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Abstract

Individuals with posttraumatic stress disorder (PTSD) had experiences of enormous psy-

chological stress that can result in neurocognitive and neurochemical changes. To date,

the causal relationship between them remains unclear. The present study is to investigate

the association between neurocognitive characteristics and neural metabolite concentra-

tions in North Korean refugees with PTSD. A total of 53 North Korean refugees with or

without PTSD underwent neurocognitive function tests. For neural metabolite scanning,

magnetic resonance spectroscopy of the hippocampus and anterior cingulate cortex

(ACC) has been conducted. We assessed between-group differences in neurocognitive

test scores and metabolite levels. Additionally, a multiple regression analysis was carried

out to evaluate the association between neurocognitive function and metabolite levels in

patients with PTSD. Memory function, but not other neurocognitive functions, was signifi-

cantly lower in the PTSD group compared with the non-PTSD group. Hippocampal N-acet-

ylaspartate (NAA) levels were not different between groups; however, NAA levels were

significantly lower in the ACC of the PTSD group than the non-PTSD group (t = 2.424, p =

0.019). The multiple regression analysis showed a negative association between hippo-

campal NAA levels and delayed recall score on the auditory verbal learning test (β =

-1.744, p = 0.011) in the non-PTSD group, but not in the PTSD group. We identified spe-

cific memory impairment and the role of NAA levels in PTSD. Our findings suggest that

hippocampal NAA has a protective role in memory impairment and development of PTSD

after exposure to traumatic events.
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Introduction

Posttraumatic stress disorder (PTSD) is a psychiatric condition with enormous disability that

occurs following exposure to traumatic events such as wars, assault, and natural disasters.

PTSD symptoms include re-experiencing of the event, avoidance, and hyperarousal [1]. With-

out appropriate treatment, PTSD can lead to psychiatric comorbidities such as suicide, depres-

sion, anxiety, and personality change [2,3]. It is usually difficult for individuals with PTSD to

return to daily life and adapt to jobs or the community [4].

Along with a group of clinical symptoms, memory impairment is a core feature of PTSD

[5]. Neuropsychological studies have consistently shown impaired declarative memory [6, 7]

and verbal memory [8] in patients with PTSD. However, the impairment of cognitive func-

tions other than memory have returned conflicting results due to different methodologies,

diverse target groups, and varying sample sizes [9–13]. Cognitive changes are generally associ-

ated with brain dysfunction, and several studies have investigated PTSD on the neural level

[14].

Magnetic resonance spectroscopy (MRS) is a noninvasive technique used to study cellular

metabolites and the roles they may play in psychiatric disorders [15]. For example, the absence

or reduced levels of N-acetylaspartate (NAA), a marker of neuronal/axonal viability, is an indi-

cator of neuronal loss or degradation [16]. Creatine (Cr) is a marker of intracellular metabo-

lism, myo-inositol (Ins) may represent a glial marker, and glutamate-glutamine (Glx) is a

marker of neuronal activity in cortical areas [17]. Previous studies have consistently found

decreased NAA levels in the hippocampus [18] and anterior cingulate cortex (ACC) [19,20] of

patients with PTSD. Low levels of NAA in these brain regions correspond with the etiology

and symptomatology of PTSD, given the involvement of the hippocampus in memory and

ACC in higher cognitive function. From a neurobiological perspective, the hippocampus

responds to stress with increased corticosteroids levels and upregulation of corticosteroid

receptors [6,21–23]. The stress response to traumatic events may adversely affect neuronal

metabolism, cell survival, and physiological function in the hippocampus [24–26].

In relation to the relationship between neuronal metabolites and cognitive function, a pre-

vious rat study has reported a reduced concentration of hippocampal NAA was related to a

lack of spatial cognitive learning and memory function in depression [27]. The hippocampal

NAA was found to measure cognitive function more sensitively than hippocampal volume.

Human study of patients with depression who receive chronic corticosteroid therapy showed

significant reductions in hippocampal NAA, auditory verbal memory, and other cognitive

functions [28]. However, the authors did not investigate the relationship between variables.

Previous studies on sleep apnea associated with intermittent hypoxia and cognitive decrements

have found that lower hippocampal NAA and Cr levels were correlated with worse sustained

focus attention [29]. Similar associations between neural metabolites and altered cognition

may be present in individuals with PTSD.

We investigated the neuropsychological functions, brain metabolite levels, and associations

between metabolite levels and neurocognitive function in patients with PTSD. North Korean

refugees who had experienced numerous traumatic events before and during the escape from

North Korea [30] and settled in South Korea participated in this study. They survived life-

threatening conditions such as suppression of human rights, fear of being discovered by secu-

rity police, and hardships related to living in a third country [31, 32]. We hypothesized that

North Korea refugees with PTSD would have neuropsychological impairments, particularly

memory dysfunction, and reduced NAA concentrations in the hippocampus and ACC. Addi-

tionally, we expected that changes in metabolite levels would have an association with cogni-

tive dysfunctions.

Association between memory impairment and metabolites in PTSD
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Materials and methods

Subjects

The study included 53 North Korean refugees (30 with PTSD and 23 without PTSD) currently

living in South Korea from December 2012 to December 2013. Two subjects were excluded

from data analysis because they did not take the psychological test, and one did not undergo

MRS scanning. The study was approved by the Institutional Review Board of the National

Medical Center and all subjects provided written informed consent.

Demographic and clinical assessments

We obtained data on sociodemographic characteristics, including age, sex, and education

from the participants. Additionally, the participants were administered questionnaires con-

cerning their medical history and experiences before entering South Korea, such as physical

symptoms, experience of arrest, being captured and returned to North Korea, imprisonment,

length of residence in South Korea, and current physical condition and medical treatments (S1

Appendix).

The Clinician-Administered PTSD Scale for DSM-IV (CAPS-DX) was used to evaluate

PTSD on three criteria involving (B) re-experience, (C) avoidance, and (D) arousal. The fre-

quency and intensity of each traumatic event were rated on a five-point scale from never/none

(0) to always/severe (4). Participants were diagnosed with PTSD when they met three require-

ments; (1) more than one symptom of re-experience, more than three symptoms in avoidance,

and more than two symptoms in arousal criteria, and each symptom was defined when it has

at least 1–1 frequency and intensity score combination; (2) more than one month duration; (3)

existence of clinically significant distress or functional impairment. The severity score for each

criterion was calculated by adding the frequency and intensity scores, and the total score is

calculated by adding the severity score for all three criteria [33]. The Minnesota Multiphasic

Personality Inventory-PTSD (MMPI-PTSD) was developed to identify PTSD symptoms in

combat soldiers and included 45 questions related to PTSD taken from the MMPI question-

naire [34]. Higher scores indicate a higher likelihood of being diagnosed with PTSD.

The Beck Depression Inventory (BDI) was used to measure the severity of depression,

including cognitive, emotional, motivational, and physiological symptoms via a self-report

questionnaire [35]. Responses to each question were scored on a four-point scale ranging from

mild (0) to severe (3). Higher scores indicate more severe depression. The State-Trait Anxiety

Inventory (STAI) was administered to assess anxiety. The inventory consists of two sets of 20

questions that measure temporary state and long-lasting anxiety, respectively [36]. The two

types of anxiety were scored on a four-point scale ranging from not at all (1) to very much (4),

with higher score indicating greater levels of anxiety.

Neurocognitive function tests

The Korean version of the Wechsler Adult Intelligence Scale (K-WAIS) was used to measure

overall cognitive function [37,38]. The instrument consists of 11 subsets, of which 6 are verbal

tests and the remaining 5 are performance tests. The total score was converted into the intelli-

gence quotient, a standardized scale with a mean of 100 ± 15.

The Rey—Kim memory test consists of the standardized Auditory Verbal Learning Test

(AVLT) [39] and the Complex Figure Test (CFT) [40], which measure verbal and visual mem-

ory, respectively. Total scores were converted into the memory quotient, a standardized scale

with a mean of 100 ± 15 [41].

Association between memory impairment and metabolites in PTSD
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The Executive Intelligence Test (EXIT) measures higher cognitive function by testing four

cognitive factors: attention, language, visuospatial function and memory [42,43]. The test

includes quantitative and qualitative assessments, and the quantitative and qualitative scores

are added to obtain the executive intelligence quotient, a standardized scale with a

mean ± standard deviation (SD) of 100 ± 15.

Magnetic resonance imaging (MRI) and MRS acquisition

All MRI and MRS scannings were performed using a Philips 3.0 Tesla system (Achieva, USA).

For 1H-MRS volume location, anatomical T1-weighted, 3D whole-head MRI data sets were

measured by using a turbo field echo SENSE sequence (repetition time [TR] = 9.8 ms, echo

time [TE] = 4.6 ms; sagittal 1 mm thick slices, FOVAPxFH 250 × 250 mm2). Two volumes of

interest (VOIs) were obtained from the hippocampus and ACC (Fig 1). The VOI in the left

hippocampus (2 × 1.5 × 1 cm3) was placed along the axis of the hippocampus to cover most of

the volume. A 2 × 2 × 2 cm3 VOI in the ACC was aligned perpendicularly to the tip of the

genu of the corpus callosum and centered at the interhemispheric fissure.

A single voxel 1H MR spectra comprising 16 water-unsuppressed and 128 water-suppressed

averages were acquired using a pointed resolved spin echo spectroscopy pulse sequence

(TR = 2,000 ms, TE = 36 ms; scan time per region = 13 min). The raw data from each acquisi-

tion consisted of 1,024 points at a bandwidth of 2,000 Hz. The automatic shimming procedure

provided by the Philips system was performed for each scan.

Spectroscopic data were analyzed using LCModel software in the range of 4.2–1.0 ppm.

LCModel has been used for the identification of low-concentration or overlapping metabolites.

To ensure a high-quality spectra, we verified the full-width half-maximum (FWHM) of each

two VOIs according group; (1) Hippocampus, PTSD, 0.063 (SD = 0.017; range = 0.031–0.107);

Fig 1. Anatomical location of volumes of interest (VOIs) for magnetic resonance spectroscopy and sample spectra. A: The

left hippocampus. B: The anterior cingulate cortex.

https://doi.org/10.1371/journal.pone.0188953.g001
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non-PTSD, 0.06 (0.015; 0.038–0.092); (2) ACC, PTSD, 0.073 (0.034; 0.038–0.183); non-PTSD,

0.065 (0.027; 0.038–0.138). Cr, Glu, Ins, NAA, Glx, and NAA+N-acetylaspartylglutamate

(NAAG) were analyzed and expressed in institutional units as defined in the LCModel manual

(www.s-provencher.com/pub/LCModel/manual/manual.pdf). We used the absolute value of

metabolites because previous findings suggest that Cr concentration itself may change in sub-

jects [44, 45]. The fitting error of each metabolite was estimated in percent SD. For robustness

of final results, only metabolite values with an error< 25% SD were included in the final analy-

sis. The number of subjects who passed this threshold was presented for each metabolites; (1)

Hippocampus, Glu (PTSD, n = 25; non-PTSD, n = 20); NAA (PTSD, n = 28; non-PTSD,

n = 21); Glx (PTSD, n = 26; non-PTSD, n = 19); (2) ACC, Cr (PTSD, n = 23; non-PTSD,

n = 17); Glu (PTSD, n = 29; non-PTSD, n = 23); Ins (PTSD, n = 30; non-PTSD, n = 23); NAA

(PTSD, n = 29; non-PTSD, n = 22); NAA+ NAAG (PTSD, n = 30; non-PTSD, n = 23).

Statistical analysis

Demographic and clinical variables, neuropsychological test scores, and absolute metabolite

values were compared between groups using chi-square tests for dichotomous variables and t-

tests or Mann-Whitney U tests for continuous variables depending on normality. Multiple lin-

ear regression analyses were performed to assess the predictive value of metabolite concentra-

tions for impaired cognitive functions in each of the PTSD and non-PTSD groups, assuming

that the two groups had different etiologies in neuronal/psychological changes. The signifi-

cance level was set at p< 0.05. SPSS software (ver. 22.0; SPSS Inc., Chicago, IL, USA) was used

to conduct the statistical tests.

Results

Demographic and clinical characteristics

The demographic and clinical characteristics of the participants are listed in Table 1 and S1

Table. The frequencies of arrest, being sent back to North Korea, and imprisonment were

higher in the PTSD group than in the non-PTSD controls. Participants with PTSD had higher

scores on the CAPS-DX and MMPI-PTSD than those without PTSD. The PTSD group had

higher frequency of current psychiatric medications than the non-PTSD group. Refugees with

PTSD had higher BDI scores with a trend toward significance. We found that there was no

difference between groups in level of age (PTSD group, rage = 31–62, median = 47 year; non-

PTSD group, range = 24–66, median = 43 year; 95% Confidence Interval of the difference,

-2.333, 7.269), gender, education, medical history in North Korea, length of residence of a

third country or South Korea, current physical condition and medical treatment, or subjective

anxiety as measured by the STAI.

Neurocognitive functions and metabolite concentrations

Compared with the non-PTSD group, the refugees with PTSD had lower overall scores on the

memory tests, including the total memory quotient score, AVLT-immediate and -delayed

recalls, AVLT-delayed recognition, and CFT-immediate recall scores (Table 2). In contrast,

there were no significant between-group differences in general cognition (K-WAIS scores) or

executive function (EXIT scores).

Table 3 shows group comparison of the absolute values of metabolites. Hippocampal NAA

concentration was not significantly different between groups; however, NAA levels were lower

in the ACC of participants with PTSD than in the non-PTSD group. The hippocampal and

ACC concentrations of the other metabolites did not differ significantly between groups.

Association between memory impairment and metabolites in PTSD
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Association between memory function and metabolite concentrations

We performed a multivariate linear regression analysis to evaluate the association between

impaired memory function and metabolite concentrations using significant items from the

Rey-Kim test as dependent variables: AVLT-immediate, AVLT-delayed recall, AVLT-

delayed recognition, and CFT-immediate recall scores and using metabolites in the hippo-

campus and ACC as independent variables. The model consisted of the metabolites that sur-

vived a stepwise regression and was adjusted for age and BDI scores, which is well known

for its impact on cognitive functions. The coefficients of determination (R2) of the multivari-

ate regression analysis models, with memory test scores as the dependent variables, ranged

from 0.06 to 0.41 (Table 4). The analysis revealed a negative association between NAA con-

centration in the hippocampus and AVLT-delayed recall in the refugees without PTSD (S1

Fig), whereas NAA concentrations in the hippocampus and ACC were not significantly

associated with AVLT-delayed recognition, AVLT-immediate recall or CFT-immediate

recall.

Table 1. Demographic and clinical characteristics of participants.

Variables PTSD

(n = 30)

non-PTSD

(n = 23)

t/χ2 p value

N % N %

Gender 0.596 0.624

Male 3 10.0 1 4.3

Female 27 90.0 22 95.7

Educationa 1.799 0.180

High school 23 76.7 20 90.9

College 7 23.3 2 9.1

Psychiatric symptoms in North Korea (yes)a 9 31.0 5 21.7 0.563 0.453

Arrest experience (yes) 21 70.0 5 21.7 12.133 <0.001*

Experience of resending to North Korea (yes) 13 43.4 3 13.0 6.890 0.032*

Prison experience (yes)a 16 55.2 5 21.7 5.955 0.015*

Current physical symptoms (yes) 21 70.0 16 69.6 0.001 0.973

Current medical treatment (yes)c 18 69.2 15 65.2 0.089 0.765

Current psychiatric medications (yes) 14 46.7 2 8.7 8.907 0.003*

Mean SD Mean SD

Age (years) 47.0 7.00 44.6 10.39 1.032 0.307

Length of stay in a third country (months)b 54.8 51.20 35.6 37.54 0.942 0.346

Length of residence in the South Korea (years)b 4.4 2.67 5.1 3.33 0.795 0.427

CAPS-DX 51.7 24.45 13.5 6.33 5.958 <0.001*

MMPI-PTSD 29.5 5.63 20.5 8.32 4.453 <0.001*

BDI 31.0 10.68 25.0 10.74 1.997 0.051

STAI statea 51.9 14.71 50.8 13.51 0.279 0.782

STAI trait 53.0 12.96 49.5 13.20 0.944 0.350

Abbreviations: PTSD, post-traumatic stress disorder; SD, standard deviation; CAPS-DX, Clinician-Administered PTSD Scale for DSM-IV; MMPI, Minnesota

Multiphasic Personality Inventory; BDI, Beck Depression Inventory; STAI, State-Trait Anxiety Inventory.

* p < 0.05;
a one participant missing;
b five participants missing;
c four participants missing.

https://doi.org/10.1371/journal.pone.0188953.t001

Association between memory impairment and metabolites in PTSD

PLOS ONE | https://doi.org/10.1371/journal.pone.0188953 December 7, 2017 6 / 13

https://doi.org/10.1371/journal.pone.0188953.t001
https://doi.org/10.1371/journal.pone.0188953


Discussion

The results demonstrate memory impairment among other neurocognitive functions in refu-

gees with PTSD. Additionally, there was a lack of associations between brain metabolites of

hippocampal NAA and memory function in refugees with PTSD compared to refugees with-

out PTSD. We found that the neuropsychological tests revealed that refugees with PTSD per-

formed worse on memory tasks, but did not differ significantly from those without PTSD on

Table 2. Neuropsychological functions of participants.

Measure PTSD

(n = 30)

non-PTSD

(n = 23)

t/z p value

Mean SD Mean SD

K-WAIS

Full-scale IQ 91.9 10.49 96.0 13.42 1.239 0.221

Verbal IQ 92.1 11.49 96.1 14.15 1.135 0.262

Performance IQ 92.8 9.56 96.3 12.73 1.204 0.229

Rey-Kim memory test

MQ 100.1 12.80 109.1 14.17 2.210 0.027*

AVLT-immediate recall 7.5 2.35 8.5 1.86 2.302 0.021*

AVLT-delayed recall 7.1 2.28 8.5 2.78 1.997 0.046*

AVLT-delayed recognition 7.9 2.61 9.6 2.73 2.287 0.022*

CFT-immediate recall 8.3 1.83 10.1 3.07 2.381 0.017*

CFT-delayed recall 8.4 2.03 9.7 3.31 1.740 0.082

Executive Intelligence Test

Executive IQ 101.8 17.10 106.7 16.64 1.157 0.252

EIQ quality 42.6 5.02 43.6 4.70 0.786 0.432

EIQ quantity 33.2 6.83 34.9 6.64 0.938 0.353

Abbreviations: PTSD, post-traumatic stress disorder; SD, standard deviation; K-WAIS, Korean Wechsler Adult Intelligence Scale; IQ, Intelligence Quotient;

MQ, Memory Quotient; AVLT, Auditory Verbal Learning Test; CFT, Complex Figure Test.

* p < 0.05.

https://doi.org/10.1371/journal.pone.0188953.t002

Table 3. Metabolites in the hippocampus and anterior cingulate cortex of participants.

Variables PTSD non-PTSD t/z p value

Mean SD Mean SD

Hippocampus

Glu 9.791 3.954 (n = 25) 10.506 2.947 (n = 20) 0.672 0.505

NAA 6.007 0.952 (n = 28) 6.297 0.895 (n = 21) 1.083 0.284

Glu+Gln 15.885 6.303 (n = 26) 16.588 5.295 (n = 19) 0.395 0.695

ACC

Cr 4.179 1.225 (n = 23) 3.865 1.040 (n = 17) 0.854 0.399

Glu 8.919 1.208 (n = 29) 8.823 1.986 (n = 23) 0.202 0.841

Ins 4.811 1.103 (n = 30) 4.746 1.086 (n = 23) 0.214 0.831

NAA 6.365 0.572 (n = 28) 6.736 0.443 (n = 20) 2.424 0.019*

NAA+NAAG 6.799 0.780 (n = 29) 6.851 0.938 (n = 22) 0.305 0.760

Abbreviations: PTSD, post-traumatic stress disorder; SD, standard deviation; Glu, Glutamic acid; NAA, N-Acetylaspartate; Gln, Glutamine; ACC, Anterior

Cingulate Cortex; Cr, Creatine; Ins, Myo-inositol; NAAG, N-acetylaspartylglutamate.

* p < 0.05.

https://doi.org/10.1371/journal.pone.0188953.t003
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the general cognition or higher cognitive functions. Previous evidence suggests that impaired

memory may be a higher priority than other executive functions in individuals with PTSD

[46]. The study of memory in individuals with PTSD found that those with low memory test

scores performed poorly on cognitive function tests, whereas cognitive function in those with

higher memory scores was similar to that of controls. Impaired memory function may mani-

fest earlier than other cognitive deficits in refugees with PTSD and that may be associated with

hippocampal dysfunction caused by traumatic stress.

In relation to memory function, we found that both immediate and delayed verbal memory

scores were lower in the refugees with PTSD, whereas only immediate recall in visual memory

was impaired in this group. A previous meta-analysis found that impaired verbal memory was

the most consistent cognitive impairment related to PTSD [8]. Furthermore, another meta-

analysis found greater impairment in verbal than in visual memory in individuals with PTSD

[47]. Our finding of lower verbal memory scores in refugees with PTSD is consistent with

those of previous studies. The relationship between PTSD and visual memory is controversial:

one previous study found differences in visual memory between the general public and combat

veterans [48], whereas, others found no difference between participants with and those with-

out PTSD [49, 50]. Thus, although previous findings suggest that traumatic events have a

greater effect on verbal than visual memory, further research on visual memory is needed to

confirm earlier findings.

Previous MRS studies of neural metabolites have consistently found reduced NAA levels in

the hippocampus and ACC of patients with PTSD [20, 51]. Our finding of decreased NAA lev-

els in the ACC, but not hippocampus, was in partial agreement with previous studies. Because

a considerable number of non-PTSD refugees in the comparison group also had subclinical

PTSD symptoms, the two groups would show comparable hippocampal NAA levels. However,

we found between-group differences in the association between NAA level and memory func-

tion. We found that low scores in the delayed recall test were associated with higher levels of

hippocampal NAA in refugees without PTSD, whereas there was no association between

Table 4. Multivariate linear regression models of the associations between metabolite levels and memory function.

Variables AVLT-immediate recall AVLT-delayed recall AVLT-delayed recognition CFT-immediate recall

Coeff SD p value Coeff SD p value Coeff SD p value Coeff SD p value

PTSD

NAA, hippocampus - - - -0.083 0.464 0.859 - - - 0.164 0.378 0.668

Cr, ACC -0.011 0.466 0.959 - - - 0.231 0.504 0.652 - - -

Age -0.129 0.095 0.556 -0.073 0.061 0.243 -0.057 0.103 0.587 0.016 0.050 0.756

BDI -0.349 0.054 0.130 -0.049 0.040 0.230 -0.053 0.058 0.368 -0.041 0.032 0.216

Partial R2 0.017 -0.005 -0.058 -0.043

p value (model) 0.364 0.429 0.626 0.601

non-PTSD

NAA, hippocampus - - - -1.744 0.608 0.011 - - - -1.420 0.897 0.132

Cr, ACC -0.564 0.409 0.191 - - - -1.114 0.59 0.082 - - -

Age -0.076 0.041 0.086 -0.04 0.051 0.439 -0.124 0.059 0.056 0.003 0.075 0.969

BDI -0.027 0.037 0.472 -0.065 0.043 0.153 0.024 0.053 0.664 -0.069 0.064 0.297

Partial R2 0.267 0.410 0.362 0.057

p value (model) 0.073 0.007 0.032 0.275

Abbreviations: AVLT, Auditory Verbal Learning Test; CFT, Complex Figure Test; Coeff, coefficient; SD, standard deviation; NAA, N-Acetylaspartate; ACC,

Anterior Cingulate Cortex; Cr, Creatine; BDI, Beck Depression Inventory

https://doi.org/10.1371/journal.pone.0188953.t004
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hippocampal NAA level and verbal delayed recall memory in refugees with PTSD. This sug-

gests that preserved memory function of non-PTSD refugees, despite of traumatic events, can

be attributed to an intact role of hippocampal NAA. Lack of this relationship between hippo-

campal NAA level and memory function in refugees with PTSD would be one of underpin-

nings in development of PTSD.

A previous study investigating the preventative effect of NAA on PTSD suggested that pre-

trauma hippocampal NAA levels were a predictor of susceptibility to PTSD-related symptoms

in mice [52]. Animals with high pre-traumatic NAA levels decreased their fear reaction to con-

trol levels during re-exposure to traumatic cues. The associations between pre-traumatic levels

of brain metabolite and PTSD have not been investigated in human studies. In patients with

PTSD, the posttraumatic levels of the metabolite have been measured on the assumption that

the traumatic event had altered the NAA level. Meanwhile, it has been reported that hippo-

campal NAA concentration is positively correlated with cortisol level in subjects without

hypercortisolemia, suggesting that cortisol has a trophic effect on hippocampal neurons within

normal range. [53]. Many studies have shown the low cortisol level in patients with PTSD [54,

55] and adult offspring [56]. Considering that cortisol plays a key role in the learning and

memory in the central nervous system [57], it can be postulated that decreased in cortisol level

after traumatic event may lower the hippocampal NAA concentration and impaired memory

function, associated with development of PTSD. The reason of not all people who are exposed

to traumatic events have PTSD has not yet been resolved. There may be individual vulnerabili-

ties such as genetic variability, sex differences, and developmental trauma exposures [58]. In

light of previous findings, it can be said that higher post-trauma NAA concentrations in the

hippocampus are protective for impaired memory function and prevent progression to PTSD.

The significance of the reduced NAA level in the ACC in the PTSD group is supported by

the fact that this brain region plays a role in selective attention and extinction of the fear

response [59, 60]. Moreover, the ACC modulates neuronal activity in the hippocampus and

amygdala via afferent projections [61]. ACC dysfunction, thus, may cause PTSD symptoms,

such as persistent hyper-reactivity to traumatic events. Functionally, neuronal activity of the

ACC in patients with PTSD has been shown to be decreased compared with that of controls

[62]. Our finding of lower NAA levels in the ACC suggests that its modulatory effect of neuro-

nal activity on the hippocampus and amygdala is impaired in refugees with PTSD.

North Korean refugees with PTSD were more likely to have experiences of being arrested,

imprisoned, or captured and sent back to North Korea than refugees without PTSD. During

their escape, many refugees were under surveillance by North Korean guards, experiencing

fear of detection and food shortages. [31]. Many nearly died and experienced excessive life-

threating stress and trauma until they were able to escape again. These may contribute to the

development of PTSD in neural and cognitive level in North Korean refugees.

Our study had several limitations. First, our dataset have limited properties. It is composed

of relatively small sample size and is skewed toward females, focusing on the cross-sectional

perspective. In addition, this clinical data is not feasible to address all of the various human fac-

tors that affect possible cognitive functions and brain metabolites, precluding an inference of

the cause-effect relationships. However, given that 71% of North Korean refugees currently

consist of females [63] and PTSD is more prevalent among females than among males across

the lifespan, gender ratio of this study seems to be ecologically plausible in both epidemiologi-

cal and clinical aspects. Second, a considerable number of participants in the non-PTSD group

had some PTSD symptoms, and only nine participants had no PTSD symptoms in the present

study. To extend the present findings, further studies are needed on larger populations and

subgroup without psychiatric symptoms of PTSD. Third, the control group of North Koreans

who are not refugees and are not exposed to stress might strengthen the present findings.
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Because of the political circumstances, this problem remains as a limitation that cannot be

solved at present. Fourth, we did not collect data on alcohol consumption. Individuals with

PTSD are more likely to abuse alcohol than non-PTSD patients, and because alcohol con-

sumption may have a permanent effect on the hippocampus and other brain regions [64],

future studies taking alcohol assumption into consideration are warranted.

In conclusion, we found memory impairment among other neurocognitive functions and

lack of specific relationship between hippocampal NAA and memory function in refugees with

PTSD. Refugees without PTSD had an inverse association between hippocampal NAA levels

and memory function, suggesting key role of NAA levels in preventing memory impairment

and development of PTSD in individuals with experience of traumatic events. Our findings

confirm a distinctive deficit in memory function and highlight the important role of NAA in

the hippocampus and ACC in PTSD.
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