, library information retrieval models, medical imaging 

diagnosis, material strength testing, and polygraph lie detection. The approach has also been 

used to compare probabilistic models of land-cover change (Pontius Jr and Schneider 2001). 

The area under the curve (AUC) is the primal measure of accuracy from the ROC. When the 

ROC curve is closer to the y-axis, the model does a better job at identifying true positives (in 

this example, correctly identifying existing plantation plots). When the ROC curve is closer 

to the line x = 1, the model predicts more false-positive values (currently unplanted plots as 

planted). As the ROC curve moves toward the upper-left corner of the ROC space, the AUC 

increases. The regression specification that is presented has an ROC curve with an area of 

86.5 percent, with a slight bias toward the x-axis, which can lead to a higher number of false 

positives across the simulation results.

Predicted Probabilities of Planting

Graphs on the relation between model parameters and predicted probabilities are presented 

in Figure 1 including visuals of mean temperature, average precipitation, distance to mill, 

distance to port, and percentage of managed plots within 10 miles. Figure 1 shows that plots 

that are within approximately 5 miles of a mill are, on average, almost 10 percent more 

likely to be planted forests than forests that are located approximately 100 miles from a mill. 

Thus, as plots are closer to mills, the likelihood that the plot will be planted increases. 

Distance to port is similar in its relation to predicted planting probability, but decreases 

linearly, and the predicted probability of planting increases as proximity to ports decreases.

The relation between the percentage of planted plots within 10 miles and predicted 

probability has an elongated s-shape, with an inflection point around 40 percent. Before this 

point, we see increasing probabilities of planted plots at an increasing rate. After this point, 

we see increasing probabilities of planting at a decreasing rate. Mean temperature and mean 

precipitation have both increasing and decreasing marginal returns, showing that there is an 

optimal temperature and amount of precipitation at which forest plots are expected to be 

planted. Marginal returns to a change in temperature and precipitation vary depending on the 

current level of each variable. From the predicted probability graphs, there are clearly 

increasing marginal returns to increased precipitation (temperature), up until an inflection 

point, where diminishing returns, and eventually negative returns, begin.

Simulation Results

Using the estimated likelihoods, we first compare how current management practices align 

to an “optimal” distribution based on the estimated logistic regression coefficients. That is, 

holding total planted area constant, we evaluate the extent to which plots are currently 

planted and will continue to be planted in the coming years, and which currently planted 

plots are most likely to be naturally regenerated post-harvest. Recognizing that forest 
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resources are fungible, this approach allows us to identify areas that may see a net increase 

in forest planting over time based on current infrastructure and environmental conditions. 

Then, alternative planted forest (intensive margin) expansion scenarios are presented to 

assess the possible future distribution of managed forests based on harvest decision rules, 

and plot likelihoods of management.

Figure 2 shows the current distribution of planted forest within the United States (top) and 

the projected distribution of planted forest according to our econometric analysis (bottom). 

The projected distribution of forest planting is calculated by selecting the plots with the 

highest probability of planting activities until the desired amount of planted area is achieved. 

The resulting map shows more clustering of plantation practices than what is currently seen 

on the ground. For instance, most planted plots in the Lake States region are shifted to the 

Southeast and South-Central regions, and planted plots in these regions become more 

densely co-located. The Northeast region also sees a decline in planted plots. For both the 

Lake States and Northeast regions, the projected decline in planted plots is driven by the 

percentage of adjacent planted plots factor, plus the existence of fewer forest-product 

facilities, which is consistent with observed trends in declining forest product supply in these 

regions (Oswalt et al. 2014). Table 3 further shows the difference in actual area of planted 

forests at the state level (for the top 10 states by area of planted forest) compared to the 

projected area of planted forest. From here, we can see that our analysis predicts a similar 

amount of planted forest within each of the top 10 states. Oregon is a unique case where, 

according to our analysis, planted forest could be considered oversaturated, where our 

analysis predicts less planted forest area than the current amount. This could be due to 

spatial biases in the econometric approach because of the highest amount of currently 

planted forest being in the Southeast. However, these results can also point to what (if any) 

planting activities landowners may choose post-harvest given the physical, economic, and 

climatic properties of their plots.

Predicted probabilities are then applied to project the spatial distribution of future expansion 

of planted forests at the intensive margin, assuming scenarios with a net increase in total 

forest planting. Beginning with the estimated distribution of planted forests (BAU Predicted 

results), we assign three expansion scenarios and select plots based on stand age and 

probability of being intensively planted to show the spatial distribution of newly planted 

areas of 16 million (low expansion), 32 million (medium expansion), and 64 million acres 

(high expansion). Plots are restricted to those that are likely to be harvested in the next 

decade. We assume that softwood plots less than 20 years old, and hardwood plots less than 

35 years old would not be harvested over the next decade. In order to achieve these 

expansion amounts, the predicted probabilities for plots to be included in low-, medium-, 

and high-expansion scenarios had to be greater than 56.4 percent, 37.7 percent, and 12.9 

percent, respectively. Previous studies offer guidance on how to construct scenarios of 

potential intensive margin expansion in US forestry. Currently there are over 64 million 

acres of planted forests in the US, approximately 25 percent of the total timberland base 

included in the FIA database. Zhang and Polyakov (2010) estimates that between 1997 and 

2027, the amount of privately managed pine plantations will rise by 40 percent, from about 

27 million acres to almost 40 million acres in the southeastern United States. This growth in 

planted forest occurs whereas overall private forest area in the region is estimated to decline 
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by 7 percent in the same period. Table 3 shows the current area of planted forests across the 

United States, using the BAU Predicted as the initial distribution of planted forests.

In the low- and medium-expansion scenarios (as shown in Figure 3 3), we project that most 

plantation activities in the future will occur in areas that currently have a high density of 

forest planting. In particular, the top 10 states could see about 8 million new acres of natural 

regenerated states convert to planted forests, whereas the rest of the country sees 10 million 

acres of naturally regenerated forests switching to planted forests.

At the state level in the low-expansion scenario, all of the top 10 states see higher amounts 

of new intensive planting occurring on current naturally regenerated plots as opposed to 

currently planted plots, with 8.9 million acres coming from naturally regenerated plots and 

less than 2.9 million acres coming from currently planted plots. Part of this result is due to 

the relatively young age of most planted forests in the southeastern United States. The rest of 

the country contributes very little new planted forests in the low-expansion scenario, with a 

total of 2.9 million new planted acres occurring between the BAU predicted scenario and the 

low-expansion scenario. In the medium scenario, we continue to project a higher 

contribution of new planted forests coming from natural stands than in the BAU predicted 

scenario (14.1 million acres compared to 1.9 million acres nationally). In the medium-

expansion scenario, we begin to see some states with relatively high amounts of natural 

forests contributing significantly, states such as Oregon, South Carolina, North Carolina, 

Texas and Washington. If economic or societal changes occur that continue to incentivize 

increased forest productivity, these states could be at the forefront of meeting that challenge. 

In the highest-expansion scenario, in which new planted stands are equal to the current area 

of planted forests (64 million acres), Oregon is the single largest contributor of the top 10 

states to meeting demand (an additional 3.9 million acres), with Washington also playing a 

large role (2.8 million acres). Additionally, states that currently have very little management 

activities could see very large transformations of the local forest sector with a total of 22.5 

million acres of planted forests. Particularly, California, Maine, and Arizona could see the 

largest impacts if major shifts to the forest sector occurred with 5.7 million, 3.1 million, and 

2.5 million acres, respectively, of natural forest being intensively managed in the next 

decade—half of all new acres projected in the other states (22.4 million acres).

Projected Extensive Margin Expansion of Planted Forest

If recent trends hold, intensive margin expansion and planting of forests post-harvest will 

continue, although there are reasons to believe that extensive margin expansion—planting of 

new forests on alternative land-use types, will also expand under certain policy or market 

conditions (e.g., with strong policy incentives to increase terrestrial carbon sequestration). 

Additionally, because of the high level of planting practices already occurring in the 

southeastern United States, it may be unreasonable to assume that an additional 32 million 

acres of naturally regenerated stands will convert to planted forest (as assumed in our 

medium-expansion scenario), so it is important to consider extensive margin-expansion 

opportunities. Furthermore, recent literature suggests that the US may need to convert large 

3.Table 3 presents results using a subset of the FIA database. Plots have been restricted to those that may be harvested in the next 10 
years, and do not face restrictions on harvesting. In total, 45,745 plots are included in the expansion scenario.
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areas to forest area (>80 million acres) to achieve long-term climate stabilization (UNFCCC 

2016, Fargione et al. 2018), and that this expansion is not likely to compete with productive 

agricultural lands. With this policy consideration in mind, it is important to consider where 

and on what types of land afforestation could occur as a consistency check on other 

literature estimates.

To further investigate the expansion of planted forest in the United States, we applied the 

estimated regression coefficients from the regression model to alternative land-cover types. 

Although the methodology presented in this manuscript is designed to look at discrete 

management changes, we justify using these regression coefficients to project distributions, 

as planted forest expansion on other land uses will likely be driven by similar factors. 

Specifically, estimated regression coefficients from the FIA plots are interpolated across the 

landscape and onto other land-cover categories. This process allows us to identify locations 

and land-use types where extensive expansion of planted forests is most likely to occur 

under strong policy or market incentives.

We first extrapolate predicted probabilities of planting onto other land cover types using 

independent variables in the regression analysis; one benefit of the selected variables is that, 

other than ownership attributes, all other independent variables are not specific to only forest 

land. It is important to note that the regression presented above does not specifically predict 

the likelihood of land moving into forestry and focuses instead on the physical and economic 

factors that could drive the planting decision, including proximity to forestry infrastructure 

and marginal harvest costs (proxied through the slope variable). The relative likelihood of a 

parcel converting to a planted forest stand is extrapolated to other land-use types for 30 m 

pixels, using land-cover data from the National Land Cover Database (NLCD). The key 

assumption we make in the extensive analysis is that areas with similar physical, economic, 

and climactic characteristics to currently planted plots will have a higher likelihood of 

conversion relative to nonforested areas with different characteristics.

There is a rich literature that explores afforestation potential, costs, and possible factors 

influencing the land-use change decision, although these approaches are typically focused 

on comparing economic rent differentials between alternative uses and focus less on the 

location-specific factors that may influence the planting investment decision such as 

proximity to infrastructure (see Cai et al. 2018, for a recent examination of scenario-driven 

afforestation using structural modeling techniques). In this analysis, using estimates of 

reforestation potential in the US (Fargione et al. 2018), we consider two scenarios of 

extensive expansion of plantation forest in the United States. Each scenario chooses the 

pixels that have the highest estimated probability of planting across specific land classes 

(Figure 4 shows the results of this nationwide estimation of likelihood of planted forest at 

the extensive margin), as defined by the NLCD, until approximately 155 million acres of 

new planted forests is reached. In the first scenario, pasture and hay, shrub and scrub, 

grassland and herbaceous, emergent herbaceous wetlands, and barren land can move into 

forestry, which allows relatively low-opportunity-cost lands to convert to planted forest. For 

this pathway, we are excluding productive cropland areas that could support plantation 

forestry, as this exchange would require a strong economic or policy incentive to shift land 

from crop cultivation into planted forests (in order to hit this target, pixels had to have an 
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estimated probability greater than 8.0 percent). In the second extensive margin pathway, 

however, we allow cropland to be eligible for forest planting as well (when cropland is 

included, the estimated probability had to be greater than 14.0 percent for a pixel to be 

included).

Extensive expansion results are shown for both scenarios in Table 4. When cropland is 

restricted from being considered as a source for new managed forest area, pasture and hay 

are the largest contributors, consistent with Fargione et al. 2018). To achieve this amount of 

afforestation, societal taste and preferences would have to shift from meat-heavy diets to 

more plant-based diets. When extensive managed forest expansion includes cropland, nearly 

40 percent of potential extensive expansion of forest could come from agricultural lands. 

Cropland reduces the pressure of conversion from pasture and shrub, but large-scale 

afforestation of cropland could potentially lead to food-security concerns. Furthermore, 

recent modeled projections of afforestation potential under high carbon sequestration price 

incentives show limited movement of productive US cropland into forests given the high 

opportunity costs of forgoing agricultural production (Baker et al. 2017, Cai et al. 2018). 

However, our results demonstrate the spatial extent of cropland that could compete with 

other land-use types under a strong policy incentive targeting afforestation in the United 

States given physical and economic commonalities between this cropland and existing 

planted forests. Spatially, the extensive expansion results mirror those of the intensive 

expansion. Even at large extensive expansion targets, most of the converted land is projected 

to be in the southeast and northwest regions.

Although national intensive and extensive margin expansion scenarios offer insight into the 

potential spatial distribution of future planting under hypothetical scenarios, we do not 

conduct an explicit policy or market analysis to assess conversion to planting or net 

afforestation. With the heterogeneity in forest product markets across the country and the 

large costs associated with transporting forest products, projecting regional intensive margin 

expansion through scenario analysis can provide important insight into possible regional 

changes that national simulations may not capture. This framework provides a first step in 

using probabilistic regression analysis to estimate the likelihood that forests in the United 

States will be intensively planted and can easily be adapted for region-specific analysis.

Conclusions

With demand for forest products and various ecosystem services from forests (including 

carbon sequestration) increasing, it is likely that the prevalence of planted forests will 

continue to expand. This paper makes an initial effort to understand the influence of 

physical, economic, and ownership categories have on the likelihood of forests converting to 

plantations after harvest, but some limitations exist on the current data. By including slope 

as a categorical variable instead of a continuous variable, some influences of slope are not 

being accounted for. Averaging slope across entire forest plots and classifying them in large 

groups may overlook large areas within plots that have a low slope (or conversely a high 

slope), and thus a lower operability cost (higher conversion cost). By understanding the 

relative influence of certain factors on the likelihood that forests will be planted after 
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harvest, local governments and stakeholders will be better prepared to deal with both the 

positive and negative impacts that result from conversion to planted forest systems.

Planted forests can increase timber production, which not only provides the potential for 

greater output of forests products, but also increases the amount of carbon standing in the 

forests. This can be beneficial as regional carbon markets evolve, and states pursuing climate 

action strategies continue to monitor carbon stored in terrestrial systems and incentivize 

increased forest carbon storage. As the composition of forests changes across the nation, 

accurate projections of where forest-management intensity might change will provide 

policymakers with better estimates of carbon stocks and emissions from forest harvesting. 

Furthermore, estimates from this study can be used to inform structural economic models of 

forest-resource systems.

Also, because planted forests can reduce the variation in age class and limit the undergrowth 

when compared to natural forest, biodiversity in planted forests is less than that in naturally 

occurring forests (Paillet et al. 2010). As plantation area continues to expand, policies could 

be designed to target specific areas with higher likelihoods of conversion to limit the extent 

of forest planting in areas of high biodiversity. In the national expansion scenario, we see the 

potential for the continued expansion of planted forest in the Southeastern United States 

because of the large existence of planted forests in the region, along with favorable weather 

conditions. If national planted forest area were to double in the future, we predict about 81 

percent of forest in the southeast to be intensively planted under regional expansion 

scenarios. Continued expansion of planted forests in areas with a high concentration of 

forest planting is consistent with results found in a previous analysis (Sohngen and Brown 

2006).

Furthermore, whereas this manuscript identifies where land-use change may occur or to 

assess competition for land with cultivated crop production, we can integrate results from 

this analysis with spatial allocation economic optimization models of the forest resource 

base to improve projections of future land-use change patterns in the United States. This 

could reduce the regional bias of forest sector outlook studies such as the 2010 Resource 

Planning Act Assessment (USFS 2012), which included plantation expansion to meet future 

demand, yet limit it to the US South. By including the propensity that specific forest plots 

will convert to plantation forests after harvesting, models will have a greater ability to 

project future land use, land-use change, carbon storage, and production of forests products 

across the entire US land base. Furthermore, if temperatures increase or precipitation 

patterns change in the future, the optimal location of managed forests may move into regions 

that are currently too cold or lack requisite precipitation inputs.
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Management and Policy Implications

Efforts to replace aging forest inventory with more productive stands, increased demand 

pressure for forest products, and policy or private-sector initiatives promoting carbon 

sequestration from terrestrial sources could result in a net increase in forest planting and a 

spatial shift in where forests are planted. This research uses a spatial econometric model 

to estimate the likelihood that forest plots will be intensively planted post-harvest based 

on physical, economic, and climatic characteristics, and then projects forest planting on 

existing forests and other land-use types across hypothetical illustrative scenarios. This 

paper provides policymakers with a “first look” at where policies aimed at increasing 

terrestrial carbon sequestration could have the greatest impact by identifying spatial 

hotspots where future forest planting is most likely to occur (both on naturally 

regenerated stands post-harvest and on alternative land-use types). These results can 

provide stakeholders with information on the potential spatial extent of forest planting to 

aid in conservation planning, regional carbon sequestration programs, or economic 

incentives designed to boost the local forest products industry.
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Figure 1. 
Estimated relations between climate and proximity variables on probability of forest plots 

being planted.
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Figure 2. 
Current regeneration status of US forested FIA plots (top) and predicted spatial allocation of 

planting (bottom).
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Figure 3. 
Intensive expansion scenario results for top 10 states by planted forest area, and the rest of 

the United States.
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Figure 4. 
Potential extensive plantation expansion indicated by estimated likelihood of planting forest 

for nonforest NLCD land uses.
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Table 4.

Extensive forest expansion results: area by land class of potential planted forest conversion (million acres).

Land use Extensive without cropland Extensive with cropland

Pasture/hay 73.8 48.7

Shrub/scrub 42.7 26.5

Grassland/herbaceous 33.2 15.1

Emergent herbaceous wetland 7.6 5.0

Barren land 2.4 1.6

Cultivated crops 60.4

Total 159.7 157.4
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