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Abstract 

Background:  Leiomodin proteins, Lmod1, Lmod2 and Lmod3, are key regulators of the thin filament length in 
muscles. While Lmod1 is specifically expressed in smooth muscles, both Lmod2 and Lmod3 are expressed in striated 
muscles including both cardiac and skeletal muscles. We and others have previously shown that Lmod3 mainly func‑
tion in skeletal muscles and the mutant mice display disorganized sarcomere. Lmod2 protein has been found to act as 
an actin filament nucleator in both cell-free assays and in cultured rat and chicken cardiomyocytes.

Results:  To better understand the function of Lmod2 in vivo, we have identified and characterized a piggyBac (PB) 
insertional mouse mutant. Our analysis revealed that the PB transposon inserts in the first exon of the Lmod2 gene 
and severely disrupts its expression. We found that Lmod2PB/PB mice exhibit typical dilated cardiomyopathy (DCM) 
with ventricular arrhythmias and postnatal lethality. Electron microscope reveals that the Lmod2PB/PB hearts carry 
disordered sarcomere, disarrayed thin filaments, and distorted intercalated discs (ICDs). Those ICDs display not only 
decreased convolutions, but also reduced electron-dense staining, indicating less ICDs component proteins in 
Lmod2PB/PB hearts. Consistent with the phenotype, the expression of the ICD component genes, β-catenin and Con‑
nexin43, are down-regulated.

Conclusions:  Taken together, our data reveal that Lmod2 is required in heart thin filaments for integrity of sarcomere 
and ICD and deficient mice exhibit DCM with ventricular arrhythmias and postnatal lethality. The Lmod2PB/PB mutant 
offers a valuable resource for interrogation of pathogenesis and development of therapeutics for DCM.
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Background
The Leiomodin proteins, Lmod1, Lmod2 and Lmod3, are 
a subgroup of the Tropomodulin (Tmod) protein family 
and are regulators of the thin filament length in muscles 
[1–3]. While Lmod1 is specifically expressed in smooth 
muscles, both Lmod2 and Lmod3 are expressed in stri-
ated muscles including both cardiac and skeletal mus-
cles [4–6]. We and others have previously shown that 
Lmod3 mainly functions in skeletal muscles [6–8] and 

Lmod3 mutants exhibit muscle atrophy in fast fibers [6]. 
The mutant mice display disorganized sarcomere and the 
presence of nemaline bodies in skeletal muscles, a hall-
mark of the disease nemaline myopathy (NM), consist-
ent with the finding that LMOD3 is mutated in the NM 
patients [7].

Lmod2 protein has been found to act as an actin fila-
ment nucleator in both cell-free assays and in cultured 
rat and chicken cardiomyocytes [2, 5]. Overexpression 
of Lmod2 results in the elongated thin filaments and 
knockdown exhibited disrupted sarcomere assembly in 
cultured cardiomyocytes [2, 5]. Furthermore, it has been 
shown that Lmod2 is an antagonist of Tmod1 in cardi-
omyocytes [2, 5]. Knockout mice of Tmod1 are embry-
onic lethal due to cardiac defects, and overexpression 
of Tmod1 in the heart causes myofibril disorganization 
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and dilated cardiomyopathy (DCM) [9–13]. However, 
the physiological function of Lmod2 remains unknown. 
We hypothesized that the phenotype of loss of Lmod2 in 
mice might mimic that of the overexpression of its antag-
onist Tmod1, and the mutant mice are high likely to carry 
DCM.

Dilated cardiomyopathy is a common form of cardio-
myopathies and the third most common inheritable heart 
disease [14]. DCM is diagnosed as dilated left ventricular 
accompanied by systolic dysfunction, less than 50 % ejec-
tion fraction (EF) [15]. These symptoms may be accom-
panied by other complications, including arrhythmias, 
coagulation, and congestive heart failure (CHF), which 
often lead to lethality [16, 17]. It has been estimated that 
DCM causes at least half of heart failures and less than 
50 % of the DCM patients survive beyond year 5 after the 
diagnosis [16, 18, 19].

To better understand the function of Lmod2 in  vivo, 
we have identified a piggyBac (PB) insertional mutant 
that disrupts Lmod2 expression and carried out pheno-
typic characterization of this mutant. We show here that 
Lmod2 is crucial for postnatal survival and essential for 
cardiac function. Lmod2 deficient mice display DCM 
with disrupted sarcomeres and intercalated discs (ICDs) 
including the expression of ICD genes, which offer a new 
mouse model for this deadly disease.

Results
Generation of Lmod2‑deficient mice
Our group has shown that the PB transposon is highly 
active in mice and human cells and could be used to 
rapidly generate a large collection of insertional mouse 
mutants in a cost-effective manner [20]. One of the PB 
mutants that we generated has an insertion in the Lmod2 
gene (Lmod2PB/+ in FVB/N background) [21]. This PB 
transposon is inserted in the non-coding region of the 
first exon of the Lmod2 transcriptional unit (Fig. 1a) and 
significantly down regulated the expression of the gene as 
revealed by quantitative RT-PCR (less than 5 and 10 % in 
homozygous mutant males and females in comparison to 
wild-type control Fig. 1b).

Tmod1 is an antagonist of Lmod2 at the pointed end of 
the thin filaments in cardiac muscle [5]. It has been sug-
gested that the expression of Tmod1 could be affected 
by Lmod2 [5]. We therefore analyzed the transcriptional 
level of Tmod1 by quantitative PCR and found that the 
mRNA level of Tmod1 remains the same in 25 days old 
Lmod2PB/PB hearts compared to controls (Fig. 2a).
Lmod3, another member of the Leiomodin family, also 

expresses in heart together with Lmod2. It might be up 
regulated to functionally compensate the down-regula-
tion of Lmod2. However, Western analysis revealed that 
the Lmod3 protein level in the hearts of Lmod2PB/PB is 

unchanged compared to its controls (Fig.  2b). Together, 
these data indicate that the phenotypes observed below 
are likely caused by reduction of Lmod2 gene activity 
alone and not a compound effect disrupting other Tmod 
family members.

Lmod2PB/PB mice exhibit postnatal lethality
Lmod2PB/PB mice are born with the expected ratio as well 
as their Lmod2PB/+ and wild-type littermates. This indi-
cates that Lmod2 is not essential for mouse embryonic 
development.

While Lmod2PB/PB mice are born alive with normal 
appearance and body weight, the mutant animals exhibit 
postnatal death around 3rd week of age and are all dead 
by 9th week (Fig.  3a). Furthermore, male mutant ani-
mals are also underweight after three weeks (Fig.  3b). 
Heterozygous Lmod2PB/+ animals have normal life spans 
and display no discernable phenotype including fertility. 
This result indicates that Lmod2 is crucial for postnatal 
survival.

Lmod2PB/PB hearts display dilated cardiomyopathy defects
The Lmod2PB/PB mice have no overt signs of distress 
until 1 to 2 days before death. These signs include curl-
ing up, less movement, and dyspnea. Given that Lmod2 is 
expressed in heart [4], these phenotypes suggest that the 
mutant animals may suffer from cardiac dysfunction.

We therefore conducted histological and physiological 
analyses of the Lmod2PB/PB mutant hearts from 25  days 
old mice before the animals display any signs of distress. 

Fig. 1  PB transposon disrupts Lmod2 expression. a Schematic 
representation of the Lmod2 transcription unit and the position of PB 
insertion. Coding and untranslated region are depicted as black and 
white boxes, respectively. b Quantitative RT-PCR analysis of Lmod2 
mRNA from heart of 3-week-old male and female mice with indicated 
genotypes, n = 3. Arrows PCR primers
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Interestingly, all the analyzed Lmod2PB/PB mutants dis-
play enlarged ventricular lumens and thin ventricular 
walls, phenocopying the symptoms in human DCM 
patients (n=17, Fig.  4a). The histopathological defects 

were also confirmed by echocardiography analysis. The 
mutant hearts had dilated ventricular lumens (Fig.  4b) 
and thinner heart walls during both systolic and diastolic 
periods (Fig.  4c). Consistent with these, morphometric 

Fig. 2  Tmod1 and Lmod3 Expression in Lmod2 mutant mice. a mRNA level of Tmod1 is not changed in Lmod2PB/PB hearts compared with wild-type 
control. b Lmod3 protein level is also not changed in Lmod2PB/PB mice as shown here in western blotting and statistics

Fig. 3  Lmod2PB/PB mice exhibit postnatal lethality and underweight in surviving males. Survival a and growth b curves of male and female Lmo‑
d2PB/PB mice compared with Lmod2PB/+ and Lmod2+/+ mice
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ratios (heart weight/body weight) were increased in these 
animals as well (Fig. 4d).

Echocardiography analysis also revealed that the 
mutant hearts displayed lower ejection fraction (EF) and 
fraction shortening (FS) values (Fig.  4e), characteristic 
DCM deficit. Furthermore, electrocardiography (ECG) 
analysis revealed lengthened corrected QT interval (QTc) 
in Lmod2PB/PB mice in comparison to controls (Fig.  4g, 
h). The lengthened QTc value means delayed electrical 
repolarization of the ventricles, indicating ventricular 
arrhythmia [22], complications that many DCM patients 
also develop.

The expression of atrial natriuretic factor (ANF) and 
brain natriuretic peptide (BNP) were examined in mutant 
animals before signs of heart failure [23]. We discovered 
that the Lmod2PB/PB mutant mice already exhibited a sig-
nificant increase in gene expression for the heart hypertro-
phy and heart failure biomarkers (Fig. 4f). Finally, Masson’s 
Trichrome staining revealed that there was no observable 
increase in fibrosis in these animals (data not shown).

Lmod2‑deficiency leads to sarcomere and ICD 
disorganization
We further characterized cardiac muscles of Lmod2PB/
PB mice (25  days old) by paraffin section and transmis-
sion electron microscope (EM). We noticed that the area 
between the muscle fibers is larger in Lmod2PB/PB cardiac 
muscles than the wild-type control (Fig. 5a, b, i). EM anal-
ysis revealed altered sarcomeres with irregular Z-discs 
and unidentifiable M-lines in Lmod2PB/PB cardiac fibers 
(Fig.  5c–f). For those fibers with recognizable Z-discs, 
measuring the length of the sarcomeres revealed shorter 
sarcomeres than wild-type control (Fig.  5j). Moreover, 
the filaments in the Lmod2PB/PB cardiac fibers are also 
disarrayed in comparison to wild-type control (Fig.  5e, 
f ). Finally, the ICDs in Lmod2PB/PB cardiac fibers are less 
convoluted and have reduced electron dense (Fig. 5g, h). 
The ICD morphological changes suggest that the mutant 
fibers might have less ICD proteins. Quantitative RT-
PCR (QPCR) indeed identified reduced expression of two 
of major ICD genes, β-catenin and Connexin43 (Cx43), 
components of fascia adherens and gap junctions, respec-
tively (Fig. 5k). Together, these data indicate that Lmod2 

deficient cardiac fibers have disrupted sarcomeres and 
ICDs including the expression of ICD genes.

Discussion
Using PB insertional mutants, we have studied two 
members of the Lmod family, Lmod2 and Lmod3, which 
express in the cardiac and skeletal muscles. We previ-
ously reported that Lmod3 deficiency lead to severe skel-
etal muscle weakness with atrophy specific to fast fibers 
[6]. EM analysis revealed disorganized sarcomeres in 
skeletal muscles of Lmod3 mutant mice.

Here we report the characterization of Lmod2-deficient 
mice caused by PB insertion in the first exon. Unlike 
Lmod3-deficient mice that are born small with skeletal 
muscle atrophy [6], Lmod2-deficient animals are born 
with normal appearance and body weight. Only male 
Lmod2-deficient mice exhibit underweight in the 4th 
week. On the other hand, Lmod2-deficient mice exhibit 
postnatal lethality and all mutant animals die from 3 to 
9 weeks after birth. This postnatal lethality together with 
previous report of Lmod2 in cultured cardiomyocytes [2, 
5] suggests a role of the gene in cardiac function.

We have therefore carried out a pathological analysis 
of the Lmod2 mutant heart. Our study shows that the 
Lmod2 mutant hearts have enlarged ventricular with sys-
tolic dysfunction reflected with EF value less than 50 %, 
features that are characteristic to DCM patients. Inves-
tigation with transmission electron microscopy reveals 
that the Lmod2PB/PB cardiac muscles exhibit disordered 
sarcomeres and ICDs. The morphologies of Z-discs, 
M-lines, and thin filaments in sarcomeres are all affected.

Intercalated disc is composed of highly organized fas-
cia adherens, gap junctions and desmosomes, and glues 
cardiomyocytes together. Disruption of ICD would also 
lead to cardiomyopathy [24]. Recently, it has been shown 
that mutation in non-ICD component protein could also 
result in ICD structure abnormality and cardiomyopathy 
[25]. In the previous reported case, an increase in con-
volutions of ICD was reported in the cardiomyopathy 
patient [25]. Here we show that Lmod2PB/PB cardiomyo-
cytes have a decrease in ICD convolution and cardiomyo-
pathy. Disruption of ICD is also confirmed by reduction 
in electron density and expression of two of major ICD 

(See figure on previous page.) 
Fig. 4  Lmod2PB/PB hearts display dilated cardiomyopathy defects. 25-day old Lmod2PB/PB mice were examined for cardiac morphology and 
functions. a Longitudinal (upper) and transverse (lower) H&E stain sections of paraffin-embedded hearts (Scale bar 1 mm). b, c, e Echocardiogra‑
phy analysis of Lmod2PB/PB hearts in comparison to wild-type control n = 5. b Higher LV end diastolic and systolic diameter. LVID left ventricular 
diameter. c Thinner LV anterior and posterior wall. LVPW left ventricular posterior wall; LVAW left ventricular anterior wall. d Morphometric ratios 
(heart/body weight) of both male and female Lmod2PB/PB mice are significantly increased. e Reduced ejection fraction and fractional shortening 
values. f Quantitative RT-PCR analysis of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) revealed increased expression of the heart 
hypertrophy and heart failure biomarkers n = 3. LV left ventricle; d diastolic; s: systolic. g, h Electronic Cardiogram revealed lengthening QTc value of 
Lmod2PB/PB mice in comparison to controls
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genes, β-catenin and Connexin43 (Cx43), components of 
fascia adherens and gap junctions. Therefore, Lmod2PB/
PB mouse model represents a new ICD phenotype related 
to DCM. During preparation of our manuscript, we 
noticed that a report of Lmod2 knockout mouse charac-
terization [26]. While DCM was observed in both mod-
els, there were differences in ultrastructure of cardiac 
muscles. In contrast to Lmod2PB/PB phenotypes, Lmod2 
knockout model reported widen Z-discs and increased 
convolutions of ICDs [26]. The difference could be due to 
the C57BL/6J background for the Lmod2 knockout and 
FVB/N for Lmod2PB/PB.

The morphological defects in cardiac muscles pro-
ceed the symptom of heart failure in animals. Similarly, 
the expressions of the heart hypertrophy and heart 

failure biomarkers, atrial natriuretic factor (ANF) and 
brain natriuretic peptide (BNP), are elevated before the 
detection of heart failure. Together, these data show that 
Lmod2 deficiency leads to structure abnormality of car-
diac muscles, which results in DCM, and that Lmod2PB/PB 
mice offer a new model for studying DCM mechanisms 
and developing therapeutics.

Conclusion
Taken together, our data reveal that Lmod2 is required 
in heart thin filaments for integrity of sarcomere and 
ICD and deficient mice exhibit DCM with ventricu-
lar arrhythmias and postnatal lethality. The Lmod2PB/

PB mutant offers a valuable resource for interrogation of 
pathogenesis and development of therapeutics for DCM.

Fig. 5  ICD and sarcomere defects of Lmod2PB/PB heart fibers and reduced expression of ICDs proteins. a, b Longitudinal sections of 25d paraffin-
embedded hearts stained with H&E. c–h Representative electron micrographs of cardiac LV tissue from 25 days old Lmod2+/+ (c, e, g) and Lmod2PB/

PB (e, f, h) mice. Sarcomeres (S) are shortened and disorganized in Lmod2PB/PB myocardium (c, d). Z-discs (Z) and M-lines (M) are disorganized and 
unrecognizable, respectively, in Lmod2PB/PB myocardium (e, f). Reduced convolution and electron dense of ICD (arrow) in Lmod2PB/PB myocardium 
(g, h). i Area and perimeter of the area between the muscle fibers are increased in Lmod2 PB/PB hearts compared with wild-type control n = 8. j 
Statistics of sarcomere length in Lmod2PB/PB myocardium n = 20. k Quantitative RT-PCR of major intercalated discs (ICD) genes n = 3. Scale bars 
200 μm in b, 1 μm in d, 500 μm in f, h
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Methods
Mouse strains
The founder Lmod2PB/+ mouse was produced by a large-
scale genome-wide insertional mutagenesis with the PB 
transposon in the FVB/N mice [20, 27].

Genotyping
Genomic DNA was isolated by a 56  °C overnight diges-
tion of mouse toes in 200 μL lysis buffer (100  mM 
NaCl, 10  mM Tris pH 8.0, 25  mM EDTA, and 0.5  % 
SDS) plus fresh 0.1  mg/ml proteinase K. PCR was per-
formed with primers within exon 1 of Lmod2 (for-
ward: 5′-AGCTGTCGGCTTTCAATTTTTTTCC-3′; 
reverse: 5′-TGTCTTCCAGCTCCCTCTCAAG-3′, 247 
bp product) and primers within the PB transposon (for-
ward: 5′-CTGAGATGTCCTAAATGCACAGCG-3′ and 
reverse: 5′-TGTCTTCCAGCTCCCTCTCAAG-3′, 819 
bp product). PCR conditions used were as the following: 
an initial denaturation step at 93  °C for 3 min, then fol-
lowed by a 40 cycle of 93 °C for 30 s/57 °C for 30 s/65 °C 
for 2 min, and one more elongation at 65 °C for 10 min as 
the final step.

Reverse transcription and quantitative RT‑PCR
Total RNA was isolated from 3-week-old mouse heart 
with Trizol (Invitrogen). The cDNA was synthesized then 
using the PrimeScriptTM RT reagent Kit (Takara). Quan-
titative RT-PCR was performed with AceQ qPCR SYBR 
Green Master Mix (Vazyme) according to the manufac-
turer’s instruction. All quantitative RT-PCR primers are 
listed in Table 1.

Western blotting
Hearts were dissected and lysed in RIPA buffer with 
Complete Protease inhibitors (Roche) and PMSF 
(Phenylmercury acetate) (Sigma) on ice. The BCA 
Assay (Themo) was applied to quantify total proteins 
extracted. The western blotting procedure was carried 
out according to standard protocol with a brief intro-
duction here. Protein bands were separated by SDS/
PAGE and transferred to nitrocellulose membranes 
(Immobilon-P). The transferred membrane was blotted 
first 5  % skim milk for 1  h. Blots were then incubated 
with a primary antibody and a secondary antibody con-
secutively to detect protein of interest. Primary antibod-
ies used are the following: Lmod3 (1:1000; HPA036034, 
Sigma), GAPDH (1:3000; AC001, ABclonal). Secondary 
antibody used is the Anti-rabbit IgG antibody conju-
gated to PerCP-Cy5.5 (1:3000; sc-45101, Santa Cruz). 
Signal was finally visualized by enhanced chemilumi-
nescence (34,080, Themo).

Echocardiography and ECG
Mice were anesthetized by inhalation of 1–2  % isoflu-
rane delivered in a gas mixture with oxygen, medical-
grade compressed air, and nitrogen. The anesthetized 
mice went through echocardiography with the Vevo 
770 microultrasound system (VisualSonics Inc. Toronto, 
Canada). Both parasternal long-axis and short-axis views 
of the left ventricles were analyzed with a 707B trans-
ducer according to the manufacturer’s instruction. Data 
were recorded in M mode.

Conscious and unrestrained mice were used for ECG 
analysis with the ECGenie electrocardiography system 
(Mouse Specifics, Inc., Boston, MA) according to the 
manufacturer’s instruction. Before experimental tests, 
mice should be trained for 3–5 days to behave normally 
in this machine. Only data from continuous recordings 
of 20–30 ECG signals were included in the final analyses. 
A physiologic waveform analysis platform “eMOUSE” 
(Mouse Specifics, Inc.) was applied for data analysis.

Transmission electron microscopy
Samples for transmission electron microscopy were pre-
pared using the standard procedure: hearts were excised, 
washed in PBS, fixed in 2.5  % glutaraldehyde in 0.1  M 
cacodylate buffer for more than 2  h, washed in 0.1  M 
cacodylate buffer for 3  ×  15  min, post-fixed with 1  % 
potassium ferrocyanide reduced OsO4 on ice for 2–3 h, 
dehydrated through graded ethanol and acetone, and 
finally embedded in EMbed 812 resin. Ultrathin sections 
(60 nm) were analyzed on a Technai G2 Spirit BioTWIN 
electron microscope, and images were collected with a 
4 ×  4 digital camera (Optronics). Length of sarcomere 
was measured using ImageJ.

Table 1  Quantitative RT-PCR primers

Gene Forward (5′→3′) Reverse (5′→3′)

Lmod2 ACCTTATCCCGATTTGCTGA 
AG

ACCTTGAGCATGTCTGCAATG

GAPDH TGTTCCTACCCCCAATGTGT 
CC

GGAGTTGCTGTTGAAGTCGC 
AG

Tmod1 TGAGCTAGATGAACTAGAC 
CCTG

CGGTCCTTAAATTCCTTCGC 
TTG

ANF CATCACCCTGGGCTTCTT 
CCT

CATCACCCTGGGCTTCTTCCT

BNP GCGGCATGGATCTCCTGAA 
GG

GCGGCATGGATCTCCTGAA 
GG

Plakoglobin TGGCAACAGACATACACCT 
ACG

GGTGGTAGTCTTCTTGAGTG 
TG

N-cadherin AGCGCAGTCTTACCGAA 
GG

TCGCTGCTTTCATACTGAA 
CTTT

Vinculin GAGGCTGAACTGCTTCA 
ATCA

CCAGATTTGACGAGGTGCCTA

β-catenin ATGGAGCCGGACAGAAA 
AGC

CTTGCCACTCAGGGAAGGA

Cx43 ACAGCGGTTGAGTCAGC 
TTG

GAGAGATGGGGAAGGA 
CTTGT
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Histology
Hearts were excised, washed in PBS, fixed in 4  % para-
formaldehyde solution (Sangon Biotech) overnight, 
dehydrated, and embedded in paraffin. Longitudinal or 
transverse sections (10 μm) were stained with a Masson 
Trichrome Stain Kit (Maixin Biotech) or according to 
the classical hematoxylin and eosin (H&E) staining pro-
tocol (Sigma), and finally mounted with DPX Mountant 
(Sigma). Light microscopy images were captured using a 
Nikon Eclipse microscope with a Nikon DS-Ri1 camera 
and/or a Zeiss Axio Zoom V16 stereomicroscope with an 
AxioCam MRc camera.

Statistics
Data were presented as mean  ±  SED in figures. Two-
tailed unpaired Student’s t-test was used unless otherwise 
stated. The significance is indicated as the label of one or 
more * with the following categories: (1) * P < 0.05; (2) ** 
P < 0.01; 3) *** P < 0.005. Prism 6 (GraphPad Software) 
was used for plotting.
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