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Diabetic nephropathy (DN) is a severe complication of diabetes and serves as the leading cause of chronic renal failure. In the past
decades, angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin II receptor blockers (ARBs) based first-line therapy can
slow but cannot stop the progression of DN, which urgently requests the innovation of therapeutic strategies. Thiazolidinediones
(TZDs), the synthetic exogenous ligands of nuclear receptor peroxisome proliferator-activated receptor-𝛾 (PPAR𝛾), had been
thought to be a promising candidate for strengthening the therapy of DN. However, the severe adverse effects including fluid
retention, cardiovascular complications, and bone loss greatly limited their use in clinic. Recently, numerous novel PPAR𝛾 agonists
involving the endogenous PPAR𝛾 ligands and selective PPAR𝛾modulators (SPPARMs) are emerging as the promising candidates
of the next generation of antidiabetic drugs instead of TZDs. Due to the higher selectivity of these novel PPAR𝛾 agonists on the
regulation of the antidiabetes-associated genes than that of the side effect-associated genes, they present fewer adverse effects than
TZDs. The present review was undertaken to address the advancements and the therapeutic potential of these newly developed
PPAR𝛾 agonists in dealing with diabetic kidney disease. At the same time, the new insights into the therapeutic strategies of DN
based on the PPAR𝛾 agonists were fully addressed.

1. Introduction

PPARs are nuclear receptors consisting of three PPAR iso-
forms of PPAR𝛼, PPAR𝛽/𝛿, and PPAR𝛾. In the past decades,
a number of studies demonstrated the critical role of PPARs
in the regulation of metabolic homeostasis, inflammation,
cell differentiation and proliferation, fluid balance, and so on
[1–3]. Among three PPARs, PPAR𝛾 was best characterized
and its high-affinity ligands of TZDs were widely used in
clinic for the treatment of type-2 diabetes mellitus (T2DM).
PPAR𝛾 is expressed in various organswith themost abundant
expression in adipose tissue. It heterodimerizes with retinoid
X receptor (RXR) and then binds to PPAR responsive element
(PPRE) to regulate a number of target genes. TZDs including
rosiglitazone, pioglitazone, and troglitazone are synthetic

exogenous PPAR𝛾 ligands with high efficacy in treating
T2DM via enhancing the insulin sensitivity [3, 4]. Besides
the potent role of TZDs in regulating hyperglycemia, they
also effectively protect the kidneys from diabetic injury inde-
pendently of its antihyperglycemia action [5–7]. Moreover,
TZDs also displayed their capability of protecting the kidneys
against other injuries beyond diabetes [8–11]. Although these
beneficial effects of TZDs are so attractive and valuable, the
severe side effects including fluid retention, cardiovascular
complications, hepatotoxicity, and bone fractures greatly
limited their use in clinic [12–14]. Interestingly, recent reports
related to nitro-oleic acid, an endogenous PPAR𝛾 ligand,
demonstrated a potent renal-protective role under diabetic
and nondiabetic situations possibly via PPAR𝛾 dependent
and independent mechanisms with no obvious side effects
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seen in TZDs [15–20]. More importantly, numerous selective
PPAR𝛾 agonists, also termed as selective PPAR𝛾 modulators
(SPPAR𝛾Ms), are being generated and some of them are
under the clinical trials for the treatment of T2DM [12, 21].
The present review was undertaken to introduce and analyze
the role of the exogenous and endogenous PPAR𝛾 agonists
and the SPPAR𝛾Ms in the protection of DN. Meanwhile,
the therapeutic strategies via manipulating the use of various
PPAR𝛾 agonists will be fully addressed.

2. Role of PPAR𝛾 in Diabetic Podocyte
Injury and Proteinuria

With the profound increase of obesity, the prevalence of
T2DM is rapidly rising worldwide. Among the patients with
T2DM, about 10% of them developed DN [22]. In North
America and Europe, DN serves as the leading cause of end-
stage renal disease (ESRD). Proteinuria in DN patients is not
only an established marker of DN progression, but it also
plays a causative role in promoting inflammation and tubu-
lointerstitial fibrosis. The occurrence of proteinuria in DN is
due to the excessive passage of protein into the urine through
the impaired glomerular filtration barrier (GFB) which is
formed by endothelial cells, glomerular basement membrane
(GBM), and podocytes. Accumulating evidence indicated the
extreme importance of podocytopathy in diabetic glomerular
damage [23]. The pathological manifestations of podocy-
topathy in DN include the cellular hypertrophy, foot process
effacement, apoptosis, and detachment from the GBM [24,
25]. Glycemic control and pharmacological intervention
using the ACEIs and/or ARBs only slow but cannot stop the
DN progression.Therefore, to findmore effective therapeutic
strategies in countering the diabetes-associated renal injury
is of vital importance and urgency.

PPAR𝛾 is located in all three types of glomerular cells
with a prominent expression in podocytes [26, 27]. Several
studies including a recent meta-analysis showed that Ala12
variant of PPAR𝛾2 is significantly associated with a reduced
risk of albuminuria among patients with type-2 diabetes [28].
These results highly suggested a functional role of PPAR𝛾 in
glomeruli, particularly in the podocytes. In agreement with
this concept, numerous reports including a meta-analysis of
15 original clinical studies involving 2860 patients convinc-
ingly demonstrated the significant efficacy of rosiglitazone or
pioglitazone on diabetic proteinuria [5].

In addition to the clinical evidence mentioned above,
numerous basic studies performed in diabetic animals and
in vitro cells also proved the beneficial action of PPAR𝛾 in
diabetic kidney disease [6, 7, 26, 27, 29]. Although the role
of PPAR𝛾 in treating diabetic kidney disease was extensively
investigated since PPAR𝛾 was discovered, the chief mecha-
nism is roughly focused on the inhibition of inflammation
and oxidative stress [8] with poorly understood molecular
mechanisms.

A number of in vivo and in vitro studies demonstrated
that PPAR𝛾 benefits all kinds of kidney cells including

the glomerular mesangial cells, endothelial cells, podocytes,
and tubular epithelial cells under the diabetic condition
[30] with more research emphasis on the podocytes [6, 7,
27, 31, 32]. The possible podocyte-protective mechanisms
shown by literatures include the reversing of G1-phase cell
circle [27], blockade of stretch-induced AT1 upregulation
[7], and antiapoptosis effect [31, 32]. Recently, some reports
elucidated the dysfunction of mitochondria in podocytes
under the hyperglycemic status [33, 34]. It is known that
dysfunctional mitochondria will generate excessive reactive
oxygen species (ROS) and release the proapoptotic proteins,
which subsequently leads to the cell and tissue damage.
Thus, we can reasonably speculate that diabetes-associated
mitochondria dysfunction in kidney, especially in podocytes,
may contribute to the occurrence and the progression of
DN. Moreover, Zhu et al. reported that PPAR𝛾 activation
remarkably improved themitochondria dysfunction induced
by aldosterone in podocytes [35].These novel findings highly
suggested that a mitochondria-protective effect may serve as
an important mechanism of PPAR𝛾 in opposing the diabetic
podocyte injury. However, a direct link between the PPAR𝛾
and mitochondria function in podocytes and other kidney
cells under the diabetic condition does need a great deal of
experimental evidence.

3. Limitations of TZDs in Treatment of DN

Although there is much evidence from clinical trials and
basic studies pronounced the protective role of TZDs in
DN, the severe side effects greatly restricted their use in
patients. Troglitazone had to quit the market owing to the
severe hepatotoxicity. Rosiglitazone has been found to be
significantly associated with the increased risk of cardiovas-
cular complications including heart failure and myocardial
infarction leading to the restriction or withdrawal from the
markets. As for the pioglitazone, it has been thought to have
a different safety profile with no increase of cardiovascular
disease as compared with other TZDs [36]. But, it still
conserves the effects of bodyweight gain, bone loss, edema,
and fluid retention which may increase the incidence of
congestive heart failure [36]. Besides an established role of
renal collecting duct PPAR𝛾 in TZDs-induced fluid retention
[37, 38], PPAR𝛾 in the vasculature also played a crucial role
in mediating the fluid retaining effect [39, 40]. All these
findings delineated amechanistic picture of PPAR𝛾-mediated
fluid retention and also suggested some potential targets
to overcome the TZD-induced fluid volume expansion. In
addition to the fluid retaining effect, TZDs also cause the
cardiomyocytes hypertrophy and coronary artery lesions
with elusive mechanisms [41]. In general, TZD-induced
cardiomyocytes hypertrophy was thought to possibly occur
through the fluid retention-dependent and fluid retention-
independent mechanisms [41]. Collectively, fluid retention
and the detrimental effect of TZDs on the cardiomyocytes
and cardiovascular system have to be avoided or minimized
in the development of novel PPAR𝛾 agonists or therapeutic
strategies.
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4. Strategies Based on Minimizing Adverse
Effects of PPAR𝛾 Agonists

4.1. Adjustment of the Therapeutic Dose of TZDs. Evidence
from studies demonstrated the dose-dependent response of
TZDs in antagonizing hyperglycemia of T2DM [42, 43].
Accordingly, the side effects including fluid retention and
bodyweight gainwere also promotedwith the dose increasing
[42, 43]. Theoretically, it is possible to optimize a lower
dose of TZDs with significant protection of DN without
severe adverse effects seen in higher dose of TZDs. Certainly
this strategy may sacrifice some glucose-lowering efficacy
of TZDs. In agreement with this notion, a low dose of
rosiglitazone at 1mg/kg/day for 7 weeks in STZ diabetic
rats significantly lowered the proteinuria and attenuated
pathological changes in glomeruli in parallel with reduced
renal oxidative stress [44]. Unfortunately, the authors in this
report did not show the evidence of TZD-related side effects
such as bodyweight gain, Hct change, and plasma volume
status [44]. To further validate this hypothesis, the extensive
animal studies and clinical trials need to be performed in the
future.

4.2. Endogenous PPAR𝛾 Agonists Nitro-Oleic Acid for the
Treatment of DN. Endogenous ligands for PPAR𝛾 include
unsaturated and oxidized fatty acids, nitrated fatty acids,
eicosanoids, and prostaglandins [45]. 15-Deoxy-delta12, 14-
prostaglandin J2 (15d-PGJ2), and nitro-oleic acid are well-
recognized endogenous PPAR𝛾 ligands and received atten-
tion from a number of studies [15–19, 46, 47]. Particularly,
the effect of nitro-oleic acid on diabetes and diabetic kidney
injury was evaluated [17, 47]. Infusion of nitro-oleic acid
normalized the hyperglycemia in a type-2 diabetic model of
db/db mice without affecting the bodyweight, an important
indicator of fluid retention and fat accumulation [47]. A
separate study fromour group also found that nitro-oleic acid
significantly attenuated proteinuria and metabolic syndrome
in diabetic Zucker rats without affecting Hct, a widely used
index of fluid retention in TZD models [19]. Most recently,
our group gave evidence that nitro-oleic acid in combination
with losartan, one of the ARBs, significantly ameliorated
proteinuria and podocyte injury in diabetic db/db mice pos-
sibly via suppressing oxidative stress and inflammation [17].
In contrast, losartan alone failed to display the therapeutic
efficacy during two weeks of treatment. All these results
highly suggested that endogenous PPAR𝛾 agonists may play a
similar role as TZDs in protectingDNwith no significant side
effects shown by TZDs. Although nitro-oleic acid definitely
activates PPAR𝛾 [47], the detailed mechanism related to the
beneficial role of nitro-oleic acid in opposing the diabetic
kidney injury remains uncertain due to its nonselective
activation of PPAR [48]. Furthermore, additional animal
studies and clinical trials are needed to fully evaluate the
safety and efficacy of nitro-oleic acid in treating DN, as well
as hyperglycemia.

4.3. Selective PPAR𝛾 Modulators for the Treatment of DN.
TZDs, as full PPAR𝛾 agonists, nonselectively regulate the

expressions of antidiabetic efficacy-associated and adverse
effect-associated genes in similar proportion [49], which
leads to the overlap of dose response curves for therapeutic
effect and side effect. Therefore, selective PPAR𝛾modulators
(SPPAR𝛾Ms) are being actively pursued as the second gen-
eration of PPAR𝛾 agonists. Presumably, SPPAR𝛾Ms preserve
greater capability in the regulation of antidiabetic genes than
that of adverse-effect-associated genes, which could effec-
tively limit the side effects seen in TZDs, particularly the fluid
retention. By now, numerous synthetic SPPAR𝛾Ms have been
generated [21]. Among them, balaglitazone is the prominent
one and is currently under the phase III clinical trials in the
United States and Europe [50]. Data from the clinical trials
showed a robust antidiabetic effect of balaglitazone with less
incidence of fluid retention and fat accumulation [50]. The
preclinical data of this drug also indicated less fluid retention,
less heart hypertrophy, and no signs of bone loss [50]. Besides
balaglitazone, INT131 also reached human trials. Data from
animals showed no significant fluid retention, bodyweight
gain, cardiac hypertrophy, and bone losswith similar glucose-
lowering effect as TZDs [49]. Human studies also showed
that INT131 at doses from 0.5 to 3mg per day effectively low-
ered blood glucose in patients with type-2 diabetes without
causing edema [49]. Although these SPPAR𝛾Ms convincingly
demonstrated the antihyperglycemia effect with fewer side
effects, their efficacy in treatingDN is still unclear.Webelieve,
with better recognition on the importance of SPPAR𝛾Ms and
the research progression of this field, this question will be
answered soon.

5. Strategies Based on Increasing the Efficacy
of PPAR𝛾 Agonists

5.1. Combination of RAS Blockers with PPAR𝛾 Agonists. RAS
blockers including ACEIs and ARBs served as the corner-
stone therapy of DN in the past decades. Although their
efficacy in reducing the proteinuria and retarding the DN
progression was established, a large number of DN patients
with the therapy of RAS blockade and glycemic control still
stepped onto the stage of renal failure. This situation raised
a serious request for more effective therapies of DN. Due
to the established role of PPAR𝛾 in protecting DN, TZDs
partnering with ACEI and/or ARB served to be a better
option for the nephrologists. However, the unacceptable
side effects of TZDs unfortunately interrupted such an ideal
marriage. Even so, we still believe that with the discovery and
the clinical application of novel PPAR𝛾 agonists including
endogenous PPAR𝛾 agonists and SPPAR𝛾Ms, this marriage
between RAS blocker and PPAR𝛾 agonist will be rebuilt in
the near future. Currently, an exciting example is telmisartan
with dual properties of AT1 blocker and selective PPAR𝛾
modulator [51, 52]. But, it still needs the evidence from
clinical trials and basic studies to certify that telmisartan
could play a better role than a specific AT1 blocker alone for
the treatment of DN. Moreover, a combination of low dose
TZDs with RAS blockers is also worth consideration.
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5.2. Dual Activation of PPAR𝛾 and PPAR𝛼. PPAR𝛼 is dis-
tributed in several tissues including the kidney and its
agonists had shown the pivotal roles in regulating lipid
metabolism, inflammation, and cardiovascular response [53].
Recent reports demonstrated that PPAR𝛼 agonists such as
fenofibrate can effectively protect DN via reducing renal
lipotoxicity and inhibiting renal inflammation and oxidative
stress [54]. These findings highly suggested that PPAR𝛼may
serve as a new therapeutic target of DN. In addition, dual
activation of PPAR𝛼 and PPAR𝛾 may be a novel strategy
against DN. In line with this concept, an animal study using
combined low dose PPAR𝛼 agonist fenofibrate and low dose
PPAR𝛾 agonist rosiglitazone more remarkably attenuated the
diabetic kidney injury than drug alone [44]. Moreover, the
dual PPAR𝛼/𝛾 agonist tesaglitazar markedly ameliorated the
diabetic renal injury in db/db mice [55] and obese Zucker
rats [56]. Based on this notion and some research findings,
we can conceive that a combination of PPAR𝛼 agonist with
novel PPAR𝛾 agonists or low dose of TZDs could be a suitable
strategy for the treatment of DN.

5.3. Blockade of COX-2/PGE2/EP Pathway Partnering with
PPAR𝛾Agonists. COX-2was induced in the podocytes under
the diabetic status [57]. Inhibition of COX-2 or interruption
of PGE2 receptors EP1/EP4 significantly attenuated diabetic
kidney injury [58–61]. Under some nondiabetic conditions,
such as the chronic kidney disease model of 5/6 nephrectomy
and acute kidney injury model of adriamycin nephropathy,
COX-2/PGE2/EP4 pathway also played a detrimental role in
podocytes [62]. These results highly suggested a new ther-
apeutic target of COX-2/PGE2/EP pathway in treating DN.
Unfortunately, the increased cardiovascular mortality and
morbidity and the fluid retaining effect of the COX inhibitors
limited their long-term application in clinic [63]. In theory,
blockade of COX-2/PGE2/EP pathway in combination with
PPAR𝛾 agonists will cause greater extracellular fluid volume
expansion and more severe cardiovascular complications.
However, low dose aspirin has been used for long-term
primary or secondary prevention of vascular disease in clinic
and the safety has been well evaluated. Although there is no
convincing evidence showing the efficacy of low dose COX
inhibitors in the therapy of DN, the combination of a lower
dose COX inhibitor with SPPAR𝛾M or endogenous PPAR𝛾
agonist could be a feasible strategy in treating DN. Moreover,
it is also worthwhile to investigate whether a low dose of
COX inhibitor will strengthen the effect of RAS inhibitors in
protecting the diabetic kidney. By reviewing the literatures,
we did not find any clinical or animal reports demonstrating
this notion.

mPGES-1 is one of three characterized prostaglandin E
synthases (mPGES-1, mPGES-2, and cPGES). In the past
decade, only mPGES-1 was evidenced as a functional PGE2
synthase in vivo and played important roles under various
physiological and pathological conditions [64–71]. Evidence
from mPGES-2 and cPGES KO mice strongly argued against
their property of PGE2 synthesis [72, 73]. mPGES-1 mediated
the injury in some kidney injurymodels [71, 74]. For example,
in a 5/6 nephrectomy mouse model, mPGES-1 deletion

significantly reduced proteinuria and attenuated glomerular
injury and podocyte damage possibly through the inhibition
of inflammation and oxidative stress [71]. However, in a STZ
diabetic mouse model, renal mPGES-1 was not regulated
by hyperglycemia and deletion of mPGES-1 did not affect
renal PGE2 production and glomerular injury. This largely
excluded the involvement of mPGES-1 in mediating the renal
PGE2 induction and kidney injury in type-1 diabetes, at
least in mouse (unpublished data). Oppositely, in a type-2
diabetic model of db/db mouse, mPGES-1 was remarkably
elevated in the glomeruli [75]. This discrepancy of mPGES-
1 regulation may reflect the difference of the pathogenic
mechanism and disease status of DN between the type-1 and
type-2 diabetes. More interestingly, one-week rosiglitazone
treatment abolished mPGES-1 induction in glomeruli with-
out affecting COX-2 expression in these db/db mice. This
result suggested that inhibition of COX-2 in combination
with PPAR𝛾 agonist may provide additional protection from
diabetic kidney disease. In addition, it is also expected that
antagonism of specific PGE2 receptors partnering with a
selective PPAR𝛾 agonist could achieve better outcome in DN
treatment than PPAR𝛾 agonist alone. However, none of the
mPGES-1 inhibitors or EP antagonists is available in clinic
now. The investigations in animals or in vitro cells may be
the current emphasis to validate the present hypothesis.

6. Perspectives

Except for the known side effects, TZDs have been so fantastic
for the treatment of T2DM and diabetic kidney disease. We
believe that the withdrawal or restriction of TZDs owing to
their severe side effects only temporarily fades the light of
PPAR𝛾 in treating human diseases. With the development
of novel PPAR𝛾 agonists with minimal side effects, the
PPAR𝛾will gain the researcher’s focus again. Actually, PPAR𝛾
activation not only ameliorates diabetic kidney disease, but
it also protects kidneys from a variety of other acute and
chronic insults. In the past decades, only RAS blockers
stand on the first line in fighting against chronic kidney
diseases (CKDs). With the generation and application of
novel PPAR𝛾 agonists in the near future, we can conceive
that the therapeutic outcome of DN and other CKDs will be
significantly advanced.
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