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Review
Lipid metabolism in MASLD and MASH: From mechanism to
the clinic

Fabrizia Carli1, Giuseppe Della Pepa1, Silvia Sabatini1, Antonio Vidal Puig2,3,4, Amalia Gastaldelli1,*
Summary

Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is recognised as a metabolic disease
characterised by excess intrahepatic lipid accumulation due to lipid overflow and synthesis, alongside impaired oxidation and/or
export of these lipids. But where do these lipids come from? The main pathways related to hepatic lipid accumulation are de novo
lipogenesis and excess fatty acid transport to the liver (due to increased lipolysis, adipose tissue insulin resistance, as well as
excess dietary fatty acid intake, in particular of saturated fatty acids). Not only triglycerides but also other lipids are secreted by the
liver and are associated with a worse histological profile in MASH, as shown by lipidomics. Herein, we review the role of lipid
metabolism in MASLD/MASH and discuss the impact of weight loss (diet, bariatric surgery, GLP-1RAs) or other pharmacological
treatments (PPAR or THRb agonists) on hepatic lipid metabolism, lipidomics, and the resolution of MASH.

© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Mechanisms of hepatic lipid synthesis
and accumulation
The liver synthesises several lipids, including triacylglycerols
(TAGs), diacylglycerols (DAGs) and sterols, which are syn-
thesised at the level of the endoplasmic reticulum (ER) by re-
esterification of free fatty acids (FFAs) derived from a) adi-
pose tissue lipolysis, b) dietary chylomicrons taken up from the
circulation or c) synthesised through hepatic de novo lipogen-
esis (DNL) and then stored within lipid droplets (LDs).

Intracellular lipid synthesis and storage in LDs

LDs are intracellular dynamic organelles that serve to both
store neutral lipids for cellular metabolic needs and sequester
lipotoxic lipids that would otherwise be toxic for the cell since
they can act as membrane detergents or cause organ-
elle dysfunction.1

LDs are present in many tissues, principally in the liver,
adipose tissue and intestine, and enclose a core filled with
neutral lipids, most commonly TAGs and sterol esters, sur-
rounded by a phospholipid monolayer incorporating specific
proteins from the perilipin family.2–4 LD assembly is still poorly
understood since it involves multiple steps. TAG and sterol
ester synthesis, from the esterification of an activated fatty acid
to a DAG or a sterol (such as cholesterol), respectively, involve
different enzymes located primarily in the ER.1

TAG synthesis begins with the entry of fatty acids into the
ER (Fig. 1) where they are converted to acyl-CoA and used for
synthesis of DAGs by diacylglycerol acyltransferase 1 (DGAT1)
and 2 (DGAT2). The DGAT1 enzyme is found exclusively on the
membrane of the ER and re-esterifies the DAGs produced by
the lipolysis of TAGs, while DGAT2 is found both in the ER and
on the LD’s surface and synthesises TAGs, which are
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incorporated into the LDs when the cytosolic concentration of
fatty acids rises.5 Both DGAT1 and DGAT2 prevent the intra-
cellular accumulation of lipotoxic lipids, DAGs and fatty acids.
DAGs are not only intermediates in TAG synthesis but they can
also activate PKCε and, by impeding insulin signalling, are
implicated in the development of hepatic insulin resis-
tance (IR).6,7

LDs may expand through droplet–droplet fusion or transfer of
TAG to LDs via ER membrane bridges or through TAG synthesis
directly on the LD surface.1 Thus, LDs act as a lipid buffering
system by sequestering lipotoxic compounds while maintaining
contact with many organelles, facilitating lipid transfer.
Adipose tissue lipolysis and DNL as endogenous sources of
fatty acids

Individuals with metabolic dysfunction-associated steatotic
liver/steatohepatitis (MASL/MASH) also exhibit adipose tissue
IR (Adipo-IR), i.e. despite high insulin concentrations, lipolysis
is not suppressed, especially during the fasting state8–10.
Adipo-IR is associated with a lipidomic profile enriched with
saturated lipids,11 increased macrophage activity,9 and severity
of hepatic fibrosis.10,12

Subcutaneous adipose tissue (SAT) releases the majority of
circulating FFAs, but visceral adipose tissue (VAT), although it
is smaller than SAT, is highly lipolytic 13, and the FFAs from VAT
are released directly into the portal vein and taken up mainly by
the liver on their first pass.14,15 VAT is increased with intra-
hepatic triglycerides (IHTGs) even in individuals without
obesity,11 and is associated with IR11,16.

Another critical source of fatty acids is DNL from non-lipid
nutrients,17,18 e.g. carbohydrates, which occurs primarily in
the liver and possibly the intestine19 and adipose tissue.20 The
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Keypoints

� Hepatic lipid accumulation results from high-fat diet, increased lipolysis caused by adipose tissue insulin resistance, high de novo
lipogenesis and alterations in VLDL secretion.

� Dietary habits – both quantitative (caloric intake) and qualitative (saturated fatty acids, sucrose and fructose) – are also involved in the
development and progression of MASLD.

� Resolution of MASH and improvement in serum lipids are associated with major weight loss (achieved with diet, bariatric surgery or drugs).

� Not only triglycerides, but also other hepatic and serum lipid species are associated with severe MASLD and cardiovascular disease.
saturated fatty acid (SFA) palmitic acid is the first FFA syn-
thesised by DNL (Fig. 1). The non-essential FAs are produced
through elongase and desaturase enzymes. Stearoyl-CoA-
desaturase-1 inserts one double bond into palmitate and
stearate and produces palmitoleic acid and oleic acid,
respectively, the most abundant FAs present in TAGs, phos-
pholipids, and cholesterol esters.21

To study DNL, in vivo and in vitro study protocols have been
developed using labelled 13C-acetate or deuterated water
(2H2O) as metabolic tracers measuring their incorporation into
fatty acids,22 but 2H2O has the advantage of being adminis-
tered per os (13C-acetate needs to be infused) and rapidly
equilibrates after ingestion. Donnelly et al.23 infused 13C-ace-
tate for 5 days, showing high DNL variability (12.7%-37.0%
range) but no association with IHTG, which has a long turnover
rate (38 ± 16 days). IHTG was composed mainly of FFAs from
SAT lipolysis (�60%) and, to a lesser extent, FFAs from DNL
(�25%) or diet (�15%). However, the study involved only nine
participants (5M/4F, BMI 29-44 kg/m2), and different diets
might have a different effect on TAG composition
and secretion.23

The increase in DNL, often observed in metabolic diseases,
is also due to the overactivation of the transcription factors that
stimulate DNL, e.g. sterol regulatory element-binding protein-
1c (SREBP-1c) and carbohydrate-responsive-element-binding-
protein (ChREBP), which can promote the development of
MASLD. Interestingly, DNL has been associated with hepatic
and whole-body IR (glucose metabolism),24,25 suggesting that
IR may accelerate hepatic DNL.25 Smith et al. hypothesised
that there is a selective/partial IR pathway, i.e. it exists at the
level of glucose metabolism but not of hepatic lipogenesis,
where it would activate SREBP-1c and ChREBP, in line with
studies conducted in rodent models of obesity and diabetes.7

Sugars can activate ChREBP, while insulin, secreted in
response to hyperglycaemia, activates SREBP1c (Fig. 2)26;
SFAs can also activate SREBP1c and stimulate de novo syn-
thesis of fatty acids while unsaturated fatty acids are capable of
blocking SREBP1c.27 These genes are overexpressed in the
livers of individuals with MASLD.24,28,29 Furthermore, the inhi-
bition of acetyl-CoA carboxylase, the primary regulator of fatty
acid synthesis, decreases DNL and IHTG content in mice fed a
high-fat/high-sucrose diet and in individuals with MASLD.30
Reduced mitochondrial oxidation and MASLD

The liver contains a high number of mitochondria that provide
the energy required to support its many metabolic functions.
Hepatic mitochondria are also critical mediators of metabolic
flexibility (the ability to adapt to fluctuations in energy demand
JHEP Reports, --- 2
and supply to maintain whole-body homeostasis) by dynami-
cally modifying the oxidation of glucose or FFAs according to
their availability, i.e. switching from FFA oxidation, during the
fasting state, to enhanced glucose metabolism during the
feeding state.31

In MASLD, excess lipid accumulation is due not only to
excess FFAs but also to insufficient fatty acid oxidation.
Whether this is due to mitochondrial dysfunction and/or
reduced metabolic flexibility has been debated.

Several metabolic diseases, e.g. type 2 diabetes (T2D),
obesity, and MASLD, are associated with reduced metabolic
flexibility, with higher FFA oxidation even when glucose is the
predominant energy supply, e.g. during the euglycaemic
hyperinsulinaemic clamp.31 In the early phases of MASLD, the
impaired suppression of lipolysis by insulin is accompanied by
increased FFA oxidation,8,32 and mitochondrial activity and
biogenesis are increased rather than decreased.32,33 In the later
stages of the disease, but not in isolated steatosis, mitochon-
drial respiration is reduced due to DNA and protein abnormal-
ities, and hepatic IR is associated with reduced electron
transport chain capacity; 32,33however, it is not clear whether
this is a cause or consequence of MASH(7). In humans and
mice, high body weight, steatosis, and lipolysis from adipose
tissue lead to an increase in fatty acids in the liver and their use
in b-oxidation, the tricarboxylic acid cycle (probably due to
excess production of acetyl-CoA) and ketogenesis.34–36 In
animal models, Einer et al. showed that as MASL progresses to
MASH, megamitochondria are observed and accompanied by
impaired mitophagy and reduced ATP production33; this was
recently confirmed in the livers of individuals with obesity and
MASH.37 However, liver size is also increased in patients with
MASH, and no study evaluated if the total number of mito-
chondria, not only their size, is changed since the lower number
of mitochondria per g of liver could explain the reduced ATP
production. It is also true that in the study by Einer et al.,33 the
megamitochondria had similar protein content, indicating that
they probably include more lipids. Einer et al.33 showed that
megamitochondria with reduced mitochondrial oxidation did
not increase the production of reactive oxygen species in ani-
mals fed a Western diet. In human livers, Sarabhai et al.37

showed that individuals with obesity and MASH (not with
MASL) had megamitochondria whose diameter was associated
inversely with fusion/fission biomarkers and with oxidative ca-
pacity but positively with H2O2. Not only size but also structural
changes were observed in individuals with MASH, like loss of
mitochondrial cristae and paracrystalline inclusions.38

Fatty oxidation also occurs in mitochondria and produces
ketone bodies. However, many studies have shown an increase
in fatty acid oxidation and b-hydroxybutyrate in individuals
024. vol. 6 j 101185 2
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with MASH compared to those without liver steatosis.,38,39

likely driven by the high fatty acid flux to the liver due to
Adipo-IR. However, sexual dimorphism in lipid handling was
observed, as women show high fatty acid oxidation and pro-
duction of hydroxybutyrate but lower DNL compared to men
matched for the same characteristics and liver fat content.40 In
part, this explains why men have a higher prevalence
of MASLD.

Effects of feeding vs. fasting on hepatic
lipid synthesis
Circulating lipid concentrations and composition (lipidome)
change during the day and are influenced by the circadian state
and hormones, diet composition, and type of lipids endoge-
nously synthesised/released by organs like the liver, intestine,
and adipose tissue.

Fasting state: adipose tissue FFAs are the primary
substrate of hepatic TAG

Fasting is a catabolic state driven by the need for endogenous
substrates to be used for energy supply, with low insulin and
high glucagon concentrations. MASLD is characterised by high
plasma concentrations of insulin and glucagon41–44 that
contribute to the pathophysiology of this disease.

During the fasting state, adipose tissue lipolysis and FFA
release are maximal since insulin levels are relatively low.
However, in the presence of Adipo-IR, FFA release is not
suppressed despite high insulin concentrations.45 The combi-
nation of high FFA flux and high insulin promotes the uptake
and re-esterification of FFAs into TAGs by peripheral tissues,
including the liver,11,46 and has been associated with worse
histology and increased fibrosis.9,10,47
JHEP Reports, --- 2
During fasting, the contribution of DNL is related to high
lipogenic substrate availability rather than altered molecular
regulation of lipogenesis. Fasting DNL correlated with plasma
TAG concentrations48 and was higher in individuals with
MASLD.49 Fu et al.48 found that DNL was still active after 24 h
of fasting in individuals (with or without MASLD) with increased
lipolysis but reduced ketone production, indicating a sort of
metabolic inflexibility.
Postprandial state: impact of dietary lipids and sugars on
hepatic TAG

The postprandial state is an anabolic state with high insulin
secretion stimulated by ingested nutrients, which promotes
glycogen, protein, and lipid synthesis in the liver, muscle, and
adipose tissue. Dietary lipids are assembled as chylomicrons
in enterocytes and then taken up by the liver and other pe-
ripheral tissues.4 Once lipids enter the systemic circulation,
TAGs in chylomicrons are hydrolysed by circulating lipases
into FFAs and taken up by peripheral tissues (Fig. 2). Dietary
lipids can also be temporarily stored in intestinal LDs that
might be a buffer for excess lipids.4 Tracer studies showed
that dietary lipids remain in the circulation for up to 18 h after
a high-fat meal but not after a low-fat meal,50 raising the
question of whether high-fat meals are retained in the intes-
tine and continue to fuel the liver for a significant part of
the day.

Different dietary lipids have a different effect on hepatic TAG
accumulation. Costabile et al.51 showed that isoenergetic
substitution of SFAs with unsaturated fatty acids reduced
IHTG. Luukkonen et al.52 showed that 3 weeks of a hyper-
caloric diet rich in SFAs induced the highest increase in IHTG
(+55%) compared to the diets high in unsaturated fatty acids
024. vol. 6 j 101185 3



(+15%) or sugars (+33%, p <0.05). The high-SFA diet increased
lipolysis, adipo-IR, and ceramide levels.

Studies on alterations in lipid metabolism over the years
have focused on fasting, but postprandial lipid metabolism is
also altered in MASLD.53 Postprandial lipidomics highlight the
different metabolic responses to food intake. Bonham et al.54

showed that TAG species varied significantly in response to
the type of food ingested, suggesting a different formation/
clearance of chylomicrons, despite similar TAG concentrations
in chylomicrons of patients with metabolic syndrome
and controls.

The Mediterranean diet, food with low-glycaemic index and
fibre-rich foods have a protective effect against steatosis, while
high intake of refined sugars, in particular fructose, promotes
MASLD.17,18 Dietary sugars are critical energy substrates
(Fig. 2). Luukkonen et al.52 showed that DNL was high only in
individuals consuming a high-sugar diet, rich in fructose, while
a high-SFA diet was associated with higher IHTG, but lower
DNL. It is well established that only certain sugars (e.g., fruc-
tose and sucrose, but not glucose) are precursors of newly
synthesised palmitate and stimulate DNL,24,55 while glucose is
used to produce energy through oxidation or stored as
glycogen. Ter Horst et al. showed that fructose, but not
glucose, ingestion stimulated DNL in patients with MASLD.24

Geidl-Flueck et al. also showed that consumption of bever-
ages containing fructose but not glucose for 7 weeks resulted
in a 2-fold increase in basal hepatic fractional secretion rates of
newly synthesised fatty acids compared to controls but no
change in basal synthesis and secretion of very low-density
lipoprotein (VLDL)-TAG.55

DNL occurs throughout the day but mainly in the post-
prandial state since its main precursors are exogenous sugars
(sucrose and fructose, not glucose).24,55 Other substrates may
be used to produce the acyl-CoA used for DNL. Postprandial
DNL contributes to 15-26% of liver TAGs in individuals with
MASLD49,56 vs. 1-6% in the fasting state in healthy in-
dividuals.48 However, the combination of high levels of insulin
and substrates could also explain the stimulation of DNL, as
also proposed by Ter Horst et al.24

Lipid fluxes out of the liver: VLDL

The liver is not only a site for lipid accumulation, but syn-
thesised lipids are usually secreted by lipoproteins (Fig. 2). Li-
poproteins are micelles formed by a membrane lipid monolayer
on the surface, consisting mainly of phosphatidylcholines and
cholesterol and with an internal core primarily containing TAGs,
cholesterol esters, and lipophilic vitamins. Lipoproteins differ in
size, tissue of origin, and lipid composition, as well as in the
type of associated apolipoprotein that confers specific func-
tions. VLDLs serve to transport fatty acids to peripheral organs
and are assembled in hepatocytes. The liver synthesises VLDL
using apolipoprotein-B100 and both endogenously syn-
thesised lipids, like TAGs and cholesterol, as well as lipids
derived from chylomicron remnants. VLDLs are secreted by the
liver to export TAGs as well as other lipids, such as phospho-
lipids and ceramides, and are converted by lipolysis to inter-
mediate density lipoprotein (not shown) and then to
cholesterol-rich low-density lipoprotein (LDL) (Fig. 2). The
monolayer membrane of VLDL is composed of phospholipids
and mainly phosphatidylcholines (PCs), which are thus
JHEP Reports, --- 2
fundamental to their assembly. A recent study conducted by
Mucinski et al.57 supported the idea that ceramides, DAGs, and
TAGs are packaged together in the liver in VLDL and secreted
together into the bloodstream. Indeed, the serum concentration
and composition of ceramides not only correlate with IHTG58

but mirror some hepatic ceramides, i.e. C14:0, C18:0, C20:0,
and C24:1. In contrast, only C24:1 ceramide correlated posi-
tively between VLDL and the liver.59

The synthetic rate of VLDLs is mainly regulated by the
amount of hepatic TAGs, which increase their secretion60 and
by the insulin signal, which leads to the degradation of apoli-
poprotein-B100.61 The increase in intrahepatic TAGs and IR
cause an increase in VLDL secretion, which counteracts the
accumulation of hepatic lipids. However, this adaptation is
limited as VLDL secretion reaches a plateau, which occurs
when IHTG is >10% in individuals with obesity according to a
study conducted by Fabbrini et al..62 A reduction in the syn-
thesis of PCs, such as the lack of choline from the diet, leads to
an accumulation of intrahepatic TAGs due to a reduction in
VLDL secretion.

IHTG is also associated with VLDL enlargement due to high
TAG content,63 which results in hypertriglyceridaemia (Fig. 2).
In this condition, VLDL-TAGs are transferred to HDL or LDL,
becoming a suitable substrate for the hormone lipase, which
hydrolyses TAGs, forming small HDL, which is excreted by the
kidneys, and small LDL, which is more atherogenic.63,64 How-
ever, in individuals with the patatin-like phospholipase domain-
containing protein 3 (PNPLA3)-148M variant, less VLDL is
produced than in those homozygous for PNPLA3-148I,65 while
those with the TM6SF2 (transmembrane 6 superfamily member
2) E167K genetic variant have a defect in VLDL secretion and
hepatic lipid export,66,67 explaining their lower plasma TAG and
LDL concentrations, their less atherogenic lipid profile and their
lower risk of atherosclerosis and cardiovascular disease.66,67

Reduction of hepatic steatosis and regression
of MASH
Reduction in IHTG and resolution of MASH are associated with
weight loss achieved with lifestyle intervention, bariatric sur-
gery (in individuals with obesity) or pharmacological treatment,
though some drugs act independently of weight loss.

Diet and physical activity

The main therapeutic approach in the management of MASLD/
MASH is represented by lifestyle interventions, as highlighted in
the recent guidelines for MASLD(17). Several randomised
clinical trials showed how weight loss leads to significant im-
provements in MASLD.17

The clinical trial by Vilar-Gomes et al. is one of the largest
and involved 293 individuals with histologically proven MASH
treated for 52 weeks with a hypocaloric diet (750 kcal/day less
than their daily energy need, with carbohydrates, fats, and
proteins accounting for 64%, 22% [including <10% of total
calories from SFAs], and 14% of total daily calories, respec-
tively) and physical activity (encouraged to walk for at least
200 min/week).68 The primary outcome, MASH resolution with
no fibrosis worsening, was achieved by 25% of participants
(Fig. 2A); the degree of weight loss was independently asso-
ciated with improvements in all MASH-related histologic pa-
rameters. The study also suggests that in adults with MASLD
024. vol. 6 j 101185 4
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and overweight/obesity, dietary and behavioural therapy-
induced weight loss should aim at a sustained reduction of
>−5% to reduce liver fat, but at least 7–10% to improve liver
inflammation and >−10% to improve fibrosis.68

Bariatric surgery

Bariatric surgery is a potential option for individuals with
obesity who failed to lose weight with lifestyle interventions.
Bariatric surgery is an indication to improve liver histology,
including advanced fibrosis.17 Verrastro et al. conducted the
first large randomised clinical trial to study the effect of the
two main bariatric surgical procedures, Roux-en-Y gastric
bypass and sleeve gastrectomy, vs. lifestyle modification plus
best medical care in the BRAVES cohort that included 288
individuals (44% women) with histologically confirmed MASH
and obesity (BMI 30–55 kg/m2), with or without T2D.69 At 1
year, MASH resolution with no fibrosis worsening was ach-
ieved in 56-57% of patients after surgery, compared to 16%
of those assigned to lifestyle intervention (Fig. 2B). The same
study showed that the proportion of individuals with resolution
of MASH was above 50% in those that lost at least 15% of
JHEP Reports, --- 2
their initial body weight, which was more pronounced with
surgery than lifestyle intervention (Fig. 2B). Lassailly et al.70

also showed that resolution of MASH 5 years after bariatric
surgery was associated with weight loss but not base-
line histology.

Bariatric surgery is also associated with histological
improvement of liver fibrosis.17,69,70 In the BRAVES study, the
improvement of liver fibrosis without worsening of MASH was
reached in 37-39% of surgical patients vs. 23% of the lifestyle
intervention group (intent-to-treat population), and was also
more pronounced in those with greater weight loss. One year
is likely insufficient to observe significant histological
improvement in the fibrosis stage, despite the resolution
of MASH.70

Pharmacological treatment

Several drugs are currently under investigation for the treat-
ment of MASH, but the only approved (under the accelerated
approval pathway) option is resmetirom.

Semaglutide and other single GLP-1RAs
024. vol. 6 j 101185 5



Glucagon-like peptide 1 receptor agonists (GLP-1RAs), like
exenatide, liraglutide, dulaglutide and semaglutide, initially
developed for the treatment of diabetic hyperglycaemia, have
been shown to reduce IHTG. Liraglutide and semaglutide have
been investigated in phase II trials for the treatment of
MASH,71,72 but only the semaglutide trial has continued to phase
III. In the phase II trial, 320 patients (72% with F2 or F3 fibrosis)
were randomly assigned to receive semaglutide at a dose of
0.1mg, 0.2mg, or 0.4mg or placebo for 72weeks.71 The highest
dose of semaglutide was superior to placebo with respect to
resolution of MASH (59% vs. 17%, respectively, Fig. 2C); how-
ever, no significant difference between treatment and placebo
was observed with regard to improvement in fibrosis.

Semaglutide also significantly affects weight loss. Although
there are no GLP-1 receptors in the liver or adipose tissue, the
reduction in body fat and the improved glycaemic and lipid
profiles are undoubtedly critical factors in the regression of
MASLD and related cardiometabolic risk factors.

Dual and triple GLP-1RA treatment

New drugs are under evaluation for the treatment of MASH, like
the dual GLP-1/gastric inhibitory polypeptide (GIP) RA (tirze-
patide73) and dual GLP-1/glucagon RAs (e.g. survodutide74 and
efinopegdutide75). Recently, the data on liver histology from the
phase II studies have been published. Both the MASH trials
with tirzepatide73 and survodutide74 showed an excellent effect
on histological parameters and significant response regarding
the resolution of MASH without worsening fibrosis (Fig. 2D,E).
All these compounds also have a substantial impact on weight
loss, and a significant decrease of liver fat measured by MRI-
proton density fat fraction was shown for the dual GLP-1/GIP
RA tirzepatide,76 the dual GLP-1/glucagon RA efinopegdu-
tide75 and the triple GLP-1/GIP/glucagon RA retatrutide.77 Of
these drugs, only tirzepatide is currently approved for the
treatment of diabetes and obesity.

PPAR agonists

Peroxisome proliferator-activated receptor (PPAR)-c agonists,
like thiazolidinediones, have been approved for the treatment of
diabetic hyperglycaemia, and have also been evaluated for the
treatment of MASH in small trials, showing improvement in liver
histology.78–80 Cusi et al.80 investigated the effect of pioglitazone,
45 mg/day or placebo plus hypocaloric diet for 18 months in 101
patients with prediabetes or T2D80; 51% of patients treated with
pioglitazone achieved resolution ofMASH vs. 19% in the placebo
group (Fig. 2F). PPAR-c agonists accomplish a reduction in
IHTG78–80 and in VAT at the expense of SAT81,82 and despite
weight gain (+2.5 kg when combined with a hypocaloric diet80).
Thus, adipose tissue remodelling, and not just weight loss, is a
potential mechanism for the reduction of IHTG and resolution
of MASH.

Recently, other multiple PPAR agonists, like the PPAR-a/c
agonist saroglitazar and the pan PPAR-a/c/d agonist lanifi-
branor, have been tested for the treatment of MASH.81 The
phase II trial of lanifibranor enrolled 247 individuals randomised
to a dose of 800 mg or 1,200 mg vs. placebo.83 Lanifibranor
was superior to placebo for resolving MASH without worsening
fibrosis (51% and 49% vs. 22% in placebo, Fig. 2G), and was
also associated with weight gain (+2.7 kg at the highest dose).
JHEP Reports, --- 2
The improvement in adipose tissue metabolism through
PPAR-c activation is likely crucial for the resolution of MASH.
PPAR-c is mainly expressed in adipose tissue and regulates
adipogenesis, lipid storage and fatty acid metabolism.84

Mechanistically, this has been explained by the enhanced
adipogenesis observed in SAT following treatment with piogli-
tazone.82 At the same time, all PPAR-c agonists have a general
insulin-sensitising effect by improving adipose tissue insulin
sensitivity,80,85 promoting the suppression of peripheral lipol-
ysis,86 and thus decreasing the concentrations of plasma fatty
acids and their efflux to the liver. Moreover, they have been
associated with a reduced concentration of circulating pro-
inflammatory adipokines and an increase of anti-inflammatory
ones like adiponectin,87,88 together with the promotion of
anti-inflammatory pathways.89 In the liver, in addition to the
reduction of IHTG, thiazolidinediones promote the reduction of
hepatic inflammation78,79 and fibrosis,90 also preventing the
activation of hepatic stellate cells.84

Thyroid hormone receptor-b agonists

Resmetirom is the first compound approved for the treatment of
MASH in conjunction with diet and exercise, showing the
importance of combining lifestyle changes to pharmacological
treatment.91 Resmetirom was associated with resolution of
MASH without worsening of fibrosis in 29.9% of patients vs.
9.7% in the placebo group, and fibrosis improvement by at least
one stage was also significantly more frequent than with placebo
(Fig. 2H). Resmetirom selectively activates thyroid hormone re-
ceptor-b, which is mainly expressed in the liver and increases
hepatic fat oxidation but also decreases LDL concentrations
(-16.3%), and although there was a tendency toward a decrease
in TAG and non-HDL cholesterol levels, these changes were not
significantly different from placebo in the phase III trial.91

Resmetirom treatment showed no effect on weight (Fig. 2H).

Which lipids should be monitored in MASLD?
Dyslipidaemia and hepatic lipid dysfunction are diagnosed in the
presence of high plasma concentrations of TAGs and total and
LDL cholesterol. The advancement of mass spectrometry tech-
nologies has enabled the identification of hundreds (>800) of lipid
species (TAGs, DAGs, ceramides, sphingomyelins, PCs, and
lysophosphatidylcholines [LPCs]) in the liver and plasma/serum in
recent years. These lipids were significantly altered at different
stages along the spectrum of MASLD, fromMASL to MASH, and
we expect that new lipids will be used in the future to characterise
dyslipidaemia. Themost important studies are reported inTable 1.

Perakakis et al.92 showed that serum lipids (mainly PCs,
sphingomyelins, ceramides and DAGs) and lipid-related me-
tabolites (e.g. fatty acids, leptin, and adiponectin) were pre-
dictive of the presence of liver steatosis, MASH and significant
fibrosis. In the IMI-DIRECT study, Atabaki-Pasdar et al.93

identified several variables with high discriminative power for
MASLD; those with the best performance were associated with
lipids, i.e. PCs and glycerophospholipids, in particular ceram-
ides, and included lipoprotein lipase proteins and the PNPLA3-
148M gene variant. McGlinchey et al.94 investigated the
circulating metabolomic signature across the full spectrum of
MASLD, identifying lipids (mainly TAGs, PCs, sphingomyelins,
ceramides, and FFAs) and metabolites (including ketone bodies
024. vol. 6 j 101185 6



Table 1. Changes in lipidomic profile in serum or liver of subjects with MASLD/MASH.

Study Study population
Diagnosis
of MASLD

Lipidomic analysis

Method Matrix Main findings

Araya et al. 200497 11 CT (BMI 27.8 kg/m2);
10 MASL (BMI 41.7 kg/m2);
9 MASH (BMI 49.9 kg/m2)

Liver biopsy GC Liver ↑ MASL and MASH: MUFA, n-6:n-3 ratio, n-6 long-chain PUFA in phospholipids
↓ MASLD and MASH: long-chain PUFA, n-3 PUFA, n-6 PUFA

Allard et al. 200896 17 CT (BMI 28.5 kg/m2, T2D [21%]);
18 MASL (BMI 27.2 kg/m2, T2D [20%]);
38 MASH (BMI 31.1 kg/m2, T2D [26%])

Liver biopsy GC Liver ↑ MASH: MUFA, palmitoleic acid, and oleic acid
↓ MASH: long-chain PUFA

Puri et al. 200721 9 CT (BMI 34.5 kg/m2);
9 MASLD (BMI 37.5 kg/m2);
9 MASH (BMI 34 kg/m2)

Liver biopsy GC Liver ↑ MASLD and MASH: TAG, DAG, total cholesterol, SFA, n6: n3 ratio
↓ MASLD and MASH: TAG, FA (20:4, n-6), TAG FA (22:6, n-3)
↓ MASLD: PC, PE
↑ MASH: FC, LPC

Chiappini et al. 201798 7 CT (BMI 21 kg/m2);
39 MASLD (BMI 25 kg/m2);
15 MASH (BMI 31 kg/m2)

Liver biopsy GC/LC-MS Liver ↑ MASH: SFA (14:0, 16:0, 18:0)
↓ MASH: PC, PE, PI, PS PC/PE, SM

Peng et al. 201899 16 CT (BMI 41 kg/m2, T2D [6%]);
10 MASLD (BMI 45.5 kg/m2, T2D [20%]);
32 MASH (BMI 48.4 kg/m2, T2D [34%])

Liver biopsy HPLC-MS Liver ↑ MASL: TAG, DAG, PE (38:4), CE (14:0, 16:0, 16:1, 16:2, 17:1, 18:2, 18:3, 20:4,
20:5, 22:5, 24:6)
↑ MASH: TAG, DAG, acylcarnitine, dihexosylceramide, CER (18:0/24:1), GM1
(d18:1/16:0), SM (38:1), PE (36:1, 38:4, 18:1/22:6), LPE (18:0), CE (14:0, 15:0, 16:0,
16:1, 16:2, 17:0, 17:1, 18:0, 18:1, 18:2, 18:3, 20:3, 20:4, 20:5, 22:5, 24:5, 24:6)
↓ MASL and MASH: PC (35:2, 40:4, 40:7, 40:8), LPC (18:0, 18:1, 20:0, 22:6, 22:0)

Apostolopoulou
et al. 2018100

7 CT (BMI 25 kg/m2);
7 MASLD (BMI 51 kg/m2);
7 MASH (BMI 56 kg/m2)

Liver biopsy LC-MS/MS Serum ↑ MASLD: dhCER (20:0)
↑ MASH: total dhCER, dhCER (16:0, 22:0, 24:1)

Liver ↑ MASH: total CER, LactCER (24:1), HexCER(22:0, 24:0, 24:1), dhCER (16:0, 22:0, 24:1)
Ooi et al. 2021101 50 CT (BMI 45 kg/m2, T2D [14%]);

110 MASLD BMI 47 kg/m2, T2D [23%]);
16 MASH (BMI 50 kg/m2, T2D [33%])

Liver biopsy LC-MS/MS Plasma ↑ MASLD: CER (d18:0/16:0, d18:0/18:0, d18:0/20:0, d18:0/22:0, d18:0/24:0, d18:0/24:1),
DAG SFA (16:0, 18:0), MUFA (18:1), PUFA (18:2), TAG SFA (16:0, 17:0, 18:0),
MUFA (18:1), PUFA (18:2, 20:3, 20:4)

Liver ↑ MASLD and MASH: dhCER, TAG, DAG, CER (d18:0/18:0, d18:0/20:0, d18:0/22:0,
d18:0/24:0, d18:0/24:1),
LPC (26:0), PI (18:0/22:5), CE (18:0), DAG, TAG
↓ MASLD and MASH: PC (15-MHDA/18:2), PC (15-MHDA/22:6), PC (17:1/18:2,
18:1/22:6), CE (22:5)
↑ MASLD: total CER, CE, THC, CER (d18:1/16:0, d18:1/18:0, d18:1/20:0, d18:1/22:0,
d18:1/24:0),
GM3 (d18:1/20:0), PC (28:0, 31:0), PC (O-40:7), PS (38:4), CE (18:3), FC
↓ MASLD: SM (37:2, d18:2/20:0), PC (17:0/18:2, 18:1/18:2, 39:5, 17:0/22:6), PC (P-38:5),
PE (18:1/22:6), PE (P-18:1/22:4, 20:1/22:6)
↑ MASH: total dhCER, dhCER(d18:1/18:0, d18:1/22:0, d18:1/24:0), SM (d18:0/16:0),
PC (36:0)
↓ MASH: PC (16:1/20:4, 38:6), PC (15-MHDA/20:4), PE (16:0/20:4, 38:5), PI (38:5)

Puri et al. 2009110 50 CT (BMI 21.2 kg/m2, no T2D);
MASLD (BMI 35.2 kg/m2, T2D [28%]);
50 MASH (BMI 32.1 kg/m2, T2D [31%])

Liver biopsy GC-MS Plasma ↑ MASLD and MASH: TAG, DAG, FFA and CE MUFA, CE, DAG, PC, PE with 18:3
or 20:3 FA
↓ MASLD: DAG, PC, PE, TAG, SFA
↓ MASH: 22:6n-3/22:5n-3 ratio in PC, PE

Oresic et al. 2013112 392 CT (BMI 34.7 kg/m2);
287 MASLD (BMI 34.8 kg/m2)

1H-MRS/liver biopsy LC-MS Serum ↓ MASLD: LPC (especially C16:0 and C18:0)

Alonso et al. 2017109 353 MASL (BMI 44.5 kg/m2);
182 MASH (BMI 45.2 kg/m2)

Liver biopsy LC-MS/MS Serum ↑ MASH: PE (C20:4), CER
↓ MASH: PC (C22:6), PC (20:4)/PE (20:4) ratio

Sen et al. 2022115 206 MASH (BMI 31.3 kg/m2, T2D [53%]) Liver biopsy LC-QTOFMS Serum ↑ MASH (F3): deoxyCER (42:0), CER (d18:1/24:0, d18:1/23:0, d18:1/25:0)
↓ MASH (F3): hexCER (d18:1/20:0, d18:1/22:0, d18:1/23:0, d18:1/24:1, d18:1/24:0)

(continued on next page)
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Table 1. (continued)

Study Study population
Diagnosis
of MASLD

Lipidomic analysis

Method Matrix Main findings

Barr et al. 2010113 9 CT (BMI 47 kg/m2, no T2D);
24 MASLD (BMI 44.8 kg/m2, no T2D);
9 MASH (BMI 43.2 kg/m2, no T2D)

Liver biopsy LC-MS Serum ↑ MASLD and MASH: FFA (16:0), SM (18:0/16:0, 18:1/18:0), PC (28:0), LPC (20:2, 20:1),
LPE (P-16:0)
↓ MASLD and MASH: FFA (18:3), (20:2, n-6), SM (18:1/12:0, 18:2/14:0, 18:2/16:0, 36:3),
PC (18:0/22:6)
↑ MASH: PC (14:0/20:4, 16:0/20:3, P-18:0/20:4), LPC (18:1)
↓ MASH: FFA (20:4), LPC (P-24:0, P-22:0, O-20:0)

Anjani et al. 2015108 24 CT (BMI 47 kg/m2, no T2D);
22 MASH (BMI 45 kg/m2, T2D [86%])

Liver biopsy LC-MS Serum ↑ MASH: PC, PE, and PG, CER (d18:0/22:0, d18:1/16:0, d18:1/18:0, d18:1/20:0,
d18:1/22:0, d18:1/23:0, d18:2/20:0, d18:2/18:0, d18:2/20:0, d18:2/21:0, d18:2/22:0,
d18:2/23:0),SM(36:1), PC(32:0, 32:1, 34:1, 34:3.36:1, 36:3, 36:4, 36:5, 38:3, 38:4,
38:5, 38:6, 40:4, 40:5, 40:6), PE(34:1, 34:3, 36:1, 36:2, 36:4, 36:5, 38:3, 38:4, 38:5,
38:6, 40:4, 40:5, 40:6, 40:7), LPC(16:0, 16:1, 20:3, 22:5), PG (36:1, 36:2, 36:3, 38:3, 38:4);
PI (32:1, 34:1, 36:4, 38:4, 40:4, 40:5)
↓ MASH: CER (d18:1/24:0), SM (42:3)

Gorden et al. 2015102 31 CT (BMI 40 kg/m2);
17 MASLD (BMI 46 kg/m2);
20 MASH (BMI 47 kg/m2);
20 cirrhosis (BMI 32 kg/m2)

Liver biopsy LC-MS Plasma ↑ MASLD and MASH: TAG, CE, CER, DAG (36:2), HexCER (d18:1/24:1), GlucCER
(d18:/24:1, d18:1/26:1),
PC (36:4, 38:4), PE (38:5, 38:4, 40:6, 40:5), LPC (16:0), PI (36:1, 38:4, 38:3)
↑ MASH: PC (C32:0 and C32:1), SM, dhCER
↑ Cirrhosis: hexCER (d18:1/24:1, d18:1/26:1), deoxyCER (18:1/16:0, 18:1/26:1),
glucCer (d18:1/26:1, 18:1/26:0), PC (32:0), PI (36:1)
↓ Cirrhosis: CE (18:2, 20:4, 20:3), TAG (52:4, 52:3), DAG (36:2), CER (d18:1/18:0,
18:1/20:0, d18:1/22:0, d18:1/24:1, d18:1/24:0, d18:0/18:0, d180/24:1,
deoxyCER(18:1/16:0, 18:1/26:1, 18:0/18:0, 18:0/20:0, 18:0/22:0, 18:0/24:0),
hexCER (d18:1/24:1, d18:1/26:1), glucCER (d18:1/24:1, d18:1/26:1, 18:1/26:0),
SM (d18:1/18:1, d18:1/18:0, d18:1/20:0, d18:1/22:0, d18:1/24:0), PC (32:0, 34:3,
36:4; 38:6, 38:5, 38:4, 38:3, 40:6), PE (36:4, 38:6, 38:5, 38:4, 40:6, 40:5), LPC 16:0,
PI (36:1, 38:4, 38:3)

Tiwari-Heckler
et al. 2018111

28 CT;
25 MASLD;
42 MASH

Liver biopsy LC-MS/MS Plasma ↑ MASLD and MASH: SM, PC
↓ MASLD and MASH: LPE
↑ MASH: PE

Sanders et al. 2018105 663 CT (BMI 25 kg/m2, no T2D);
233 MASLD (BMI 31 kg/m2, no T2D)

Ultrasonography LC-MS Plasma ↑ MASLD: TAG (54:2, 48:1, 48:2, 50:1, 50:2)
↓ MASLD: TAG (52:3, 52:4, 56:7, 56:6, 54:4, 56:8)

Yang et al. 2017107 23 CT (BMI 23.8 kg/m2, no T2D);
42 MASLD (BMI 27.4 kg/m2, no T2D);
17 CHB (BMI 21.8 kg/m2, no T2D);
22 CHB with MASLD (BMI
25.5 kg/m2, no T2D)

Liver biopsy LC-MS/MS Serum ↑ MASLD: TAG [lower carbon numbers (<−52) and double bonds (0–3)], DAG (34:1,
34:2, 36:2), CER, CE (20:4, 22:6)
↑ MASH: TAG [lower carbon numbers (<−52) and double bonds (0–3)]
↓ MASLD: PE-O (38:6, 38:7, 40:8, 42:7), PC-O (34:2, 34:3, 36:2, 36:3, 36:4, 38:5, 30:7,
40:5, 42:5, 42:6, 44:6)
↓ CHB: TAG [higher carbon numbers (>52) and double bonds (>3)], DAG (36:4),
CER, PE-O (36:5, 36:6, 38:5, 38:6, 38:7, 40:7, 40:8), PC-O (32:0, 34:0, 34:2)

(continued on next page)
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Table 1. (continued)

Study Study population
Diagnosis
of MASLD

Lipidomic analysis

Method Matrix Main findings

McGlinchey et al. 202294 627 MASLD (BMI 31.8 kg/m2, T2D [42%]) Liver biopsy LC-QTOFMS Serum ↑ MASL: TAG (51:2, 54:1, 49:0, 56:2, 54:2, 54:1, 52:0, 51:1, 50:5, 50:3, 50:2, 50:1,
49:1, 48:3, 48:1, 48:0, 54:0, 47:1, 45:0, 47:0, 54:6, 18:1/12:0/18:1, 18:0/18:0/18:0,
16:0/16:0/16:0, 14:0/16:0/18:1), PE (16:0/18:1, 34:2), LPC (20:4, 32:1, 40:5), SM (d36:0),
CER (d18:1/24:0, d18:1/23:0), CE (18:0)
↓ MASL: TAG (O-52:1/P 52:1), LPC (16:0, 22:6)
↑ MASH: TAG (49:0, 56:2, 54:2, 54:1, 54:6, 54:4, 54:3, 53:4, 53:2, 52:5, 50:0, 49:2, 58:9,
58:6, 56:9, 56:6, 56:4, 56:3, 55:5, 54:7; 54:5, 53:5, 52:6, 51:2, 52:0, 51:1, 50:5, 50:3,
50:2, 50:1, 49:1, 48:3, 48:1, 48:0, 54:0, 47:1, 47:2, 45:0, 47:0, 54:6, 18:1/12:0/18:1,
18:0/18:0/18:0, 16:0/16:0/16:0, 14:0/16:0/18:1), PE (16:0/18:1, 34:2, 38:6, 38:4, 36:4)
↓ MASH: LPC (20:4, 18:1, 18:2, 20:3, 16:0, 18:0, 22:6), SM (d42:2, d41:1, 18:1/24:0,
d34:1) PC (O-38:5, 38:4, 36:3, 32:1, 34:1), PC (O-38:5, 36:5, 36:4, 36:3, 34:3, 34:2)
↑ Fibrosis: TAG (49:0, 56:2, 54:2, 54:1, 52:0, 51:1, 50:5, 50:3, 50:2, 50:1, 49:1, 48:3,
48:1, 48:0, 18:1/12:0/18:1, 18:0/18:0/18:0, 16:0/16:0/16:0, 14:0/16:0/18:1, 58:9, 58:6,
56:9, 56:6, 56:4, 56:3, 55:5, 54:7; 54:5, 53:5, 52:6, 51:2, 50:3, 50:1, 47:2), PE (16:0/18:1,
34:2, 38:6, 38:4, 36:4), LPC (20:4, 32:1, 40:5), SM (d36:0), CER (d18:1/24:0, d18:1/23:0), CE
(18:0), PC (40:6, 32:1, 40:5)
↓ Fibrosis: LPC (20:4, 18:1, 18:2, 20:3, 16:0, 18:0, 22:6), SM (d38:2, d36:2, d36:1, d 41:1,
d18:1/24:0), PC (35:4, 37:4, 18:0/19:1), PC (O-38:5, 36:5, 36:4, 36:3, 34:3, 34:2)

CE, cholesteryl esters; CER, ceramides; CHB, chronic hepatitis B; CT, control; DAG, diacylglycerol; deoxyCER, deoxyceramide; DHC/Hex2Cer, dihexosylceramide; dhCER, dihydroceramides; ESI, electrospray ionization; FA, fatty acid;
FC, free cholesterol; FFA, free fatty acids; GC-MS, gas cromatography-mass spectrometry; GlucCER, glucosylceramide; GM1, GM1 ganglioside; HexCER, hexosylceramides; LactCER, lactosylceramide; LC-MS, liquid chromatography-
mass spectrometry; LPC, lysophosphatidylcholine; MASLD, metabolic associated steatotic liver disease; MASL, metabolic associated steatotic liver; MASH, metabolic associated steatoepatitis; MHDA, methylhexadecanoic acid; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PG, prostaglandin; PI, phosphatidylinositol; PS, phosphatidylserine; QTOFMS, quadrupole time-of-flight mass spectrometry; SFA, saturated fatty acid; SM, sphingomyelin; T2D, type 2
diabetes; TAG, triacylglycerol; THC, trihexosylceramide; UNSFA, unsaturated fatty acid.

Table 2. Changes in lipidomic profile after pharmacological treatment.

Study Study population Treatment

Lipidomic analysis

Method Matrix Main findings

Bagheri et al.125 104 individuals with obesity
(SG: n = 77, RYGB: n = 27;
BMI 45.6 kg/m2)

12-months after bariatric surgery:
SG and RYGB

UPLC-MS/MS Serum ↓TAGs, ↓DAGs, ↓CE(16:1, 18:3, 18:4) ↓ CER(18:0, 22:1),
↓PE(O-16:0/20:4)
↑PC, ↑PE, ↑CE(22:1, 22:4), ↑HexCER(18:0, 20:0, 22:0, 24:0, 24:1),
↑LactCER(14:0, 16:0, 20:0, 22:0, 22:1, 24:0, 24:1), ↑SM(16:0),
↑LPC(17:0, 18:1, 18:2, 20:0, 20:1, 22:4, 22:51), ↑LPE(16:0, 18:0)

Zhang et al.132 35 patients with newly diagnosed
T2D (BMI 30.9 kg/m2)

12-week GLP-1RA exenatide UPLC-QTOF-MS Serum ↓SM(d18:1/18:0); ↓SM(d18:1/18:1), ↓LPC(16:0), ↓LPE(18:0)

Zobel et al.133 Liraglutide: 51 T2D (BMI 30.5 kg/m2)
Placebo: 51 T2D (BMI 29.3 kg/m2)

26-weeks GLP1-RA liraglutide
vs. placebo

UPLC-QTOF-MS Plasma ↓CER(d38:1, d37:1), ↓HexCER(d34:1), ↓PE(38:6),
↓PC(36:5, 37:5, 40:7), ↓PE(O-34:2, 40:7), ↓TAG(54:6, 55:4, 56:4,
56:7, 58:6, 58:8, 58:10, 58:1, 60:9, 60:10, 60:1, 60:12)

Jendle et al.134 Liraglutide: 33 T2D (BMI 30.5 kg/m2)
Glimepiride: 29 T2D (BMI 29.0 kg/m2)

18-weeks GLP1-RA liraglutide
vs. glimepiride

UPLC-QTOF-MS Plasma ↓CE, ↓CER(d18:1/16:0), ↓HexCER(d18:1/24:0), ↓ PC(35:4, 36:2, 36:4,
38:3, 38:4, 38:5, 38:6, 39:0, 40:4, 40:5, 40:8, 42:8), ↓PC(O-32:0, 34:0,
34:3, 36:3, 36:4, 36:5, 38:4, 38:5, 40:5), ↓PE(O-38:5, 38:6), ↓PI(38:3,
38:7, 44:4), ↓LPC(16:0, 18:0), ↓TAG(48:4, 48:3, 53:3, 54:5, 56:3, 56:4),
↓CE(16:0, 18:0, 18.2, 20:4, 20:5), ↓SM(37:1, d39:1, 39:2 d42:3, d34:2,
d32:1, d33:1, d34:2, d36:1, d36:2, d38:1, d40:1, 40:2, d41:1, d41:2, d42:2)

Warshauer
et al.135

Pioglitazone: 19 MetS
(BMI 30.7 kg/m2)
Placebo: 18 MetS (BMI 36.1 kg/m2)

6-month pioglitazone
vs. placebo

UPLC-MS/MS Plasma ↓CER(C18:0, C20:0, C24:1) ↓dhCER(C18:0, C24:1)
↓LactCER(C16:0), ↓HexCER(C16:0, C18 : 0, C22:0, C24:1).

BMI, body mass index; CE, cholesteryl esters; CER, ceramides; DAG, diacylglycerol; dhCER, dihydroceramides; GLP1-RA, glucagon-like peptide 1 receptor agonist; HexCER, hexosylceramides; LactCER, lactosylceramide; LPC,
lysophosphatidylcholine; MetS, Metabolic syndrome; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; RYGB, Roux-en-Y Gastric Bypass; SG, sleeve gastrectomy; SM, sphingomyelin; T2D, type 2
diabetes; TAG, triacylglycerol; UPLC-MS/MS, ultra pression liquid chromatography tandem mass spectrometry; UPLC-QTOF-MS, ultra pression liquid chromatography-quadrupole time-of-flight -mass spectrometry.

JH
E
P
R
ep

orts,
-

-
-

2024.
vol.

6
j101185

9

R
eview



+Palmitoyl-CoA Serine

3-Keto-sphinganine

Sphinganine

Dihydro-ceramide

Serine palmitoyl-
transferase (SPT) 

3-Ketosphinganine
reductase (KDSR) 

Dihydroceramide
desaturase 1

(DES1)

Ceramide synthase
(CerS1-S6) 

Sphingomye
lin

syn
thase

Sphingomye
linase

(SMase)

Ceramide synthase
(CerS1-S6) 

Sphingosine

Sphingosine-1-phosphate

Sphingosine
kinase

Ceramidase

Sphingosine-
1-phosphate
phosphatase

Sphingomyelin Glycosphingolipids Ceramide-1-phosphate

De novo pathway

Salvage pathway

Sphingomyelin
hydrolysis pathway

Synthesis of
ceramides

Ceramide

Fig. 3. Synthesis of ceramides. De novo synthesis of ceramide occurs in the ER where the condensation of palmitate and serine (by the enzyme SPT) forms 3-keto-
dihydrosphingosine which is reduced to dihydrosphingosine and acetylated by the CerS to produce dihydroceramide. DES1 and DES2 insert an unsaturation into the
sphingosine backbone to produce ceramides. Ceramides can also be synthesised via the salvage pathway from hydrolysis of sphingomyelins catalysed by SMase.
Ceramides are transported from the ER to the Golgi by either vesicular trafficking or by the ceramide transfer protein and can be further metabolized to sphingomyelins,
complex glycosphingolipids, phosphorylated into ceramide-1-phosphate or transformed into sphingosines and phosphorylated by sphingosine kinase to form
sphingosine-1-phosphate. ER, endoplasmic reticulum.
derived from fatty acid b-oxidation) that uniquely changed with
the progression of steatosis, MASH or fibrosis.

Despite some limitations regarding sample size, different
clinical characteristics of the patients, and the methods of lip-
idomic profile detection, most of the studies were concordant
in showing that individuals with MASLD have higher hepatic
accumulation of TAGs, DAGs, ceramides, and dihydrocer-
amides, and in general of lipids rich in SFAs.95 In contrast,
some lipid species like PCs and LPCs were significantly
reduced compared to controls without MASLD. Individuals with
MASH had significantly lower long-chain polyunsaturated fatty
acids (PUFAs) and some species of phosphatidylethanolamine
(PE), and they had significantly higher lysophosphatidyletha-
nolamine vs. those with isolated steatosis.

Acyl glycerols and phospholipids in MASL/MASH

The first lipidomic studies showed that individuals with moder-
ate96 or severe97 obesity and MASLD had phospholipids rich in
monounsaturated fatty acids (palmitoleic, oleic acid) and long-
chain PUFAs (n-6:n-3 ratio, and n-6) compared with controls.
In contrast, long-chain PUFAs were decreased in MASH
(Table 1). A more detailed lipidomic profile was given by Puri
et al.,21 who reported a significant increase in TAGs, DAGs, and
SFAs in MASLD, with an increase in TAG/DAG and cholesterol/
PC ratios and a decrease in PC and PE from MASL to MASH.
These data were confirmed by Chiappini et al.,98 who showed a
significant reduction in PC, PE and SM in MASH. Peng et al.99

showed that TAGs, DAGs, ceramides, PE, lysophosphatidyle-
thanolamine and cholesterol esters were significantly increased,
and PC and LPC significantly reduced, in MASH vs. controls
(Table 1). Among ceramides, in a small cohort of seven patients,
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Apostolopoulou et al.100 showed that total ceramides, as well as
lactosyl-, hexosyl-, and dihydro-ceramides were significantly
increased in MASH, and this finding was also confirmed by Ooi
et al.101 in a larger cohort, particularly with regard to total
ceramides and dihydroceramide.

Plasma saturated/unsaturated fatty acid TAGs have been
found to be elevated,102,103 and associated with IR11,104 in in-
dividuals with MASLD. Furthermore, specific TAGs containing
palmitate or stearate, i.e. TAG 48:0, 50:0, 48:1 and 50:1, have
been associated with the severity of MASLD and with an
increased risk of developing T2D.105,106

In MASLD, a significant increase in TAGs with lower carbon
numbers and double bonds,94,102,105 DAGs,99,102,107 and
PE94,108–111 has been reported.

Conflicting data regarding circulating PC and LPC are pre-
sent (Table 1). In fact, PC and LPC, particularly PC(22:0, 20:4)
and LPC(16:0,18:0), were found to be reduced in several
studies,107,109,110,112 while LPC (16:0, 16:1, 18:1, 20:0, 20:1)
were increased in others102,108,111,113 or increased in MASL and
reduced in MASH.94 Also, conflicting results were reported for
sphingomyelins, which were found to be both
increased94,108,111,113 and decreased94,113,114 in MASLD. Little
evidence is available on circulating phosphatidylinositol and
phosphatidylserine, which have been found to be higher in
MASL(101, 102) or only in MASH (phosphatidylinositol).108

Ceramides in MASL/MASH

Ceramides are among the most studied lipids because of their
lipotoxic activity in several organs and have been reported to
be increased in the plasma of patients with
MASLD.94,99–102,107–109,115 Ceramides are recognised as key
024. vol. 6 j 101185 10
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mediators of hepatic IR.7,104,116 They are part of sphingolipids
and are components of membranes. However, ceramides are
not only structural elements but also bioactive lipids that
participate in various cellular functions such as signalling,
proliferation, differentiation, apoptosis and inflammation.

A few studies have also investigated circulating lipidomic
species in patients with advanced forms of MASH (F3), fibrosis,
and cirrhosis, showing an increase in circulating levels of some
ceramides (d18:1/20:0, d18:1/22:0, d18:1/23:0, d18:1/24:1,
d18:1/24:0) and a decrease in hexosylceramide,115 some glu-
cosylceramide (d18:1/24:1, d18:1/26:1, 18:1/26:0), SM, PC,
LPC, and phosphatidylinositol94,102 (Table 1).

Ceramides are composed of a sphingosine backbone,
which consists of a long-chain amino alcohol and a variable-
length fatty acid. These lipids can be synthesised through
three pathways: 1) via hydrolysis of sphingomyelins catalysed
by the enzyme sphingomyelinase; 2) via a "salvage" pathway in
which sphingolipids are broken down to produce sphingosine
that is reused to form ceramides; 3) via de novo synthe-
sis (Fig. 3).

High levels of plasma ceramides are correlated with the
severity of MASLD and reflect hepatic ceramide accumulation.
Patients with MASH have 20% higher ceramide concentrations
compared to healthy individuals.100,102,104,117 Ceramides have
been linked to hepatic IR, and they inhibit several mediators of
the insulin signalling pathway, such as insulin receptor sub-
strate 1, phosphatidylinositol 3-kinase, and Akt.118 Further-
more, in adults with obesity, 3 weeks of a diet rich in SFAs, but
not unsaturated fatty acids or sugars, increased plasma cer-
amide levels by 49%, worsening hepatic IR(52). Promrat
et al.117 showed that MASH was associated with lower hepatic
expression of ceramide synthase 1 (CERS1), while 1 year of
lifestyle intervention (with weight loss) reduced SPTCL1
expression and plasma ceramides.

In addition to the total content, the turnover of ceramides can
be linked to their toxicity and give more information regarding
their concentration. Different approaches for the measurement
of ceramide synthesis in vivo have been proposed, e.g. the
infusion of U13C palmitate as ceramide precursors, used in
humans to measure de novo synthesis of ceramides in skeletal
muscle119–121 or labelled palmitate used to measure hepatic
ceramide kinetics in rat models.122,123 Recently, Mucinski
et al.124 measured the fractional synthesis of ceramides in the
liver and mitochondria by administering 13C3

15N-serine in water
for up to 12 days in mice fed a chow or high-fat diet.

Effect of treatment on serum lipids and lipidomic profile

MASL/MASH are associated with a pro-atherogenic lipid profile
with increased TAGs and LDL and reduced HDL. The reduction
in IHTG and weight is linked with an improved lipidomic profile.
Weight loss either through lifestyle intervention68 or bariatric
JHEP Reports, --- 2
surgery (Roux-en-Y gastric bypass or sleeve gastrectomy)69,70

improves the lipid profile by reducing total TAGs, and
increasing PC, PE and HDL concentrations.125

The effect of semaglutide and other single GLP-1RAs on tri-
glycerides andHDL is generallymodest,126 despite the significant
weight loss, while it is better with tirzepatide.127 GLP-1RAs have a
positive effect on postprandial TAG and lipoprotein metabolism
(mainly VLDL), with a reduction in TAG concentrations in the
postprandial state due to the reduction in VLDL assembly and
secretion42,128,129 but also an action on chylomicron assembly
and clearance.128–131 Few clinical trials have investigated the ef-
fect of GLP-1RAs on lipidomic profiles only in individuals with
diabetes and during fasting (Table 2). Zhang et al.132 studied the
effect of exenatide treatment on lipidomic profile in patients with
newly diagnosed T2D and obesity, and despite the fact that
several lipids were increased at baseline compared to healthy
controls, only a few species were decreased after 12 weeks of
treatment. Zobelet al.133 investigated theeffect of liraglutide for26
weeks compared with placebo, showing a significant decrease in
21 lipid species, mainly ceramides, PCs, and TAGs. Similarly,
Jendle et al.134 showed that 18weeks of treatment with liraglutide
compared with glimepiride significantly reduced a more signifi-
cant number of lipid species, including ceramides, PCs, phos-
phatidylinositol, cholesterol esters, and sphingomyelins.
Considering the limited evidence available, at fasting, GLP-1RAs
appear to reduce mainly TAGs, ceramides, PCs, and sphingo-
myelins, which are lipid species strictly associated with increased
risk of cardiovascular disease; interestingly, this lowering effect
remained after adjusting for body weight loss.

The reduction of serum concentrations of TAGs and the
increase in HDL by pioglitazone is well documented80 and is
associated with a decrease in IHTG and similar effects to
lanifibranor.83 Warshauer et al. has investigated the effect of
thiazolidinediones on lipidomic profiles135 in patients with
metabolic syndrome and reported a reduction in ceram-
ides (Table 2).

Conclusion
MASLD is the most prevalent metabolic disease since it is
associated with both obesity and T2D and with alterations in
lipid metabolism not only in the liver but also in other organs,
mainly adipose tissue and the intestine. The integration of
multiple omics techniques has enabled the comprehensive
profiling of individuals with metabolic diseases at various
levels, contributing to the exploration of the path that links
genotype to phenotype. The increase in MASLD prevalence
calls for further efforts to increase the awareness and prevent
the onset and progression of isolated steatosis to more severe
forms of disease like MASH with advanced fibrosis through
healthier lifestyles.
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