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ABSTRACT
Background Monogenic hypertension describe a 
series of hypertensive syndromes that are inherited 
by Mendelian laws. sometimes genetic testing is 
required to provide evidence for their diagnoses, precise 
classification and targeted treatment. This study is the 
first to investigate the clinical utility of a causative gene 
screening and the combined yield of gene product 
expression analyses in cases with suspected monogenic 
hypertension.
Methods We performed a large- scale multi- centre 
clinical genetic research of 1179 expertly selected 
hypertensive individuals from the chinese han 
population. Targeted sequencing were performed 
to evaluate 37 causative genes of potential cases 
of monogenic hypertension. Pathogenic and likely 
pathogenic variants were classified using the american 
college of Medical genetics guidelines. additionally, 
49 variants of unknown significance (VUs) that had 
relatively high pathogenicity were selected and analysed 
using immunoblot protein expression assays.
Results 21 pathogenic or likely pathogenic variants 
were identified in 33 of 1179 cases (2.80%). gene 
product expression analyses showed 27 VUss harboured 
by 49 individuals (4.16%) could lead to abnormally 
expressed protein levels. consequently, combining 
genetic screening with gene product expression 
analyses increased the diagnostic yield from 2.80% to 
6.79%. The main aetiologies established were primary 
aldosteronism (Pa; 27, 2.29%) and pheochromocytoma 
and paraganglioma (PPgl; 10, 0.85%).
Conclusion Molecular diagnoses obtained using 
causative gene screening combined with gene product 
expression analyses initially achieved a modest 
diagnostic yield. Our data highlight the predominant 
roles of Pa and PPgl. Furthermore, we provide evidence 
indicating the enhanced diagnostic ability of combined 
genetic and functional evaluation.

InTRoduCTIon
Among the causes of secondary hypertension are 
a group of disorders with a Mendelian inheritance 
pattern that are recognised as monogenic forms of 
hypertension.1 Monogenic hypertension frequently 
results in arterial hypertension, electrolyte and 
hormonal abnormalities,2 3 and drug- resistance4 
and often leads to higher risk of cardiovascular 
events and premature death.5

Monogenic hypertension has been genetically 
dissected and a total of 37 pathogenic genes of 14 

forms of monogenic hypertension have been iden-
tified6 7 (online supplementary table 1). Unlike 
primary hypertension, many monogenic forms of 
hypertension are amendable if precise diagnoses are 
obtained and causal interventions are prescribed.1 
Recently published 2018 ESC/ESH Guidelines 
recommended that genetic testing should be consid-
ered in specialist centres for patients suspected to 
have monogenic causes of secondary hypertension.8 
However, large- scale genetic screenings for all 
currently known monogenic hypertension subtypes 
in hypertensive population is lacking.

To obtain representative findings, we conducted a 
Chinese Han population- based, multi- centre genetic 
screening to investigate the landscape of monogenic 
hypertension in both clinical and genetic aspects by 
using a targeted sequencing gene panel. We took 
three major steps in the development and applica-
tion of this diagnostic system. First, 37 pathogenic 
genes for 14 monogenic forms of hypertension 
were included in the gene panel. Second, targeted 
sequencing in 1179 individuals suspected of having 
monogenic hypertension were performed. Third, 
49 of the 570 variants of unknown significance 
(VUSs) were selected to undergo gene products 
expression analyses. The combination of genetic 
testing and expression analyses achieved a diag-
nostic yield of 6.79%.

PATIenTS And MeThodS
Patients and controls
From June 2016 to February 2017, subjects were 
recruited from hospitals covering multiple regions 
of China. Hypertensive patients were evaluated 
by a prescreening work- up to determine whether 
they meet one of the inclusion criteria and have 
monogenic hypertension potential. Patients were 
included if they had at least one of the following 
items: (1) early onset of hypertension: age of 
onset ≤35 years; (2) resistant hypertension: 
systolic blood pressure (SBP) >140 mm Hg and/
or diastolic blood pressure (DBP) >90 mm Hg 
after using ≥three antihypertensive drugs for 
at least 1 month. Onset age and antihyperten-
sive drug usage were collected from the patients’ 
medical history; (3) hypertension with electrolyte 
abnormalities: Blood potassium: 3.5–5.5 mmol/L; 
Blood sodium: 135–145 mmol/L; Blood chlorine: 
96–106 mmol/L; Plasma PH: 7.35–7.45; (4) hyper-
tension with abnormal hormone levels: the normal 
ranges of aldosterone, renin,9 catecholamine and 
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Figure 1 sample distribution and flow chart of the current study. (a) sample distribution in provinces of china. The number of samples in each province 
is represented by different shades of orange. Dark shade represents more samples, while light shade represents less samples. (B) a flow chart of the current 
study. acMg, american college of Medical genetics.

its metabolites,10 as well as sex hormones11 are documented in 
relevant guidelines, (5) hypertension with abnormal imaging 
results: adrenal or abdominal CT scan was performed to inves-
tigate the existence of adrenal tumours or other abdominal 
tumours, or (6) hypertension with special signs: central obesity, 
moon- face, cafe au lait macules, abnormal sexual development, 
etc. Physical examination was performed to identify special 
signs. Patients were excluded if they had other known causes 
of secondary hypertension other than monogenic hypertension 
(online supplementary methods 1.1). Trained clinicians were 
required to evaluate electronic health records of patients to 
determine patients’ inclusion and exclusion. An external control 
population (1256 healthy individuals) was introduced to help in 
filtering out variants that may have low pathogenicity (online 
supplementary methods 1.1).

Blood pressure (BP) measurement
BP was measured between 7:00 and 9:00. Individuals were asked 
to refrain from smoking and drinking tea or coffee for more than 
30 min and to sit and rest for 15 min before measurement. Right 
brachial artery BP was measured. SBP was recorded on hearing 
the phase I Korotkoff sound. DBP was recorded on hearing the 
phase V Korotkoff sound. BP was measured two times with a 30 s 
interval. If two measurements differed by >5 mm Hg, BP was 
re- measured. Final BP was calculated as the mean of two or three 
measurements. Hypertension was defined as SBP ≥140 mm Hg 
and/or DBP ≥90 mm Hg; or BP <140/90 mm Hg with regular 
antihypertensive drugs usage.

Pathogenic genes selection and panel sequencing
The 37 known pathogenic genes were well documented in 
OMIM or Human Gene Mutation Database and exhibit causal 
relationships with monogenic forms of hypertension (See online 
supplementary table 1 and the references cited). Genome DNA 
were obtained from oral swab samples. Fragment libraries were 
constructed following the Agilent standard library preparation 
protocol for TruSeq (Illumina). The resulting libraries were 
sequenced on a HiSeq 4000 platform (Illumina, San Diego, 
California, USA) according to the manufacturer’s instructions. 
Fast- format reads were aligned to the human reference genome 
(GRCh37/hg19) using BWA-0.7.10 aligner12 (online supplemen-
tary methods 1.2).

Annotation, filtering and classification of variants
Variant annotation was performed using ANNOVAR.13 The 
allele frequency of variants was annotated in the Exome Aggre-
gation Consortium (ExAC). Pathogenicity was assessed using 
SIFT (V.6.2.1),14 Polyphen, MutationTaster,15 and CADD.16 
Potential disease causing variants were required to meet: (1) 
located in exonic region or within 2 bp of intron–exon bound-
aries of the 37 genes, (2) allele frequency <0.01 in the ExAC 
database, (3) predicted to be deleterious or with no prediction 
result, (4) CADD >10, (5) detected in ≤1 control sample. We 
excluded loss function variants identified from genes that gain of 
function mutations were known mechanisms and gain of func-
tion variants identified from genes that loss of function (LoF) 
mutations were known mechanisms.

Interpretation of variants reported by panel sequencing
American College of Medical Genetics (ACMG) guidelines were 
used to determine pathogenicity of variants.17 Variants were clas-
sified as five categories: (1) pathogenic, (2) likely pathogenic, 
(3) benign, (4) likely benign and (5) VUSs. Each variant was 
manually evaluated by three independent interpreters who then 
agreed by consensus. To facilitate the identification of potential 
deleterious VUSs, we listed the ACMG evidence terms of them 
and then referred to the clinical phenotypes of patients. VUSs 
that have more pathogenic evidence terms (indicating higher 
pathogenicity) and match their clinical phenotypes were selected 
as candidate variants for gene product expression analyses.

Gene product expression analyses
293A cells were transfected with recombinant plasmids of 
Flag- gene (wild type) and Flag- gene (mutant) using Lipofect-
amine 3000 Reagent (ThermoFisher) according to the manu-
facturer’s instructions. Identical transfection efficiencies were 
confirmed by comparing the amount of green fluorescence in 
cell cultures. mRNA levels were estimated by real time QPCR 
(ViiA, Applied Biosystems, USA). The expression of target genes 
was normalised to the mRNA level of GAPDH as an internal 
control and the mRNA expression of different groups was 
normalised to 2−ΔΔCt. Protein levels were determined by immu-
noblotting with anti- Flag antibodies (Abcam, Cambridge, UK). 
Mouse monoclonal anti-β-actin antibody was used to confirm 
equal loading of cellular proteins. The immune complexes were 
visualised and detected using Tanon 5200 chemiluminescent 
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Table 1 Summary of the results of gene panel targeted sequencing 
in 1179 individuals

Variants (n)
Individuals 
(n)* Percentage†

Individuals without potential disease 
causing variant

0 524 44.44

Individuals with potential disease 
causing variants identified

592 655 55.56

  Individuals with single contributing 
variant

297 480 40.71

  Individuals with two or multiple 
contributing variants

295 175 14.84

Number of variants identified

  Pathogenic and likely pathogenic 
variants

21 33 2.80

  Variants of unknown significance 570 634 53.77

  Benign or likely benign variants 1 1 0.08

Type of variant

  Frameshift deletion 8 15 1.27

  Frameshift insertion 5 5 0.42

  Non- frameshift deletion 10 10 0.85

  Non- frameshift insertion 6 12 1.02

  Non- synonymous SNV 546 607 51.48%

  Stopgain SNV 18 30 2.54%

*The statistics in this table was based on 1179 individuals.
†The percentage was calculated by the number of individuals in each category.

imaging system (Shanghai, China). Greyscale bands were quanti-
fied using Image J software (V.d 1.46). The mRNA (2−ΔΔCt) and 
protein levels (gray- scale) between wide- type and mutant genes 
were compared by unpaired two- tailed Student’s t test. The 
significance level was set to p<0.05. See online supplementary 
methods 1.3 for detailed information.

Statistical analysis
Comparison was performed using the Student t- test for normally 
distributed continuous variables, the Mann- Whitney U test for 
non- normally distributed continuous variables, and the χ2 test 
for categorical variables. All statistical analyses were performed 
using R (V.3.2.1.) and p<0.05 was used to indicate statistical.

ReSulTS
Clinical characteristics of study population
One thousand two hundred hypertensive individuals suspected 
of having monogenic hypertension were enrolled from 71 hospi-
tals covering 19 provinces, four municipalities and three auton-
omous regions of China. Twenty- one individuals were excluded 
for low- quality DNA, insufficient quantities of DNA, or unwill-
ingness to participate in this study (figure 1). Genetic screening 
was performed in 1179 patients. Of them, 1039 had complete 
clinical information. The mean age of onset was 35.21 years. 
Two hundred and twenty- seven (21.85%) were suspected to 
have primary aldosteronism (PA), 76 (7.31%) were suspected 
to pheochromocytoma and paraganglioma (PPGL), 18 (1.73%) 
were suspected to have Cushing syndrome, 4 (0.38%) were 
suspected to have Liddle syndrome, while the rest individuals 
had no suspected diagnosis (online supplementary table 2).

The mutational landscape of individuals
After variants filtering, 598 variants harboured by 661 individ-
uals were identified. Sanger sequencing was then performed to 
exclude false- positive variants. Five hundred and ninety- two 
variants harboured by 655 (55.56%) individuals were retained, 
whereas the remaining 524 patients (44.44%) had no variants 
(table 1). The most frequently mutated gene was CACNA1H 
(online supplementary figure 1). Sixty- two of the 592 variants 
were shared by ≥3 individuals (online supplementary table 3). 
Five of the 62 were identified from pedigrees and resulted in 
shared phenotypes. The remaining 57 variants were identified 
from unrelated individuals and two of them could lead to similar 
phenotypes (online supplementary table 4). No consanguineous 
marriage was observed.

According to ACMG guidelines, 21 variants were found to be 
pathogenic or likely pathogenic (table 2), which may be respon-
sible for monogenic forms of hypertension. Nine of the 21 were 
null variants that can be scored as pathogenic very strong and 
may lead to absence of gene products. The 21 variants were 
harboured by 33 individuals, and thus, the diagnostic yield of 
the current stage was 2.80%. None of the 33 individuals carried 
more than one pathogenic or likely pathogenic variants and all of 
these variants were absent from the control dataset. Five hundred 
and seventy variants were considered to be VUSs, whose clinical 
significance remained unknown. Of note, we identified 18 stop- 
gain variants and 13 frame- shift variants (online supplementary 
table 5). Among them, three stop- gain (ARMC5, CYP17A1 and 
SDHD) and three frame- shift variants (MEN1, SCNN1B and 
VHL) were classified as pathogenic or likely pathogenic. LoF 
variants in all of the six genes are known mechanism of hyper-
tension.18–23 Additionally, in four of the six genes (ARMC5,24 

SDHD,25 MEN126 and VHL27), stop- gain or frame- shift variants 
were proved to be targets of nonsense- mediated mRNA decay.

Phenotypes and genetic findings of individuals with multiple 
locus variants
In 655 individuals with positive findings, 131 (20%) harboured 
mutations in ≥2 genetic loci. We found three patients could be 
diagnosed with two disorders for harbouring variants from two 
distinct loci (online supplementary table 6). The first patient 
was a compound heterozygote of two CYP17A1 variants with 
17- alpha- hydroxylase deficiency manifestations. She also carried 
a predicted deleterious heterozygous SCNN1B variant. After 
glucocorticoids and sex hormones treatment, her hypertension 
and hypokalemia were partly controlled. Amiloli experimental 
treatment was administered and her hypertension and hypo-
kalemia were ideally controlled. The second patient carried a 
heterozygous variant of SCNN1G and a heterozygous variant of 
ARMC5 with Cushing syndrome manifestations. Unilateral adre-
nalectomy partly controlled his BP and cortisol level. Amiloli 
was further administered and his hypertension and hypokalemia 
were completely controlled. The third patient carried a hetero-
zygous variant of CACNA1H and a heterozygous variant of 
WNK4 with pseudohypoaldosteronism, type IIB manifestations 
except for normal blood potassium. However, he had left adrenal 
nodules and aldosterone to renin ratio (ARR) >30, indicating 
the existence of PA. The patients’ normal blood potassium may 
be due to the fact that pseudohypoaldosteronism, type IIB could 
lead to hyperkalemia, while PA could result in hypokalemia.

Gene product expression analyses of VuSs
Forty- seven VUSs in 17 causative genes were selected for gene 
product expression analyses (online supplementary figure 2). 
Although some variants were predicted to be LoF variants, 
expression analyses were still performed to confirm their roles 
in 293A cell lines. Equal transfection efficiencies between wild 
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type and mutant groups were confirmed (online supplementary 
figure 2) and the mRNA levels between wild type and mutant 
genes showed no statistical difference in 16 genes. However, two 
stop gain variants in ARMC5 and VHL resulted in significantly 
reduced mRNA levels (online supplementary figure 3), which 
may be due to the nonsense- mediated mRNA decay. Nineteen of 
the 47 VUSs resulted in reduced protein levels, while eight VUSs 
resulted in increased protein levels (figure 2, online supplemen-
tary figure 4). Therefore, 27 variants were regarded as potential 
functional VUSs (online supplementary table 8). The 27 poten-
tial functional VUSs were either located adjacent to mutation 
hotspots or located in well documented disease causing sites 
(online supplementary table 9) and the clinical phenotypes of the 
49 patients were inconsistent with their genetic findings (online 
supplementary table 10). Thus, the general diagnostic rate 
obtained in the current study rose from 2.80% to 6.79%. None 
of the 49 individuals carried more than one potential functional 
variant. However, seven of them carried one potential functional 
variant and at least one other VUS. Their phenotypes were all 
consistent with the clinical manifestations of the potential func-
tional variants but not related with VUSs they harboured (online 
supplementary table 11).

Associations between clinical characteristics and genetic 
testing results
We totally identified 33 individuals with pathogenic or likely 
pathogenic variants, 49 individuals with potential functional 
variants, 572 individuals with VUSs, and one person with a 
benign variant (figure 3A, table 2). Diseases that harboured 
the greatest burden of pathogenic, likely pathogenic or poten-
tial functional variants were PA and PPGL (figure 3B). The BP 
of individuals with pathogenic and likely pathogenic variants 
were clustered predominantly in the 150–170/95–105 mm 
Hg interval. Interestingly, individuals with potential func-
tional variants were also distributed in the same interval, while 
individuals in the remaining three groups were distributed 
differently (figure 4A). The age of onset of individuals with 
pathogenic and likely pathogenic variants were the youngest 
among all groups and mainly clustered in the 1–15 years’ 
interval. Moreover, patients with potential functional variants 
were slightly younger than individuals in the rest three groups 
(figure 4B).

Genetic screening of family members
Five pedigrees were observed in the current study (figure 5). 
Pedigree analyses uncovered a known pathogenic variant 
responsible for MEN2B (Family 1, RET c.T2753C), two 
novel pathogenic variants for pre- eclampsia (Families 2 and 
3, CACNA1D c.A920G and c.G4370A p.R1457Q), a novel 
pathogenic variant for Liddle syndrome (Family 4, SCNN1B 
c.C1513T) and a known pathogenic variant for 17α-hydrox-
ylase deficiency syndrome (Family 5, CYP17A1 c.985_987de-
linsAA). See online supplementary information for detailed 
information. CACNA1D variants have been well documented 
to be a causative gene responsible for PA. However, in family 
2 and family 3, the probands and their affected relatives with 
CACNA1D mutations cannot be diagnosed as PA for failing 
to surpass the screening test ARR or confirmatory test. This 
suggest that CACNA1D variants identified in the current study 
may be responsible for pre- eclampsia rather than PA. These 
identifications expended the phenotypic profiles related with 
CACNA1D.

https://dx.doi.org/10.1136/jmedgenet-2019-106145
https://dx.doi.org/10.1136/jmedgenet-2019-106145
https://dx.doi.org/10.1136/jmedgenet-2019-106145
https://dx.doi.org/10.1136/jmedgenet-2019-106145
https://dx.doi.org/10.1136/jmedgenet-2019-106145
https://dx.doi.org/10.1136/jmedgenet-2019-106145
https://dx.doi.org/10.1136/jmedgenet-2019-106145
https://dx.doi.org/10.1136/jmedgenet-2019-106145
https://dx.doi.org/10.1136/jmedgenet-2019-106145
https://dx.doi.org/10.1136/jmedgenet-2019-106145
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Figure 2 schematics of mutant proteins and immunoblot analysis for variants of unknown significance. (a) schematics of mutant proteins. rare variants 
identified by panel testing were labelled in schematics. Variants that underwent immunoblot analysis were marked by “#” and functional variants confirmed 
by immunoblot analyses were highlighted by red font. (B) immunoblot analysis for variants of unknown significance. all of the immunoblot analysis results 
for 49 variants that underwent gene product expression analyses were shown in online supplementary figure 4.

Figure 3 summary of the results of gene panel targeted sequencing. (a) genetic identification of 1179 individuals. (B) Variants distribution in different 
forms of monogenic hypertension. in 4B, the vertical axis and the column on the left side represent the total samples with positive panel results, whereas the 
vertical axis and the column on the right side represent samples carrying pathogenic, likely pathogenic and potential functional variants identified by gene 
product expression analyses.

dISCuSSIon
We report results obtained from causative gene screening 
combined with gene product expression analyses of a large cohort 
of individuals suspected of having monogenic hypertension in 
a clinical setting. A diagnostic yield of 6.79% was achieved by 
the current study. Genetic testing is undoubtedly of consider-
able clinical value for individuals suspected to have monogenic 
hypertension. Actually, genetic testing is the ‘gold standard’ of 

some monogenic hypertension, such as Liddle syndrome and 
glucocorticoid- remediable aldosteronism. Sometimes, even the 
diagnoses have been achieved, genetic testing is still recom-
mended for disease classification and targeted treatment because 
the hereditary pattern, complicated diseases, growth character-
istics and malignancy of monogenic hypertension are largely 
determined by gene mutation. Although the diagnoses of some 
PA patients may be achieved by ARR or confirmatory tests, 

https://dx.doi.org/10.1136/jmedgenet-2019-106145
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Figure 4 BP levels and age distributions in individuals who underwent genetic screening. (a) BP levels distribution in individuals who underwent genetic 
screening. (B) age distribution in individuals who underwent genetic screening. The vertical axis represents the ratio of the sample number in each BP or 
onset age group to the total sample number of group with positive panel results (total), with P and lP variants, with PF variants, with VUss, or with negative 
and benign variants. B, benign; BP, blood pressure; lP, likely pathogenic; n, negative; P, pathogenic; PF, potential functional; VUs, variants of unknown 
significance.

Figure 5 Family trees of five pedigrees in the current study. The black triangles indicate probands in the families. Different phenotypes were indicated by 
distinct markers as shown in the family trees. (a) Multiple endocrine neoplasia family. (B) The first pre- eclampsia family. (c) The second pre- eclampsia family. 
(D) liddle syndrome family. (e) 17α-hydroxylase deficiency syndrome family.

genetic testing is still warranted. It is not rare to see hypertensive 
individuals with hypokalemia and adrenal imaging abnormalities 
have critical ARR values or confirmatory test results. Genetic 
testing may provide further diagnoses cue.

The diagnostic panel was designed to facilitate the diagnoses 
of hypertensive patients rather than merely restricted to labo-
ratory findings. There exists a two- way communication system 
between laboratory and clinical settings. Genetic testing reports 
were ultimately sent to each patient and their doctors in both 
paper version and electronic version. Once the patients under-
went genetic testing, they were ‘chased down’ by their doctors. 
The doctors were frequently needed to conduct further clinical 
phenotyping on patients who had positive testing results. Many 
patients’ phenotypes, especially those with deleterious variants 
can be reflected by their genetic findings. The identification of 
these variants frequently corrected fault diagnoses, optimised 
preventive processes and offered more precise treatment.

Among the 523 individuals with no variant, 83 (15.87%) were 
suspected to have specific forms of monogenic hypertension. 
The clinical manifestations of individuals with suspected diag-
noses were in consistent with their suspected forms of mono-
genic disorder. There might be two reasons for failing to detect 
potential causative variants. First, the variants filtering criteria 
were so stringent that some of the potential disease causing 

variants might be excluded. Second, variants in novo pathogenic 
genes that not yet been discovered cannot be covered by the 
panel used in the current study.

Targeted sequencing combined with gene product expression 
analyses uncovered a number of disease causing variants and 
potential functional variants that were newly associated with 
monogenic hypertension. Among 21 pathogenic or likely patho-
genic variants, three were novo disease causing variants first 
reported by this study. Among the 27 potential functional vari-
ants, 25 were first reported to be potential disease causing vari-
ants. These potential functional variants were identified from 15 
genes and variants on eight of the 15 genes were proved to lead 
to completely abolished protein expression levels. Complete 
loss of gene products is likely to lead to severe abnormalities 
to human body. However, for the three genes that do not lead 
to completely abolished expression of mutant proteins (NOS3, 
KCNJ5 and SDHC), dose- dependent effects were observed in 
animal models through in vivo and in vitro experiments. The 
biological functions of organisms can be influenced by even 
slight reduction of the expression levels in them.28–30

Multiple variants found in a single affected individual is an 
important concern of high throughput sequencing studies. The 
prevalence of multiple molecular diagnoses in a single genome 
ranges from 3.2% to 7.2%.31–34 Blended phenotypes resulting 
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from multilocus variants can be mistaken for new disorders or 
newly identified phenotypes of known disorders. Among the 131 
individuals harbouring multiple genetic locus, the diagnoses in 
three of them may be based on variants from two distinct disease 
locus. The identification of multiple locus variants provided 
useful information on the patients’ diagnoses and treatments 
since therapeutic strategy merely targets a single disorder were 
not sufficient to control the symptoms resulted from multiple 
genetic disorder.

In this study, PA and PPGL were diseases with the greatest 
burden of pathogenic, likely pathogenic and potential functional 
variants. Most of the pathogenic or potential disease causing 
mutations were found in CACNA1H and CACNA1D genes. This 
finding is consistent with previous reports that CACNA1H and 
CACNA1D are more likely to be germline mutation genes and 
are absent in tumour samples.35 36 Approximately 40% of PPGL 
cases carry a germline mutation in one of 12 known causative 
genes.37 Similarly, in this study, 76 individuals were included for 
suspicion of having PPGL and PPGL variants were identified 
from 24 of them (31.58%). In a retrospective study based on 
Caucasian series, the relative frequencies of germline mutations 
in PPGL causative genes were VHL >SDHB > SDHD>RET > 
NF1 >TMEM127>MAX > SDHC>SDHA > EPAS1 >EGLN138. 
Our results generally showed a similar pattern, with causative 
variants being most frequently clustered in RET, VHL, SDHB 
and NF1, suggesting the necessity for screening these frequently 
mutated genes in clinical settings.

In this study, some of the individuals were included for 
having adrenal imaging abnormalities. Although some of 
them may have asymptomatic ‘incidentalomas’, causative gene 
sequencing is warranted. As documented by epidemiological 
studies, during the follow- up of non- functional adrenal mass, 
the size of 25% of incidentaloma will increase and 20% of 
them could result in over- secretion of hormones, especially 
those with diameters>3 cm.39 40 Since PA and PPGL are rela-
tive common causes of incidentaloma, genetic testing may be 
useful to offer aetiological cue and help clinicians to make deci-
sion about whether to intervention, to closely follow- up, or 
just to ignore.

Although this study was designed to evaluate the presence 
of monogenic hypertension in probands, their affected family 
members also benefited from genetic screening. Since the codon 
918 mutations in family one has been implicated to have high 
penetrance of pheochromocytoma41 and medullary thyroid 
carcinoma,42 43 children who harbour this mutation have been 
recommended to have more aggressive treatment regimens.44 
Recently, prophylactic surgery of the three children has been 
reconsidered. Moreover, pedigree analyses also enable novel 
pathogenic variants and phenotypes to be identified. In our 
study, there were two pre- eclampsia probands which had 
several family members who harbour CACNA1D variants and 
presented with either pre- eclampsia or early onset hypertension. 
CACNA1D variants have been well documented to cause PA45; 
however, no evidence implicates the direct correlation between 
CACNA1D and pre- eclampsia. A recent study documented that 
the relative mRNA expression of CACNA1D was significantly 
higher in placental vessels than those in other vessels. Placental 
vessels were characterised by much weaker responses to MgSO4- 
mediated vasodilatation compared with non- placental vessels.46 
Thus, our study reports for the first time that CACNA1D muta-
tions may cause pre- eclampsia.

ConCluSIonS
Comprehensive genetic screening was performed among poten-
tial cases of monogenic hypertension and resulted in a diagnostic 
yield of 6.79%. Combining genetic analyses with functional 
evaluation enhanced the diagnostic ability and uncovered 
large numbers of novel functional variants. Our data also high-
lighted the predominant roles of PA and PPGL in monogenic 
hypertension.
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