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Abstract

Context: High-residual C-peptide in longer-duration type 1 diabetes (T1D) is associated 
with fewer hypoglycemic events and reduced glycemic variability. Little is known about 
the impact of C-peptide close to diagnosis.
Objective: Using continuous glucose monitoring (CGM) data from a study of newly diag-
nosed adults with T1D, we aimed to explore if variation in C-peptide close to diagnosis 
influenced glycemic variability and risk of hypoglycemia.
Methods: We studied newly diagnosed adults with T1D who wore a Dexcom G4 CGM 
for 7 days as part of the Exercise in Type 1 Diabetes (EXTOD) study. We examined the 
relationship between peak stimulated C-peptide and glycemic metrics of variability and 
hypoglycemia for 36 CGM traces from 23 participants.
Results: For every 100 pmol/L-increase in peak C-peptide, the percentage of time spent 
in the range 3.9 to 10 mmol/L increased by 2.4% (95% CI, 0.5-4.3), P = .01) with a reduc-
tion in time spent at level 1 hyperglycemia (> 10  mmol/L) and level 2 hyperglycemia 
(> 13.9 mmol/L) by 2.6% (95% CI, –4.9 to –0.4, P = .02) and 1.3% (95% CI, –2.7 to –0.006, 
P = .04), respectively. Glucose levels were on average lower by 0.19 mmol/L (95% CI, –0.4 
to 0.02, P = .06) and SD reduced by 0.14 (95% CI, –0.3 to –0.02, P = .02). Hypoglycemia 
was not common in this group and no association was observed between time spent in 
hypoglycemia (P = .97) or hypoglycemic risk (P = .72). There was no association between 
peak C-peptide and insulin dose–adjusted glycated hemoglobin A1c (P = .45).
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Conclusion: C-peptide is associated with time spent in the normal glucose range and 
with less hyperglycemia, but not risk of hypoglycemia in newly diagnosed people with 
T1D.
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Residual endogenous insulin production, as measured 
by serum C-peptide, is invariably present at the time of 
diagnosis with type 1 diabetes (T1D) [1]. These C-peptide 
levels are variable and fall exponentially in the first 7 years 
[2-5], with those diagnosed in adulthood more likely to 
retain significant levels of C-peptide years post diagnosis 
[1, 6, 7]. Evidence originally from the Diabetes Control 
and Complications Trial [8-10] and more recent studies 
[11-15] indicates that persistent detectable C-peptide 
is associated with reduced frequency and severity of 
self-reported hypoglycemia and fewer long-term micro-
vascular complications. This has led to the adoption of 
mixed-meal stimulated C-peptide as a primary outcome 
measure of intervention trials that prevent or delay β-cell 
destruction [16].

Recently, increased use of flash glucose monitoring and 
continuous glucose monitoring (CGM) have highlighted 
the impact of persistent C-peptide on glycemic variability 
and hypoglycemia [12, 14, 15, 17-19]. Most data have 
been derived from studies of adults with long duration 
T1D or post islet transplantation where C-peptide per-
sistence is associated with lower glycated hemoglobin A1c 
(HbA1c) and/or insulin dose, fewer low-glucose events, 
decreased variation, and more time spent in range (3.9-
10 mmol/L) [11, 12, 14, 15, 19]. Less is known about the 
impact of C-peptide close to diagnosis. This is important 
because this has the potential to inform the most effective 
approach to supporting the newly diagnosed patient, 
and to identify early benefits of C-peptide preservation. 
A single study in newly diagnosed children demonstrated 
that the level of preserved peak C-peptide correlates with 
more time in the range of 3.9 to 7.8  mmol/L and less 
variability [18]. This study found no association between 
peak C-peptide and hypoglycemia (detected by CGM) in 
contrast to a study of adults with long-duration T1D, in 
which such an association was demonstrated [12]. No 
studies have looked at the impact of C-peptide on glucose 
control as measured by CGM in adults newly diagnosed 
with T1D.

In the present study we aimed to use CGM data from 
adults with recent-onset T1D to assess and describe the im-
pact of variation in endogenous insulin secretion close to 
diagnosis on glycemic variability and hypoglycemia.

Materials and Methods

We performed a secondary analysis of peak (90-minute) 
mixed-meal tolerance test (MMTT) C-peptide and glycemic 
metrics of variability and hypoglycemia from a Dexcom G4 
CGM measured as part of the Exercise in Type 1 Diabetes 
(EXTOD) Study (ISRCTN91388505) [20]. EXTOD was a 
pilot study undertaken to explore whether exercise can pre-
serve β-cell function in adults newly diagnosed with T1D. 
It aimed to assess uptake, intervention adherence, dropout 
rates, and the rate of loss of β-cell function in a usual care 
group and exercise intervention group over 12 months [20, 
21]. The EXTOD study was approved by the Birmingham 
East, North and Solihull Research Ethics Committee (No. 0/
H1206/4), UK. All participants provided written informed 
consent in accordance with the Declaration of Helsinki.

Study Cohort

Participants were recruited between November 2011 and 
January 2014, from 19 UK National Health Service (NHS) 
hospitals. Eligible participants had a clinical diagnosis 
of T1D, were older than 16 years at diagnosis, and were 
self‐administering their insulin as part of a multiple-dose 
(basal/bolus) injection regimen. Participants included in 
the EXTOD pilot study were adults aged 18 to 60 years, 
diagnosed with T1D for less than 3 months, had C‐pep-
tide greater than 200 pmol/L at 90 minutes following meal 
stimulation, had controlled blood pressure, were not preg-
nant or planning pregnancy, and were able to increase 
exercise levels and not on therapy that affect heart rate 
(β-blocker, calcium channel antagonist).

A total of 507 adults with new-onset T1D were iden-
tified; of these 214 were assessed for eligibility for the 
EXTOD pilot study. No participants were excluded from 
taking part because of low C-peptide. Eighty-six were eli-
gible for face-to-face screening; of these, 15 participants 
were recruited into a distinct but linked study exploring 
barriers to exercise in newly diagnosed T1D, and 58 par-
ticipants were randomly assigned to control (usual care) 
or intervention (exercise consultation every month + usual 
care) in a 1:1 ratio for 12 months (Fig. 1).

In this study we performed a secondary analysis of peak 
MMTT C-peptide and glycemic metrics of variability and 
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hypoglycemia from 26 eligible participants of the EXTOD 
study who had consented to wearing a CGM at any study 
time point. We included 23 participants in this secondary 
analysis with defined T1D by 1 or more autoantibodies or 
a T1D genetic risk score (T1D-GRS) greater than the 50th 
percentile for T1D, and a body mass index (BMI) of less 
than 30, a validated CGM trace, and a 90-minute MMTT 
C-peptide matched to the study time point of CGM wear. 
A total of 36 CGM traces (4101 hours) were analyzed from 
23 participants (see Fig. 1).

Procedures

β-Cell function was assessed at baseline (pre randomiza-
tion), and at 6 and 12 months post randomization using 
a 240-mL Fortisip MMTT with blood taken for C‐pep-
tide at –10, 0, 15, 30, 60, 90, and 120 minutes. Blood was 

immediately centrifuged and the plasma stored at –80 °C 
until analysis. Patients at each study visit had an option 
to wear a Dexcom G4 CGM with the aim of assessing the 
feasibility of using this as an outcome. The CGM was worn 
blinded with participants using usual care to monitor their 
blood glucose during the study. C‐peptide was measured 
using a direct electrochemiluminescence immunoassay at 
the Academic Department of Blood Sciences at the Royal 
Devon and Exeter NHS Foundation Trust as previously de-
scribed [22]. The limit of the C‐peptide assay is 3.3 pmol/L. 
Antibodies were measured at the Research Laboratories 
of the School of Clinical Sciences, University of Bristol 
(Southmead Hospital, Bristol, UK). Insulin doses were used 
in calculation of the insulin dose–adjusted HbA1c (IDAA1c) 
as previously described [23]. We generated a T1D-GRS 
using a KASP genotyping assay (LGC Genomics) of 10 
single-nucleotide variations as previously described [24].

Figure 1. Flow of participants included in this secondary analysis and breakdown of number of corresponding continuous glucose monitoring (CGM) 
traces analyzed by study time point. *Calibration is dependent on the sensor used in this study (Dexcom G4). Calibration excluded 1) whole traces 
if 2 blood glucose calibrations were not completed at the start of sensor wearing, 2) a day of wear if the mean absolute relative difference of the 
sensor glucose and blood glucose calibration that day is greater than 20% or if fewer than 2 blood glucose calibrations were completed that day. 
†Breakdown of CGM traces by study time point: baseline n = 21 CGM traces, 6 months n = 9 CGM traces, 12 months n = 6 CGM traces.
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Continuous Glucose Monitoring Processing

All CGM processing and analysis were performed in R stat-
istical software version 3.6.1 (Foundation for Statistical 
Computing). Forty CGM traces from 26 participants went 
through processing. The CGM was expected to be worn for 
a minimum of 7 days, with the majority of the participants 
meeting this goal, with data cut off at 8 days if participants 
exceeded 7 days. As part of the processing, we calibrated 
CGM traces against an updated self-monitoring of blood 
glucose value every 12 hours as required by the Dexcom G4 
sensor. Calibration excluded 1) whole traces if 2 blood glu-
cose calibrations were not completed at the start of sensor 
wear, which are required to start the Dexcom G4 sensor 
(n = 1); 2) a whole day of wear from traces if the mean ab-
solute relative difference (MARD) of blood glucose calibra-
tion reading and sensor glucose reading was greater than 
20%, or if fewer than 2 blood glucoses calibrations were 
completed that particular day. The majority of traces after 
calibration had more than 95% of data remaining. Traces 
from participants were excluded if 12 hours or less of data 
remained after calibration (n = 2). We generated CGM-
derived metrics of glycemic variability and hypoglycemia 
in accordance with, and using definitions of hypoglycemic/
hyperglycemic episodes from, the International Consensus 
on Use of Continuous Glucose Monitoring [25]. We valid-
ated the CGM processing and analysis against results from 
manual processing completed by 2 individuals.

Statistical Analysis

Statistical analysis was performed in R statistical soft-
ware version 3.6.1 (Foundation for Statistical Computing) 
using the nlme and afex packages. We assessed the associ-
ation between MMTT C-peptide level and the consensus 
glycemic metrics of variability and hypoglycemia using 
repeated-measures, mixed-effects models, with glycemic 
metric as the outcome, C-peptide level (as picomole per 
liter [pmol/L]) as the predictor, with patient identification 
as the random effect. We report the modeling coefficients 
for 100-pmol/L change in C-peptide for clinical interpret-
ation. Residual plots were examined for normality to en-
sure model assumptions were met. Significance was tested 
at the level of .05. Many clinical variables were not nor-
mally distributed, so data are presented as median and 
interquartile range (IQR).

Results

Participants and Characteristics

Twenty-one participants’ first point of CGM wear was at 
baseline, and 2 participants’ first point of CGM wear was 

at 6  months post trial randomization. Twenty-one parti-
cipants wore a CGM at baseline, 10 at 6  months, and 6 
at 12 months post trial randomization, totaling 36 CGM 
traces with a study time point–matched MMTT 90-minute 
C-peptide (Fig. 1). One participant was not randomly as-
signed in the primary EXTOD study. The characteristics of 
these participants at first wear of CGM are shown in Table 1. 
Participants had a median duration of disease of 2.4 months 
(IQR, 1.2-2.4 months), with the majority having a duration 
of symptoms of less than 1 month (median [IQR] 8 days 
[range, 4-12  days] with 14% presenting in diabetic keto-
acidosis. Participants had a median peak MMTT C-peptide 
of 865 pmol/L (IQR, 684-1120 pmol/L) and an HbA1c of 
67.5  mmol/mol (IQR, 48.2-76.2  mmol/mol) at their first 
wearing of CGM. Participants were all of White European 
descent with a BMI of (median [IQR] 23.5 [22.2-26.4]) and 
median insulin dose of 0.25 U/kg (IQR, 0.15-0.45 U/kg). 
Baseline characteristics of our sample were similar to the 
remaining participants recruited to the EXTOD study [20].

Table 1. Characteristics of participants included in 

analysis from the Exercise in Type 1 Diabetes pilot 

study at first wearing of continuous glucose monitoring 

(N = 23 participants)

N = 23a

Age, y 27.2 (23.4-36.5)
Duration of diabetes, month 2.40 (1.20-2.40)
Sex
 Female 10 (44%)
 Male 13 (57%)
Ethnic origin
 White British 22 (96%)
 Other White background 1 (4.4%)
BMI 23.5 (22.2-26.4)
HbA1c, mmol/mol 67.5 (48.2-76.2)
Insulin dose, U/kg 0.25 (0.15-0.45)
Peak (90 min) MMTT C-peptide, pmol/L 865 (684-1120)
T1D-GRS 0.64 (0.55-0.76)
Presentation of diabetes
 Duration of symptoms pre diagnosis, d 8.00 (4.00-12.0)
 DKA 3 (14%)
 Hyperglycemia without acidosis 19 (86%)
GAD-positive titer 19 (83%)
IA 2A–positive titer 13 (57%)
ZnT8-positive titer 12 (52%)
Randomization arm
 Usual care 9 (39%)
 Intervention 13 (57%)
 Not randomly assigned 1 (4%)

Abbreviations: BMI, body mass index; DKA, diabetic ketoacidosis; GAD, glu-
tamic acid decarboxylase; HbA1c, glycated hemoglobin A1c; MMTT, mixed-
meal tolerance test; T1D-GRS, type 1 diabetes genetic risk score.
aData presented as median (25th-75th), number (%).
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Glycemic Characteristics

The glycemic characteristics of these participants during 
each time of CGM wear are shown in Table 2. Most partici-
pants had tight glucose control, with median percentage of 
time spent in the range of 3.9 to 10 mmol/L of 68% (IQR, 
55%-76% mmol/L). Average glucose was 8.3 mmol/L (me-
dian [IQR], 7.1-9.3 mmol/L) with low levels of hypogly-
cemia (percentage of time spent in hypoglycemia; median 
[IQR], 0.0% [0.0%-0.6%]), little to no time in level 1 low 
events (percentage of time spent 3-< 3.9 mmol/L; median 
[IQR], 0.6% [0.2%-1.7%]), and even fewer level 2 low 
events (percentage of time spent < 3 mmol/l; median [IQR], 
0.0% [0.0%-1.0%]). Overall, glycemia was considered 
stable (< 36%) [26] in these participants (coefficient of 
variation; median [IQR], 32% [26%-36%]).

C-Peptide at Diagnosis Is Associated With Less 
Glucose Variability, More Time in Range, and Less 
Hyperglycemia

For every 100-pmol/L increase in peak C-peptide, glucose 
levels were on average lower by 0.2 mmol/L (95% CI, –0.4 

to 0.02, P = .06) (Fig. 2A, Table 3). In addition, there was 
a reduced SD in glucose of 0.1 (95% CI, –0.3 to –0.02, 
P = .02) (Fig. 2B, see Table 3). Percentage of time spent in 
the range of 3.9 to 10 mmol/L increased by 2.4% (95% 
CI, 0.5-4.3, P = .01) (Fig. 2C, see Table 3) with a reduc-
tion in the amount of time (percentage) spent at level 1 
(> 10 mmol/L) elevated glucose levels by 2.6% (95% CI, 
–4.9 to –0.4, P = .02) (Fig. 2D, see Table 3) and level 2 
(> 13.9 mmol/l) elevated glucose levels by 1.3% (95% CI, 
–2.7 to –0.006], P = .04) (see Table 3). Coefficients for all 
metrics of glycemic variability are outlined in Table 3, and 
all followed the same direction in a reduction of variability 
for every 100-pmol/L change in C-peptide.

C-Peptide at Diagnosis Is not Associated With 
Hypoglycemia

In this cohort hypoglycemic events were rare during all 
times of CGM wear (Fig. 3, see Table 2). There was no as-
sociation with peak C-peptide and percentage time spent 
in hypoglycemic ranges (P = .97) or hypoglycemic risk, as 
measured by low blood glucose index (P = .72) (Fig. 3, see 
Table 3).

There was also no association between peak C-peptide 
and insulin dose (P = .71), HbA1c (P = .36), or IDAA1c, 
P = .45) (Table 4).

Discussion

We report that higher levels of C-peptide at diagnosis are 
associated with lower glycemic variability, more time in 
range, and less hyperglycemia, but not with hypoglycemia 
or HbA1c. Variations in the high levels of residual C-peptide 
present at the time of diagnosis with T1D are associated 
with key clinical outcomes and could potentially inform the 
most effective approach to supporting the newly diagnosed 
patient.

Our findings support and enhance the understanding 
of the benefits of preserved C-peptide in patients with 
newly diagnosed T1D. Our results are consistent with 
the one other study in newly diagnosed participants by 
Buckingham et al comparing CGM-measured glucose vari-
ability with MMTT C-peptide; however, Buckingham’s 
study was conducted in a largely pediatric cohort and did 
not compare C-peptide with CGM metrics as the primary 
analysis outcome [18]. The study by Buckingham et al also 
found lower glucose variability is associated with higher 
levels of C-peptide, with increased time spent in range (3.9-
7.8 mmol/L) and decreased variation for higher levels of 
C-peptide, with no associations demonstrated with hypogly-
cemia. Both studies estimated C-peptide at peak following 

Table 2. Metrics of glycemic variability and hypoglycemia 

for participants for continuous glucose monitoring (CGM) 

wearing at any study time point (N = 36 CGM traces, 23 

participants)

N = 36a

Percentage expected wear 97.5 (83.9-105)
Percentage of good data remaining post 

calibration
97.4 (92.7-100)

No. of days of good data 6.35 (5.26-7.18)
Average glucose, mmol/L 8.27 (7.12-9.30)
SD, mmol/L 2.60 (1.97-3.42)
CV, % 32.0 (26.0-36.0)
MAGE 4.99 (4.02-6.63)
Estimated HbA1c, mmol/mol 51.4 (43.2-57.7)
Time spent > 10 mmol/L, level 1 elevated, % 22.9 (9.43-37.3)
Time spent level 1 hyperglycemia, 

> 10 mmol/L ≥ 15 min, %
25.2 (9.56-38.5)

Time spent > 13.9 mmol/L, level 2 elevated, % 5.98 (1.59-13.2)
Time spent level 2 hyperglycemia, 

> 13.9 mmol/L ≥ 15 min, %
2.62 (0.28-8.70)

HBGI 7.43 (3.28-10.4)
Time spent 3.9-10 mmol/L, % 68.3 (55.1-76.2)
Time spent 3-< 3.9 mmol/L, level 1 low, % 0.63 (0.23-1.70)
Time spent < 3 mmol/L, level 2 low, % 0.00 (0.00-1.00)
Time spent in hypoglycemia, % 0.00 (0.00-0.58)
LBGI 1.96 (1.28-2.64)

Abbreviations: CV, coefficient of variation; HbA1c, glycated hemoglobin A1c; 
HBGI, high blood glucose index; LBGI, low blood glucose index; MAGE, 
mean amplitude glycemic excursion.
aData presented as median (25th-75th).
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Table 3. Associations from repeated-measures, mixed-effects regression modeling of glycemic variability and hypoglycemia 

metrics with peak mixed-meal tolerance test C-peptide (N = 36 continuous glucose monitoring traces, 23 participants)

Coefficient for 100 pmol/L change in C-peptide, N = 36a Pb

Average glucose, mmol/L –0.19 (–0.39 to 0.015) .06
SD, mmol/L –0.14 (–0.25 to –0.023) .02
CV, % –1.00 (–2.16 to 0.15) .08
MAGE –0.34 (–0.63 to –0.050) .02
Estimated HbA1c, mmol/mol –0.14 (–0.25 to –0.023) .06
Time spent > 10 mmol/L, level 1 elevated, % –2.64 (–4.87 to –0.41) .02
Time spent level 1 hyperglycemia, > 10 mmol/L excursion ≥ 15 min, % –3.53 (–6.64 to –0.42) .02
Time spent > 13.9 mmol/L, level 2 elevated, % –1.33 (–2.66 to –0.0057) .04
Time spent level 2 hyperglycemia, > 13.9 mmol/L excursion ≥ 15 min, % 0.92 (–2.02 to 0.19) .09
HBGI –0.71 (–1.27 to –0.14) .01
Time spent 3.9-10 mmol/L, % 2.39 (0.51 to 4.26) .01
Time spent 3-< 3.9 mmol/L, level 1 low, % –0.015 (–0.22 to 0.19) .88
Time spent < 3 mmol/L, level 2 low, % –0.028 (–0.17 to 0.11) .66
Time spent in hypoglycemia, % 0.0052 (–0.27 to 0.26) .97
LBGI –0.062 (–0.41 to 0.29) .72

Abbreviations: CV, coefficient of variation; HbA1c, glycated hemoglobin A1c; HBGI, high blood glucose index; LBGI, low blood glucose index; MAGE, mean am-
plitude glycemic excursion.
aData presented as coefficient (95% CI).
bKenward-Roger approximation for degrees of freedom.

Figure 2. Distribution of 4 key glycemic metrics: A, average glucose; B, SD; C, percentage of time in range 3.9 to 10 mmol/L; and D, percentage of 
time spent at greater than 10 mmol/L with peak mixed-meal tolerance test (MMTT) C-peptide. The line represents repeated-measures, mixed-effects 
regression modeling between glycemic metric and peak MMTT C-peptide with 95% CI shown as a shaded bar.
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meal stimulation with similar values in the range of 100 to 
1500 pmol/L. We did not find an association of C-peptide 
with HbA1c and insulin dose in our study, in contrast with 
the study by Buckingham and colleagues, as well as studies 
in new-onset T1D [27] in which immunomodulation has 
resulted in some preservation in C-peptide being associated 
with lower HbA1c and insulin doses. It is possible that the 
lower numbers in our study prevented us from observing 
an impact on HbA1c and insulin dose; another possibility 
is that alterations of HbA1c and insulin dose may be influ-
enced by study protocol or clinical care.

Studies exploring the benefits of preserved C-peptide in 
long-duration T1D demonstrate a similar impact on time in 
range and glucose variability, but also commonly show pro-
tection from hypoglycemia [11, 12, 28] in addition to lower 
HbA1c [13, 15] and lower insulin doses [11]. However, we 
and others [18] do not find an association between vari-
ations in C-peptide level present at diagnosis and hypogly-
cemia. It is possible that the C-peptide levels at diagnosis, 

in addition to other factors related to a short duration of 
T1D, may offer more protection from hypoglycemia than 
in long-duration T1D, when endogenous insulin secretion 
is much lower or absent.

We therefore propose that the impact on glucose con-
trol associated with preserved C-peptide appears to vary 
across duration of disease in people with T1D (Fig. 4). 
Early after diagnosis when stimulated C-peptide values can 
reach higher than 1500 pmol/L, relatively higher levels of 
C-peptide reduce hyperglycemia and glucose variability, 
but not hypoglycemia. Later in the natural history, when 
stimulated C-peptide values are around 500 pmol/L or 
lower, higher values in this range reduce hypoglycemia and 
potentially also HbA1c and insulin dose. The benefits of less 
glycemic variability and greater time in range are present 
across the spectrum. Furthermore, preserved C-peptide in 
longer-duration T1D is associated, presumably through 
consistent tight glucose control, with fewer microvascular 
complications [5, 13]. Our study, combined with others 

Figure 3. Distribution of hypoglycemic metrics: percentage of time spent in A, hypoglycemia, and B, low blood glucose index (LBGI) with peak 
mixed-meal tolerance test (MMTT) C-peptide. The line represents repeated-measures, mixed-effects regression modeling between glycemic metric 
and peak MMTT C-peptide with 95% CI shown as a shaded bar.

Figure 4. Summary of the impact variation in C-peptide level has 
on glucose control in people with type 1 diabetes (T1D), across dia-
betes duration. In newly diagnosed T1D, C-peptide variation impacts 
do not affect hypoglycemia, as demonstrated in longer-duration T1D. 
C-peptide variation affects glycemic variability near to diagnosis of T1D 
and at long-duration disease.

Table 4. Associations for clinical measures with peak mixed-

meal tolerance test C-peptide (N = 36 observations, 23 

participants)

Coefficient for 100 pmol/L change in 
C-peptide, N = 36a

Pb

IDAA1c
c –0.091 (–0.34 to 0.16) .45

Insulin dose –0.005 (–0.033 to 0.023) .71
HbA1c

c, mmol/mol –1.02 (–3.37 to 1.32) .36

Abbreviations: HbA1c, glycated hemoglobin A1c; IDAA1c, and insulin dose–
adjusted glycated hemoglobin A1c.
aData presented as coefficient (95% CI).
bKenward-Roger approximation for degrees of freedom.
cMissing for one participant (one observation).
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[18], highlights that hypoglycemia is rare around the time 
of diagnosis.

The strengths of this study include the careful cleaning 
and interpretation of the CGM data. To ensure a high 
standard of accuracy in our CGM data for analysis, we 
developed in-house CGM processing that compared the 
MARD of each self-monitored blood glucose calibration 
and the 15-minute later CGM sensor glucose reading, since 
intestinal glucose trails blood glucose by 5 to 20 minutes 
[29-31]. We used the assumption that an entire day of glu-
cose readings had a systematic error if the self-monitored 
blood glucose calibration reading and CGM sensor glu-
cose reading had a MARD of greater than 20%, and there-
fore removed it from the CGM trace before analysis and 
generation of CGM-derived glycemic metrics. We devel-
oped in-house CGM analysis to generate these metrics in 
accordance with the International Consensus on Use of 
Continuous Glucose Monitoring [25]. Our in-house pro-
cessing and analysis were validated against manual pro-
cessing and analysis conducted by 2 people. Furthermore, 
the CGM data obtained from the participants were blinded 
at the time of wear, ensuring measured sensor glucose was 
not highly influenced by patient reactivity. Also, MMTT-
measured C-peptide, obtained according to protocol, 
offered reduced variation of C-peptide levels, which is 
more likely with randomly measured C-peptide. Since mis-
classification of diabetes is common at diagnosis, occurring 
in 7% to 15% of cases [32], we used a specific criteria for 
defining T1D that included clinical diagnosis and either 
positive autoantibodies or T1D-GRS in addition to BMI in 
our definition.

A notable limitation of this study is that this is a retro-
spective analysis of data collected as part of a random-
ized controlled trial, using CGM data and peak MMTT 
C-peptide from participants involved in the EXTOD study, 
a randomized exercise trial. Participants who enroll in ex-
ercise trials may not be wholly representative of the T1D 
population because of their levels of activity and the effect 
exercise may have on blood glucose. This may have af-
fected the average glucose metrics that we demonstrate in 
this cohort. Our sample size was limited to the consent rate 
to CGM monitoring during the study, and a high dropout 
rate of CGM monitoring over the 12 months of study. This 
may have affected the power to detect associations with 
C-peptide and CGM metrics that describe glycemic vari-
ability. Nevertheless, it is reassuring that we observed the 
same directional associations in all CGM metrics that de-
scribe glycemic variability and hyperglycemia with peak 
MMTT C-peptide, with no associations observed with 
the CGM metrics that describe hypoglycemia and hypo-
glycemia risk. As we previously highlighted, the higher 
C-peptide levels present close to diagnosis may exceed a 

threshold needed to protect from hypoglycemia (minimal 
islet transplant function has been shown to protect from 
hypoglycemia [17]), which would explain the low rate of 
hypoglycemia commonly found post diagnosis and the lack 
of association found with postdiagnosis C-peptide by us 
and others.

Notwithstanding these limitations, our findings are im-
portant because they suggest that the benefits of C-peptide 
retention have a measurable impact from the point of diag-
nosis for a person with T1D. Our findings also highlight 
that metabolic or physiological differences between indi-
viduals may have more of an impact on glycemic variability 
than previously thought, with C-peptide playing a part in 
defining the manifestation of their T1D.

As we propose in Fig. 4, our results add to findings 
from previous studies of longer-duration diabetes, of-
fering a more complete picture of the impact that variation 
in C-peptide levels has on glucose control in people with 
T1D. We suggest that managing newly diagnosed patients, 
informed by a current estimate of their C-peptide reserve, 
will influence how they are managed. Those with a lower 
C-peptide are likely to experience less time in glucose 
range, greater glucose variability, and more hyperglycemia 
and would be earmarked for earlier and more intensive 
support. Diabetes is currently the only endocrine condition 
for which the hormone in question is not measured as part 
of routine care. We suggest there is now increasing evidence 
to start doing so.
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