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ABSTRACT

Parkinson’s disease (PD) is the second most common neurodegenerative disorder affecting millions
of people worldwide. At present, there is no effective cure for PD; treatments are symptomatic
and do not halt progression of neurodegeneration. Extracellular vesicles (EVs) can cross the blood–
brain barrier and represent promising alternative to the classical treatment strategies. In the pre-
sent study, we examined therapeutic effects of intranasal administration of EVs derived from
human exfoliated deciduous teeth stem cells (SHEDs) on unilateral 6-hydroxydopamine (6-OHDA)
medial forebrain bundle (MFB) rat model of PD. CatWalk gait tests revealed that EVs effectively
suppressed 6-OHDA-induced gait impairments. All tested gait parameters (stand, stride length, step
cycle, and duty cycle) were significantly improved in EV-treated animals when compared with 6-OHDA-
lesion group rats. Furthermore, EVs slowed down numbers of 6-OHDA-induced contralateral rotations
in apomorphine test. Improvements in motor function correlated with normalization of tyrosine hydrox-
ylase expression in the striatum and substantia nigra. In conclusion, we demonstrated, for the first time,
the therapeutic efficacy of intranasal administration of EVs derived from SHEDs in a rat model of PD
induced by 6-OHDA intra-MFB lesion. Our findings could be potentially exploited for the development
of new treatment strategies against PD. STEMCELLS TRANSLATIONALMEDICINE 2019;8:490–499

SIGNIFICANCE STATEMENT

Extracellular vesicles (EVs) derived from human exfoliated deciduous teeth stem cells were admin-
istered intranasally in model-rats of Parkinson’s disease (PD), obtained by unilateral injection of
6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. It was demonstrated that EVs can
effectively suppress 6-OHDA-induced gait impairments and normalize tyrosine hydroxylase expres-
sion in the striatum and in the substantia nigra of experimental rats. To the authors’ knowledge,
this is the first report showing the therapeutic efficacy of intranasally administered EVs in the uni-
lateral 6-OHDA rat model of PD. The findings may be useful for the development of new treat-
ment strategies against PD.

INTRODUCTION

Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disorder affecting more
than 1% of the population aged over 65 years and

nearly 5% of those aged over 80 years [1]. At

present, there is no effective cure for PD; treat-

ments are symptomatic and they do not target

neurodegeneration [2]. Stem cell research has

the potential to significantly impact the develop-
ment of disease-modifying treatments for PD.
Preclinical studies demonstrated that transplan-
tation of pluripotent stem cell-derived dopami-
nergic neurons improved specific symptoms in
animal models of PD [3, 4], and clinical trials are
about to begin [5]. Nonetheless, alternative
therapies with noninvasive administration pro-
cedures remain to be found. Deployment of
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extracellular vesicles (EVs), which carry multiple proteins, RNAs,
lipids, and metabolites [6, 7] represent promising alternative to
the classical treatment strategies. Usage of EVs has several
advantages from a therapeutic perspective. First, they can cross
blood–brain barrier and thus can be delivered into the brain
without complex neurosurgical interventions [8, 9]. Second, EVs
are safer because of reduced risks associated with transplanta-
tion of cells, such as massive loss of transplanted cells, malignant
transformation, or immune rejection. Third, EVs are relatively
simple, stable, and controllable systems, being thus suitable for
the large-scale clinical manufacturing [10]. Preclinical studies dem-
onstrated that intranasal delivery of EVs from the bone marrow
mesenchymal stem cells (MSCs) prevented abnormal neurogenesis
and memory dysfunction after induction of status epilepticus in
mice [11]. Treatment with EVs also suppressed neuroinflamma-
tion and reduced cognitive impairments after traumatic brain
injury in mice [12]. Intranasal administration of catalase-loaded
exosomes provided significant neuroprotective effects in PD
model by safeguarding substantia nigra (SN) pars compacta
neurons from oxidative stress-induced cell death [13], while
curcumin-encapsulated exosomes suppressed IL-6 and TNF-α
expression in LPS-induced septic shock model animals [14].

In the present study, we used EVs derived from stem cells
from the dental pulp of human exfoliated deciduous teeth
(SHEDs). These cells originate from the peripheral nerve-
associated glia [15] and in contrast to the MSC-like cells derived
from other mesodermal tissues have unique neurogenic proper-
ties [16, 17]. Moreover, SHEDs were efficiently differentiated
into dopaminergic neuron-like cells [18] and Schwann cells [19].
Our previous in vitro studies revealed that EVs derived from
SHEDs can suppress 6-hydroxydopamine (6-OHDA)-induced apo-
ptosis of human dopaminergic neurons [20].

Here, we examined therapeutic effects of intranasal (i.n.)
administration of EVs on rat model of PD obtained by unilat-
eral 6-OHDA injection into the medial forebrain bundle (MFB).
Our aim was to accomplish a severe, but not full lesion in the
nigro-striatal structures, to study whether EVs could be used
for slowing down progression of the disease. We started daily
EVs treatments from day 8 after 6-OHDA injection and contin-
ued it for 15 days. Motor functions (gait) and tyrosine hydrox-
ylase (TH) expression in the nigro-striatal structures were then
assessed. Our study demonstrates that EVs can effectively
ameliorate 6-OHDA-induced gait impairments and decreased
TH expression in the striatum and in the SN of experimental
rats. To the best of our knowledge, this is the first report
showing the therapeutic capacity of intranasally administered
EVs in the 6-OHDA rat model of PD. Our findings may be useful
for the development of new treatment strategies against PD.

MATERIALS AND METHODS

Chemicals and Antibodies

The following chemicals were purchased from Sigma-Aldrich, St.
Louis, MO: Apomorphine (A4393-1G), 3,30-diaminobenzidine (DAB,
D5905), ExtrAvidin Peroxidase Staining Kit (EXTRA2), Bovine serum
albumine (BSA, A2058) and anti-TH antibody (T2928), Triton X-100
(X100), and 6-OHDA (H116). Antibodies against Syntenin-1, MFG-
E8, and LGR5 were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA). Anti-HSP 70 antibody was from BD Transduction
Laboratories (Becton, Dickinson and Company, Franklin Lakes, NY).

Artificial cerebrospinal fluid (aCSF) was prepared ex tempore. Apo-
morphine was dissolved in saline prior to the injection.

Isolation and Culture of SHEDs

Cells were obtained from human exfoliated deciduous teeth of
a child, whose parents had signed an informed consent. Mate-
rial was collected under the approval of the Lithuanian Bioethics
committee (Nr. 6B-08-173). Briefly, the collected tooth was
washed in phosphate-buffered saline (PBS) and incubated in
low glucose (LG; 1 mg/ml) Dulbecco’s modified Eagle’s medium
(DMEM; Biochrom) with 200 U/ml penicillin, 200 μg/ml strepto-
mycin and 2.5 μg/ml of amphotericin B (all from Biochrom,
Berlin, Germany). Pulp tissue was scraped out and placed in col-
lagenase type I (Gibco, Invitrogen, Grand Island, NY) solution,
the latter of which consisted of 0.2% collagenase in DMEM with
1% bovine serum albumin (BSA; Applichem, Darmstadt, Germany),
100 U/ml penicillin and 100 μg/ml streptomycin and incubated
for 1 hour at 37�C in an orbital shaker platform. After digestion,
the cell suspension was diluted in PBS and centrifuged at 250g
for 5 minutes. The supernatant was discarded, cells resuspended
in LG DMEM supplemented with 10% fetal bovine serum (Gibco),
glutamine and antibiotics and plated. Cultures were maintained at
37�C in a humidified atmosphere containing 5% CO2.

For the isolation of EVs SHEDs from third to fifth passages
were grown until the cultures reached subconfluence, then stan-
dard medium was changed to the serum-free medium MSC
NutriStem XF (Biological Industries, Kibbutz Beit Haemek, Israel).

Isolation of EVs

Isolation of EVs was performed using differential centrifugation
according to the described protocol [20] with some modifica-
tions. All centrifugation steps were performed at 4�C. Superna-
tants collected from SHEDs cultivated in serum-free medium
MSC NutriStem XF (Biological Industries) were centrifuged suc-
cessively at increasing speeds (300g for 10 minutes, 2,000g for
10 minutes, then at 20,000g for 30 minutes). The final superna-
tants were ultracentrifuged at 100,000g for 70 minutes in Sor-
vall LYNX 6000 ultracentrifuge, with rotor T29-8x50 in oak ridge
centrifuge tubes with sealing caps (all from Thermo Fisher Scien-
tific, Rochester, NY), then the pellets were washed in 40 ml PBS
and ultracentrifuged again at 100,000g for 70 minutes. Final pel-
lets of EVs (exosomal fraction) were resuspended in sterile PBS
and stored at −20�C.

Nanoparticle tracking analysis (NTA) was performed with
NanoSight LM10 (Malvern Panalytical, Malvern, UK). NTA ana-
lyses revealed that EV fractions contained vesicles of approxi-
mately 100 nm in size (Fig. 1A–1C). EV fractions were also
positive for the characteristic markers of exosomes (Syntenin 1,
HSP70, MFG-E8; Fig. 1C). All preparations of EVs were derived
from the same SHED line. Before the experiment, all EV prepa-
rations were pooled and divided into the single dose aliquots
(10 μl). According to the NTA measurements single dose of EV
contained 2.85 × 108 vesicles.

Animals

Male Wistar rats (280 � 20g) were obtained from the State
Research Institute Centre for Innovative Medicine Laboratory
animals breeding house, Vilnius, Lithuania. Experiments on ani-
mals were performed under the approval of the Lithuanian
Laboratory Use Ethics Committee under the State Food and Vet-
erinary service (No. G2-51). All efforts were made to minimize
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animal suffering and reduce the number of animals used. The
experiments were conducted in accordance with the EU Direc-
tive 2010/63/EU and local laws and policies on the protection of
animals used for scientific purposes. The animals were housed in
a controlled laboratory environment (temperature 22�C � 2�C,
humidity 55%–65%, 12-hour light/dark cycle), five animals per
polypropylene cage with food and water provided ad libitum.

Experimental Design (In Vivo)

Experimental design is shown in Figure 2. The rats were ran-
domly divided into four groups (n = 8).

1. aCSF (intra-MFB) + PBS (i.n.);
2. aCSF (intra-MFB) + EVs (i.n.);
3. 6-OHDA (intra-MFB) + PBS (i.n.);
4. 6-OHDA (intra-MFB) + EVs (i.n.).

EVs were administered using a small pipette. Solution of
5 μl was administered in each nostril with 2 minutes interval.
Each daily dose contained 2.85 × 108 vesicles/10 μl.

Overall, during 15 days each rat received a total of 180 μl
EV solution containing approximately 43 × 108 EVs. After brain
removal, immunohistochemical assessments were performed.

Unilateral 6-OHDA Lesion

Thirty minutes before the induction of general anesthesia, rats
received imipramine (20 mg/kg) to protect adrenergic neurons
against the development of 6-OHDA-induced lesions. The ani-
mals were anesthetized with isoflurane (3%–3.5% for induction
and 2% for maintenance) and placed on a stereotaxic frame
(Stoelting Inc.). On experimental day 15, unilateral 6-OHDA
(20 μg in 3 μl of 0.2% ascorbic acid) or aCSF (control, 3 μl) were
injected intra-MFB during stereotaxic surgery using the follow-
ing coordinates: −2.2 mm anteroposterior, +1.5 mm mediolat-
eral, and −8.0 mm dorsoventral relative to the bregma, using a
27-gauge needle attached to a 50 μl microsyringe (Hamilton).
Injection flow was controlled using an electronic pump (World
Precision Instruments, Sarasota, FL) at a rate of 1 μl per min. The
microsyringe needle was left in the injection site for 5 minutes
after each injection to avoid liquid reflux.

Apomorphine-Induced Rotation Behavior

On experimental day 23, apomorphine-induced rotational behav-
ior was used to evaluate the dopaminergic neuron lesion induced
by 6-OHDA. Apomorphine was dissolved in saline and injected
subcutaneously at the dose of 0.2 mg/kg. After 5 minutes, the
rotations were monitored for 30 minutes. The number of contra-
lateral rotations (to the nonlesioned side) was recorded by exam-
iner blinded to the groups.

CatWalk Gait Test

The CatWalk XT quantitative gait analysis system (Noldus,
Wageningen, The Netherlands) is a nonintrusive, accurate tool
to determine gait ability in rodents. This method is described
elsewhere [21, 22]. In brief, it is based on rodent voluntary
movement through an enclosed 1.3 m long glass walkway that
is illuminated with green fluorescent lighting the walkway from
the side and reflecting internally after the rodent comes in
contact with the glass floor. High-speed video camera was
located under the walkway and was used to obtain footprint
images. The rats were trained twice: 7 days prior to 6-OHDA

Figure 1. Characterization of extracellular vesicles (EVs) isolated from
stem cells from the dental pulp of human exfoliated deciduous teeth
(SHEDs). (A): Transmission electron microscopy of EVs isolated from
SHEDs (×30,000 magnification). A magnified image of EV is shown on
the left panel (×120,000 magnification). (B): Determination of the con-
centration and particle size of EVs derived from SHEDs. Nanoparticle
tracking analysis was performed with NanoSight LM10 instrument
(Malvern Panalytical). Size distribution of the EVs was around 100 nm.
(C): Samples from supernatants (S), cell lysates (L), and EV fractions
(EVs) were subjected to electrophoresis, blotted and the membrane
was probed with antibodies against EV markers (HSP70, MFG-E8,
syntenin-1), or LGR5 as a negative control. Bands were visualized by
incubation with appropriate horseradish peroxidase-conjugated sec-
ondary antibodies and chemiluminescence substrate.

© 2019 The Authors. STEM CELLS TRANSLATIONAL MEDICINE published by
Wiley Periodicals, Inc. on behalf of AlphaMed Press

STEM CELLS TRANSLATIONAL MEDICINE

492 Extracellular Vesicles Improve Motor Symptoms



injection and on experimental day 7. Before each training ses-
sion, the animals were placed on the walkway and allowed to
habituate for 2 minutes. Testing was performed on experimental
day 20 between 11:00 and 14:00, at least 1 hour after intranasal
EVs administration. Testing was successful if the animal crossed
the walkway without stopping and at least 3–4 each paw place-
ments were recorded. Three complete runs across the walkway
were recorded for each animal. CatWalk XT software was used
to automatically analyze the video images of the runs. Data anal-
ysis was performed with a threshold value set at 40 arbitrary
units (range 0–225) per pixel. The following parameters were
analyzed according to [21, 23]: temporal (stand duration), spatial
parameters attributed to individual paws (duty cycle, %), relative
spatial relationships between paws (stride length) and interlimb
coordination (step cycle). Duty cycle is calculated according to
the formula: stand/(stand + swing) × 100% and it represents
the stand as a percentage of step cycle.

Immunohistochemistry

The next day after the apomorphine rotation test, rats were deeply
anesthetized with a ketamine/xylazine (100/10 mg/kg i.p.) mixture,
transcardially perfused with ice-cold saline and fixed with cold 4%
paraformaldehyde (PFA) solution. The brains were removed and
postfixed in 4% PFA for 24 hours. After fixation, the brains were
placed in 30% sucrose-containing solution for 48 hours for cryopro-
tection and subsequently placed in an antifreeze solution.

For each brain, 30 μm thick coronal slices were obtained
using a cryotome at –23�C (CM1850, Leica Biosystems, Nussloch,
Germany): 6 sections each from both the corpus striatum (AP
plane −0.36 mm to −0.60 mm from bregma) and SN (AP plane
−4.80 mm to −5.04 mm from bregma). The slices were incu-
bated in citrate buffer (pH 6.0) at high temperature (95�C) for
10 minutes to improve antigen retrieval, subsequently cooled to
room temperature and blocked with a 5% BSA solution for
30 minutes to decrease backstain formation. Free-floating sec-
tions were then stained with the corresponding primary anti-
body (1:1,000). The sections were transferred to a solution
containing the primary antibody in PBS with 0.5% Triton X-100
(PBS-T). After 18 hour incubation, the sections were rinsed three
times with PBS-T and transferred to a solution containing the
secondary antibody (dilution 1:500). After 1.5 hour incubation
with the secondary antibody, the sections were rinsed three
times with PBS-T and transferred to PBS-T containing mouse
ExtrAvidin Peroxidase (1:1,000) for 1.5 hour. After rinsing with
PBS-T, the sections were incubated with PBS containing DAB,
30% H2O2 and nickel ammonium sulphate for 1 minute. All
stained sections were mounted on slides (3 sections on each
slide) and coverslipped using DPX mountant for histology. In

order to obtain similar staining, the sections from all groups
were always stained simultaneously in the same tray. Optical
density of protein staining was expressed in arbitrary units (a.u.).

Quantification

The mounted brain sections were scanned using a Pannoramic
Midi II Scanner (3DHISTECH, Budapest, Hungary) at ×200 magni-
fication. The optical density of neuronal (TH) staining was deter-
mined in the corpus striatum and SN regions. An observer
blinded to the treatment of the animals performed all measure-
ments in duplicate using the ImageJ software.

Figure 2. Experimental design of a study.

Figure 3. Effects of intranasally administered extracellular vesicles
on rat stand and stride length in the CatWalk test in day 20 after
medial forebrain bundle lesion. Stand (A), stride length (B). Data rep-
resent mean � SEM values. One-way ANOVA followed by Fisher’s
LSD post-test. RF, right front paw; RH, right hind paw; LF, left front
paw; LH, left hind paw. *, p ≤ .05; **, p ≤ .01; ***, p ≤ .001 versus
aCSF+PBS postoperative; ##, p ≤ .01; ###, p ≤ .001 versus 6-OHDA
+PBS postoperative.
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Transmission Electron Microscopy of EVs

EV samples for transmission electron microscopy have been pre-
pared according to the previously published protocol [24] with
some modifications. Briefly, EVs in PBS were fixed by adding 4%
PFA to a final concentration of 2% and incubated for 40 minutes
on ice. To absorb the sample, Formvar–carbon coated copper
grid was floated on a 10 μl drop of EV suspension for 20 minutes
at room temperature. After adsorption the grid was washed for
2 minutes at room temperature in a 100 μl drop of PBS. Then
the grid was incubated in a 50 μl drop of 1% glutaraldehyde for
5 minutes at room temperature. Afterward 8 washing steps were
performed (2 minutes for each) by transferring grid from one
drop of distilled water to another. Samples were contrasted on a
50 μl drop of 2% neutral uranyl acetate for 5 minutes at room
temperature in the dark. Afterward the grids were incubated on
a 50 μl drop of 2% methylcellulose/0.4% uranyl acetate for
10 minutes on ice in the dark. In the end grids were taken by
stainless steel loop and excess of liquid removed by filter paper.
Then the grids on the same loop were air-dried for 5 minutes. All
incubations were displayed on a Parafilm sheet with the coated
side of grid facing the drop. Two grids were prepared under
identical conditions for each EV sample. The sample was ana-
lyzed immediately with the transmission electron microscope
JEOL JEM-2100F High Resolution EM-20023 (JEOL, Freising,

Germany) at 80 kV. The images were captured with a Olympus
Quemesa camera, using the iTEM 5.2 software.

Protein Isolation and Western Blot Analysis

For preparation of total cell lysates, cell monolayers were
washed twice with cold PBS, pH 7.3, and lysed in Pierce RIPA
buffer supplemented with 1× Halt protease inhibitor cocktail for
15 minutes on ice. Samples were centrifuged at 14,000g for
30 minutes at 4�C. Supernatants derived after centrifugation of
cellular lysates were aliquoted and kept at −20�C until analyzed.
EVs were first precipitated in acetone (99.8%). Briefly, 1 volume
of EV suspension was mixed with 4 volumes of −20�C acetone
and incubated overnight at −20�C, then samples were centri-
fuged at 18,000g for 15 minutes at 4�C. Afterward, pellets were
washed three times with acetone (80%). After acetone evapora-
tion pellets were dissolved in Laemmli sample buffer, boiled and
kept at −20�C until analyzed. Protein concentrations were mea-
sured with the NanoPhotometer Pearl (Implen, Munchen, Ger-
many). For Western blot analysis cell and EV lysates diluted in a
Laemmli sample buffer were heated for 5 minutes at 95�C. The
same amounts of proteins from EVs and cellular lysates were
loaded on Mini-PROTEAN TGX precast gels (Bio-Rad, Hercules,
CA), subjected to electrophoresis in Mini-PROTEAN Tetra cell
apparatus (Bio-Rad), then blotted onto a PVDF membrane in a
semidry Trans-Blot Turbo transfer system (Bio-Rad) and blocked
for 1 hour at room temperature with 5% BSA in PBS containing
0.18% Tween-20 (PBS-Tw). The membranes were then probed
with primary antibodies against Syntenin-1, MFG-E8 and LGR5
for 1 hour at room temperature. Alternatively, membranes were
incubated overnight with antibodies against HSP 70 at 4�C. After
incubation with primary antibodies membranes were washed
three times in PBS-Tw. After washing, membranes were incu-
bated further with horseradish peroxidase-conjugated secondary
antibody for 1 hour at room temperature.

Washing procedure was repeated and immunoreactive bands
were detected with Clarity ECLWestern blotting substrate (Bio-Rad)
using ChemiDocMP system (Bio-Rad).

LC–MS/MS Analysis

Sample proteins were reduced with 0.05 M Tris(2-carboxyethyl)
phosphine hydrochloride (C4706, Sigma-Alrich) for 20 minutes at

Figure 4. Effects of intranasally administered extracellular vesicles
on step cycle and duty cycle in the CatWalk test in day 20 after
medial forebrain bundle lesion: step cycle (A) and duty cycle (B).
Data represent mean � SEM values. One-way ANOVA followed by
Fisher’s LSD post-test. RF, right front paw; RH, right hind paw; LF, left
front paw; LH, left hind paw. *, p ≤ .05; **, p ≤ .01; ***, p ≤ .001
versus aCSF+PBS postoperative; ##, p ≤ .01; ###, p ≤ .001 versus
6-OHDA+PBS postoperative.

Figure 5. Effects of intranasally administered extracellular vesi-
cles on 6-hydroxydopamine (6-OHDA)-lesioned rats’ performance
in the apomorphine (APO) test. APO was injected s.c. 5 minutes
prior to the test, and rotations were counted for 30 minutes. Data
represent mean + SEM values. Student’s t test. *, p ≤ .05.
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37�C and then alkylated with 0.15 M iodoacetamide (#57670
Fluka, Sigma-Alrich) at room temperature in the dark. Proteolysis
was performed by adding 0.75 μg trypsin (Sequencing Grade
Modified Trypsin, V5111, Promega, Madison, WI). After diges-
tion peptides were purified with C18 microspin columns

(Harvard Apparatus, Holliston, MA) according to manufac-
turer’s protocol and redissolved in 30 μl of 50 mM NH4HCO3.
Liquid chromatography coupled to tandem mass spectrometry
(LC–MS/MS) analysis was carried out on an EASY-nLC (Thermo
Fisher Scientific, Germany) connected to a Velos Pro-Orbitrap Elite

Figure 6. Influence of intranasally administered extracellular vesicles on expression of tyrosine hydroxylase in the substantia nigra
(SN) and striatum of 6-OHDA-treated rats. Representative photographs show rat striatum (A) and SN (C) at ×300 magnification. Density
measurements (a.u.) are shown in (B) for the striatum and in (D) for the SN. Inset of (C) depicts SN at higher magnification (×600). Values
are expressed as mean � SEM one-way ANOVA followed by Tukey’s post-test. *, p ≤ .05 versus aCSF+PBS; #, p ≤ .05 versus 6-OHDA+PBS.
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hybrid mass spectrometer (Thermo Fisher Scientific, Germany) with
nanoelectrospray ion source (Thermo Fisher Scientific, Germany).
The LC–MS/MS samples were separated using a 2-column setup
consisting of on a 2 cm C18-A1 trap column (Thermo Fisher Scien-
tific, Germany), followed by 10 cm C18-A2 analytical column
(Thermo Fisher Scientific, Germany). The linear separation gradi-
ent consisted of 5% buffer B in 5 minutes, 35% buffer B in
60 minutes, 80% buffer B in 5 minutes and 100% buffer B in
10 minutes at a flow rate of 0.3 μl/min (buffer A: 0.1% TFA in 1%
acetonitrile; buffer B: 0.1% TFA acid in 98% acetonitrile). Four
microliters of sample was injected per LC–MS/MS run and ana-
lyzed. Full MS scan was acquired with a resolution of 60,000 at
normal mass range in the orbitrap analyzer the method was set
to fragment the 20 most intense precursor ions with CID (energy
35). Data was acquired using the LTQ Tune software. Acquired
MS2 scans were searched against UniProt protein database
using the Sequest search algorithms in Thermo Proteome Dis-
coverer. Allowed mass error for the precursor ions was 15 ppm.
And for the fragment in 0.8 Da. A static residue modification
parameter was set for carbamidomethyl +57.021 Da (C) of cyste-
ine residue. Methionine oxidation was set as dynamic modification
+15.995 Da (M). Semitryptic peptides were allowed for scoring
maximum of 2 missed cleavages were considered. LC–MS/MS
analysis was performed at the Proteomics Unit, Institute of
Biotechnology, University of Helsinki, Finland.

Statistical Analysis

Behavioral and immunohistochemical results are presented as
the mean � SEM. The behavioral data from apomorphine rota-
tion test were analyzed by Student’s t test. CatWalk data were
analyzed by two-way analysis of variance (ANOVA) followed by
Fisher’s LSD post-test and quantitative immunohistochemical
data—by one-way ANOVA followed by Tukey’s post-test. Graph
Pad Prism software version 6.0 (Graph Pad Software, Inc.) was
used for data analysis. In all cases, a p value ≤.05 was taken as
the criterion of statistically significant difference.

RESULTS

Identification of EV Proteins by LC–MS/MS

Total proteins extracted from EVs were digested with trypsin,
and resultant peptides were subjected to LC–MS/MS analysis for
protein identification. In total, we identified 80 proteins in EVs
derived from SHED cultures (Supporting Information Table S1).
The majority of the identified proteins are included in the vesicle-
pedia database [25].

Intranasal Administration of EVs Significantly Improved
6-OHDA-Induced Impairment of Gait Parameters

We did not observe gait impairments in the CatWalk training on
day 7 after 6-OHDA injection (data not shown), whereas significant
impairments were observed on postlesion day 20. Gait analysis
showed significant interactions between groups in the following
parameters: stand (F7,184 = 15.12, p ≤ .0001, Fig. 3A), stride length
(F7,184 = 29.44, p ≤ .0001, Fig. 3B), step cycle (F7,184 = 13.09,
p ≤ .0001, Fig. 4A), and duty cycle (F7,184 = 10.99, p ≤ .0001,
Fig. 4B). Injection of 6-OHDA significantly prolonged the stand
time of all paws (p ≤ .001, Fig. 3A) compared with the control
group, whereas 6-OHDA group rats that received EVs treatment
demonstrated significantly shorter stand time of the right hind

(p ≤ .001) and left hind (p ≤ .001) paws (Fig. 3A). The 6-OHDA
injection significantly decreased the stride length of the right
front (p ≤ .01), right hind (p ≤ .05), left front (p ≤ .001), and left
hind (p ≤ .05) paws (Fig. 3B). In the EV-treated 6-OHDA rats,
stride length of the left front paw was significantly increased
compared with the 6-OHDA group (p ≤ .01, Fig. 3B). 6-OHDA
injection resulted in significantly longer step cycle of all paws
(p ≤ .001 for the right front, right hind, and left hind, p ≤ .05
for the left front) compared with the control group (Fig. 4A).
The 6-OHDA group rats showed an increase in the duty cycle of
the right front (p ≤ .01), right hind (p ≤ .05), and left hind
(p ≤ .01) paws (Fig. 4B). The EVs treatment reduced duty cycle
parameter of the right front (p ≤ .05), right hind (p ≤ .01), and
left hind (p ≤ .001) paws (Fig. 4B).

EVs Reduced Number of Apomorphine-Induced
Contralateral Rotations

In the apomorphine rotation test, EV-treated 6-OHDA group
rats demonstrated a significant decrease (2.2-fold) in the
number of contralateral rotations compared with the 6-OHDA
group (p = .02; Fig. 5).

Intranasal Administration of EVs Increased Expression
of TH in the SN and Striatum of 6-OHDA-Treated Rats

Significant differences in TH density were observed between
groups in the striatum (F3,12 = 21.33, p ≤ .0001) and SN (F3,14 =
5.8, p = .0086). Animals that received 6-OHDA injections demon-
strated significant (approximately twofold) decrease in TH density
in the striatum (p ≤ .05, Fig. 6A, 6B) and in the SN (p ≤ .01,
Fig. 6C, 6D) compared with the controls. Treatment of 6-OHDA-
injected rats with EVs increased TH density in the striatum
(p ≤ .05, Fig. 6A, 6B) and in the SN (p ≤ .05, Fig. 6C, 6D) to the
control levels. Administration of EVs per se significantly increased
TH density in the striatum (p ≤ .01, Fig. 6A, 6B) but did not alter
TH density in the SN.

DISCUSSION

PD is a progressive neurodegenerative disorder that starts from
the deterioration of the nigro-striatal system, brain structures
that control locomotion. This effect correlates with gait impair-
ments and postural instability—the hallmark symptoms of
PD. Numerous studies described strong correlation between
abnormalities of locomotor parameters and loss of midbrain
dopaminergic neurons [1, 26] that in turn, cause imbalance in
other neurotransmitter systems [27]. To evaluate locomotor
function in PD model we used rats with nigro-striatal lesion
caused by injection of 6-OHDA into the MFB [28, 29]. The MFB
model has been proven to be the most accurate to display
gait changes and dopaminergic system damage specific to PD
[28, 29]. According to the literature, motor impairments after
6-OHDA injection into the MFB can be detected as early as
1 week postlesion [26], fully develop after 3–4 weeks [21],
and after 6 weeks DA cell loss reaches 88.79% [1, 26].

In our study, using computerized and automated CatWalk
gait-analysis technique [21], we demonstrated that in 6-OHDA-
treated rats the tested gait parameters were not significantly
impaired on postlesion day 7, suggesting that nigro-striatal dam-
age has not reached critical level for manifestation of motor dys-
function. Nevertheless, on postlesion day 20, all tested gait
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parameters were significantly impaired in the 6-OHDA rats. These
impairments were considerably reversed in 6-OHDA rats treated
by EVs. The normalized stand (Fig. 3A), stride length (Fig. 3B),
and step cycle (Fig. 4A) analyses indicated improved coordina-
tion and posture; animals felt more stable to walk and took a
step significantly faster compared with 6-OHDA-lesion group
rats. In addition, a decreased duty cycle (Fig. 4B) showed how
freely animals crossed the walkway. Furthermore, EVs slowed
down numbers of 6-OHDA-induced contralateral rotations in
apomorphine test (Fig. 5). Importantly, motor improvements
correlated with the rescue of TH expression in the SN and stri-
atum of 6-OHDA-treated animals (Fig. 6). Therefore, we pro-
pose that EVs may protect dopamine-producing cells against
6-OHDA-induced neuronal death in the nigro-striatal pathways
and slow down the progression of PD. These findings suggest
that use of EVs during early clinical stages may represent a
promising strategy against PD.

Another interesting finding of this study is that EVs per se
increased (by approximately 30%) the expression of TH in the stri-
atum (Fig. 6B), but not in the SN (Fig. 6D). At the same time, no
influence of EVs on gait parameters in control group animals was
observed (Figs. 3 and 4). These findings indicate that EVs may dif-
ferentially affect dopaminergic neurons in the SN and their projec-
tions in the striatum, for example, by increased anterograde
axonal transport, or decreased TH degradation in axonal terminals.

What could be the mechanism behind neuroprotective
action of EVs? 6-OHDA-induced nigrostriatal damage is mainly
the result of massive oxidative stress [30]. After injection,
6-OHDA is taken into the dopaminergic neurons by dopamine
transporters, where it undergoes rapid auto-oxidation promot-
ing formation of large amounts of reactive oxygen species
[31]. 6-OHDA also accumulates in mitochondria and causes
respiratory inhibition by blocking electron respiratory chains
[32]. It is therefore plausible, that EVs exert their neuroprotec-
tive actions by reducing sensitivity of dopaminergic neurons
to the 6-OHDA-induced oxidative stress. However, surprisingly
little is known about antioxidative action of EVs in the CNS. In
this study, we have used proteomic approach to explore cargo
content of EVs (Supporting Information Tables S1 and S2).
Among identified proteins was Cu/Zn superoxide dismutase
1 (SOD1), an enzyme converting harmful free superoxide radi-
cals to molecular oxygen and hydrogen peroxide. It has been
demonstrated, that SOD1 overexpression can rescue dopami-
nergic cells loss and prevent locomotor disabilities in a Dro-
sophila model of PD [33]. EVs also contained antioxidant
proteins thioredoxin (TXN) and peroxiredoxin-6 (PRDX6) which
are important for the neutralization of hydrogen peroxide
(Supporting Information Table S1). Therefore delivery of Cu/Zn
SOD1, TXN and PRDX6 proteins by EVs may reduce sensitivity
of dopaminergic neurons to the 6-OHDA-induced oxidative
stress. Heat shock protein 70 (HSP70) is another regulator of
cellular redox environment [34]. HSP70 gene transfer to dopa-
mine neurons by adeno-associated virus (AAV) significantly
protected mouse dopaminergic system against 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegenera-
tion [35] Knockdown of HSP70 in dopaminergic neurons of the
SN caused neuronal death and multiple motor disturbances in
rats, whereas enhanced expression of inducible HSP70 reversed
neurodegeneration by increasing numbers of TH-positive neu-
rons and preventing motor impairments [36]. HSP70 is an ubiq-
uitous marker of EVs, therefore it could be important for the

neuroprotection against 6-OHDA-induced nigro-striatal destruc-
tion. Of note, EVs used in the present study were also
HSP70-positive (Fig. 1B). Proteomic analysis also revealed
the presence of dermcidin protein in EVs. (Supporting Infor-
mation Table S1). HSP70 has been shown to bind specifically
to amino-terminal sequence (CHEC-9) of dermcidin in vitro and
in cerebral cortex after oral delivery in rats [37]. Furthermore,
treatment with CHEC-9 increased HSP70-dependent dissolution
α-synuclein aggregates [37]. Therefore, we suggest that dermci-
din could potentially enhance therapeutic properties of exoso-
mal HSP70. Adaptor protein 14-3-3ζ was also identified in EVs
(Supporting Information Table S1). 14-3-3ζ binds and modulates
activity of the target proteins by recognition of a phosphoserine
or phosphothreonine motifs. Importantly, 14-3-3ζ is an endoge-
nous activator of TH in midbrain dopaminergic neurons [38].
14-3-3ζ may also reduce sensitivity of TH to the proteolysis [39]
thereby increasing overall protein expression levels. Therefore,
delivery of 14-3-3ζ proteins by EVs may be important for the
normalization of TH expression in striatum and SN. Brain acid
soluble protein 1 (BASP1) also known as CAP-23, or NAP-22 was
identified with high level of confidence in the EVs derived from
SHEDs (Supporting Information Table S1). BASP1 protein is regu-
lator of neurite outgrowth and nerve regeneration [40]. Recent
study demonstrated that calcineurin-dependent phosphorylation
of BASP1 is critical for the restoration of dopamine trafficking at
the presynaptic terminals and rescue of dopaminergic neurons in
a rat model of α-synuclein-induced toxicity [41]. Another group
of proteins identified in this study belong to a family of annexins.
EVs were positive for annexin 1 (ANXA1), ANXA2, ANXA5, and
ANXA6 (Supporting Information Table S1). Annexins are calcium-
regulated membrane binding proteins participating in a number
of cellular functions [42]. ANXA1 is known inhibitor of phospho-
lipase A2 pathway blocking eicosanoid production and suppres-
sing inflammatory response [43]. ANXA2 and ANXA5 have been
shown to protect neuronal and glial cells of primary neocortical
cultures against hypoxia and oxidative stress [44]. Therefore,
we suggest that transport of annexins into the injured nigros-
triatal tissues may represent an important mechanism of neu-
roprotective action of EVs. At present, it is unclear whether EVs
increased TH expression in SN and striatum directly by affecting
dopaminergic neurons, or indirectly via modulation of astroglial
and microglial responses. Recent study demonstrated, that
intranasally injected EVs accumulated in microglial cells and
reduced inflammation in the hippocampal areas after induction
of status epilepticus [10]. Another report showed that after
traumatic brain injury EVs decreased secretion of IL-1β by the
GFAP-positive astrocytes [11]. Therefore, accumulating evi-
dence points to the pleiotropic effects of the EVs. We propose
that EVs exert neuroprotective actions by simultaneous target-
ing of dopaminergic neurons and by possible modulation of
astroglial and possibly microglial responses to the injury of
nigro-striatal pathways.

CONCLUSION

We demonstrated, for the first time, the therapeutic efficacy of
intranasal administration of EVs derived from SHEDs in rat model
of PD induced by 6-OHDA intra-MFB lesion. We showed, that
EVs can effectively reverse gait impairments and normalize TH
expression in the SN and striatum. Our proof of concept study
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demonstrates that EVs could be potentially exploited for the
development of novel and minimally invasive therapies that delay
progression of the disease and mitigate disability in PD patients.
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