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Calcium is a critical regulator of cell death pathways. One of the most proximal events 
leading to cell death is activation of plasma membrane and endoplasmic reticulum- 
resident calcium channels. A large body of evidence indicates that defects in this path-
way contribute to cancer development. Although we have a thorough understanding 
of how downstream elevations in cytosolic and mitochondrial calcium contribute to cell 
death, it is much less clear how calcium channels are activated upstream of the apop-
totic stimulus. Recently, it has been shown that protein lipidation is a potent regulator of 
apoptotic signaling. Although classically thought of as a static modification, rapid and 
reversible protein acylation has emerged as a new signaling paradigm relevant to many 
pathways, including calcium release and cell death. In this review, we will discuss the 
role of protein lipidation in regulating apoptotic calcium signaling with direct therapeutic 
relevance to cancer.
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inTRODUCTiOn

Apoptotic cell death is important for embryonic development and tissue homeostasis, and dysfunc-
tion of this pathway can contribute to various disease states, including cancer. The intrinsic apoptosis 
pathway is activated by cellular stress and leads to Bcl-2 protein activation, mitochondrial membrane 
permeabilization, and release of proapoptotic proteins (1, 2). In addition to their roles in mito-
chondrial membrane permeabilization, Bcl-2 family proteins are also essential and direct regulators 
of intracellular calcium during apoptosis by binding to a surprising variety of channels, pumps, 
and exchangers (3–11). Elevated cytosolic calcium then contributes to the apoptotic program in a 
multitude of ways including mitochondrial permeabilization and further activation of proapoptotic 
Bcl-2 proteins (12).

The extrinsic apoptosis pathway is activated by ligand binding to death receptors of the tumor 
necrosis factor-α (TNFα) superfamily. Ligand binding to the death receptor results in the activation 
of the initiator caspases 8 and 10 (13–15). Caspase 8/10 can directly cleave and activate effector cas-
pases and/or cleave the proapoptotic Bcl-2 family protein Bid. Truncated Bid leads to mitochondrial 
permeabilization and release of proapoptotic proteins (16). Cell which do not engage the mitochon-
drial pathway are called “type I” cells, and those which lead to mitochondrial permeabilization are 
called “type II” cells (17). Thus, in type II cells the extrinsic pathway converges with the intrinsic 
pathway at the mitochondria. Calcium also contributes to the progression of the extrinsic pathway 
(18–21); however, this is less well understood.

Recently, it has been found that multiple proteins which regulate apoptotic calcium release in both 
the intrinsic and extrinsic pathways are subject to lipidation. Protein lipidation is the cotranslational 
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or posttranslational covalent addition of a variety of lipids, includ-
ing fatty acids, isoprenoids, and cholesterol, to target proteins. 
Such modifications regulate protein localization and function in 
many signaling processes. Recent advances in detecting lipidated 
proteins by proteomic and targeted approaches have revealed that 
lipidation of signaling proteins is essential for regulating a wide 
variety of signaling pathways. Stimulus-dependent lipidation 
of the apoptotic machinery is likely a central regulator of cell 
death, and defects in this pathway may be contributing factors in 
cancer development. In this review, we will discuss how protein 
lipidation plays an essential role in apoptotic signaling and the 
relevance to cancer therapeutics.

TYPeS OF LiPiDATiOn

Lipidation can be categorized into two types based on the loca-
tion of the modified proteins: those that are modified in the ER 
lumen and secreted and those that are modified in the cytoplasm 
or on the cytoplasmic face of membrane (22). The former type 
includes glycosylphosphatidylinositol (GPI) anchor and choles-
terylation, and the latter includes N-myristoylation, acylation, 
and prenylation.

Glycosylphosphatidylinositol anchor was first discovered 
in the parasite Trypanosoma brucei where the highly expressed 
variant surface glycoprotein is anchored to the cell surface via 
a glycolipid containing phosphatidylinositol (23–25). Since 
then, many proteins in mammals and lower eukaryotes such as 
protozoa have been shown to contain GPI anchors with enor-
mous structural variety, most of which include an ethanolamine 
attached to the carboxyl terminus of the protein, a glycan core, 
inositol, and lipid moieties (26–28). GPI-anchored peptides often 
include a cleavable N-terminal signal sequence, which directs the 
peptide to ER lumen, and a hydrophobic C-terminal sequence 
that is cleaved at the time of GPI anchor addition (27, 29, 30). GPI 
anchors facilitate tethering of proteins to the extracellular face of 
the plasma membrane and are important for many cellular func-
tions, including adhesion, membrane trafficking, and immune 
system signaling (31–33).

Cholesterylation is a characteristic of the mammalian 
Hedgehog family, which are secreted signaling proteins that 
regulate embryonic patterning of many tissues and structures 
(34, 35). The Hedgehog protein undergoes an autocatalytic 
processing that internally cleaves between the conserved Gly257 
and Cys258 at the GCF motif and yields a ~20 kDa N-terminal 
signaling domain and a ~25  kDa C-terminal catalytic domain 
(36, 37). The N-terminal domain receives a cholesterol moiety 
and is active in signaling (35, 37, 38). Interestingly, multiple 
studies have detected other potentially cholesterylated proteins  
(35, 39). However, the identification of these potential cholester-
ylation targets remains to be elucidated.

N-myristoylation is the attachment of the 14-carbon myristic 
acid to an N-terminal Gly residue via an amide bond (40). It 
was first identified as a blocking group that prevents Edman 
degradation on the N-terminus of the catalytic subunit of 
cyclic AMP-dependent protein kinase and the calcium-binding 
β-subunit of calcineurin (41, 42). Many other proteins regulating 
key signaling pathways, including the Src family non-receptor 

protein tyrosine kinases (43, 44) and Gα proteins (45, 46) were 
shown to be myristoylated. These proteins contain the N-terminal 
sequence Met–Gly– and often have a Ser/Thr/Cys at position 6 
(40, 47). Myristoylation can happen cotranslationally following 
the removal of the initiator methionine residue (48). Although 
myristoylation is required for membrane targeting of many 
proteins, it is not sufficient for stable membrane anchoring due 
to its weak hydrophobic nature and often needs subsequent lipid 
modifications (49–51). Additionally, myristoylation can also hap-
pen posttranslationally during apoptosis following the caspase 
cleavage of substrate proteins that exposes an internal glycine 
(52–55). Many apoptotic proteins, including Bid, gelsolin, and 
p21-activated kinase 2, require posttranslational myristoylation 
following caspase cleavage for proper subcellular localization and 
subsequent functions (52–54).

Acylation is the addition of various fatty acids, such as pal-
mitic acid, oleic acid, and stearic acid, on different amino acid 
residues (56–58). One of the best studied types of acylation is 
S-palmitoylation, which is characterized by the reversible addi-
tion of the 16-carbon saturated palmitic acid to Cys residues via 
labile thioester bonds (58, 59). Despite the presence of multiple 
algorithms to predict palmitoylation sites, there is no validated 
consensus sequence for palmitoylation (60–62). One key aspect of 
palmitoylation is that its reversibility allows for a palmitoylation 
and depalmitoylation cycle that regulates the posttranslational 
trafficking and functions of target proteins, such as H- and N-Ras 
(63). Palmitoylation can also occur on large transmembrane 
proteins, including ion channels and G protein-coupled recep-
tors (64–68). The roles of transmembrane protein palmitoylation 
include regulation of channel maturation/quality control and 
association with lipid rafts (69–72).

Prenylation is the addition of the 15-carbon farnesyl or the 
20-carbon geranylgeranyl isoprenoid lipid on cysteine residues 
via stable thioether bonds (73, 74). It requires a C-terminal CAAX 
motif, where C is a cysteine, A is aliphatic amino acids, and X can 
be any amino acid. Prenylation at the CAAX motif is found in 
many proteins, including mammalian Ras proteins (75, 76). In 
addition to its role in membrane association, prenylation can also 
regulate protein–protein interaction and subcellular distribution 
of the modified targets (77, 78).

enZYMATiC ReGULATORS OF PROTein 
LiPiDATiOn

Protein lipidation is catalyzed by specific enzymatic regulators 
crucial for the addition (and removal in the case of S-acylation) 
of the lipid moieties. The GPI precursor, formed in ER lumen, is 
transferred to target proteins by GPI transamidase, a membrane-
bound multi-subunit enzyme (79–82). GPI transamidase cleaves 
the C-terminal signal peptide of the target proteins, and forms an 
enzyme-substrate intermediate, allowing the nucleophilic attack 
by the terminal amino group of preformed GPI (83). On the 
other hand, cholesterylation of the N-terminal signaling domain 
of Hedgehog seems to be only dependent on the presence of 
the C-terminal catalytic domain, suggesting that this process is 
autocatalytic (35).
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N-myristoylation is catalyzed by N-myristoyltransferases 
(NMTs) (84–86). NMTs bind first to myristoyl-CoA and then to 
the peptide, followed by a direct nucleophilic addition–elimina-
tion reaction and subsequent release of CoA and the myristoylated 
peptide (87). Studies in various tissues and cell types have shown 
that the enzymatic activity of NMTs is predominantly distributed 
in the cytosolic fraction (88–91). Some studies have shown that 
low levels of myristoyl-CoA may be rate limiting for NMT activ-
ity (92, 93). However, the transcriptional upregulation of NMT 
under pathological conditions suggests that this might not always 
be the case (94).

Protein S-acylation is regulated by palmitoyl acyltransferases 
(PATs) that catalyze lipid attachment to cysteine residues and 
acyl-protein thioesterases (APTs), which remove them. There are 
23 PATs in mammals, all of which share a common DHHC (Asp–
His–His–Cys) motif within a cysteine-rich domain (95, 96). PATs 
are polytopic membrane proteins that are localized to distinct 
subcellular compartments, primarily the Golgi apparatus and the 
plasma membrane (97). Some DHHC enzymes show preference 
for certain types of proteins (i.e., transmembrane proteins), and in 
some cases the same substrates can be palmitoylated by multiple 
DHHC enzymes (95, 98–100). Compared to the large amount of 
studies on PATs, thioesterases are relatively poorly characterized. 
Two protein palmitoyl thioesterases (PPT1/2) and two APTs 
(APT1/2) have been identified (101–104). PPTs predominantly 
localize to the lysosomal lumen and are involved in depalmitoyla-
tion during protein degradation, whereas APTs have cytosolic 
localization and are shown to depalmitoylate and recycle signaling 
proteins such as Ras and growth associate protein (GAP-43) from 
the plasma membrane back to Golgi (102–105). Very recently, two 
independent groups found that the α/β hydrolase fold (ABHD) 
family of serine hydrolases is potent depalmitoylating enzymes 
for select substrates, including PSD-95 and N-Ras (106, 107).

Prenylation is catalyzed by the enzymes farnesyltransferase 
(FTase), geranylgeranyltransferase I (GGTase 1), and Rab gera-
nylgeranyltransferase (GGTase 2) (108–110). The prenylating 
enzymes localize to the cytosol and conjugate isoprenoids gener-
ated from mevalonate/HMG-CoA reductase pathway to target 
proteins. Specifically, the isoprenoids farnesyl and geranylgeranyl 
are transferred to a C-terminal CAAX motif on target proteins. 
Unlike FTase and GGTase 1, geranylgeranyl transfer by GGTase 
2 requires the co-factor REP (Rab escort protein) (111). GGTase 
1 and FTase generally have high specificity for the protein tar-
gets, depending on the X residue (112–114). However, they can 
act on each other’s substrates. One example is that K-Ras and 
N-Ras, usually targets of FTase, can be geranylgeranylated in Ras-
mutant human cancer cells treated with FTase inhibitors (115, 
116). Removal of the –AAX tripeptide and methylation of the 
prenyl-cysteine, catalyzed by the ER membrane proteins RCE1 
and ICMT, respectively, are two post-prenylation steps required 
for maturation of prenylated proteins (117–119).

LiPiDATiOn AnD APOPTOTiC CALCiUM 
ReLeASe

As noted in the Section “Introduction,” calcium regulates many 
cellular processes and plays a prominent role in cell death 

signaling. Both intrinsic (12, 120–122) and extrinsic (18–21, 123) 
apoptotic stimuli lead to cytosolic, nuclear, and mitochondrial 
calcium elevations, which contribute to the execution of the 
apoptotic program. It is well known that many proteins that 
regulate cytosolic calcium and apoptotic calcium release are 
also subject to lipidation including pumps (124), exchangers 
(125), channels (126), and regulatory proteins (127). Perhaps 
best studied is protein palmitoylation due to the proliferation of 
proteomic studies using acyl-biotin exchange (ABE) to identify 
fatty-acylated proteins (128). Proteins are often assumed to be 
palmitoylated in ABE experiments, but clearly other lipids may 
also be conjugated with a thioester bond to target protein cysteine 
residues (129).

In order to understand how palmitoylation contributes to 
apoptotic calcium signaling, it is worthwhile to considering the 
kinetics of the enzymatic machinery. In many proteins which do 
not have a transmembrane domain, N-terminal myristoylation 
precedes palmitoylation (130). Over 15 years ago, it was shown 
that β-adrenergic stimulation resulted in rapid palmitoylation 
(130, 131) or depalmitoylation (132) of Gαs. The model was based 
upon availability of free Gαs: dissociation from the βγ subunits 
allowed putative palmitoylating and depalmitoylation enzymes 
access to the protein. Under this model, regulated palmitoyla-
tion and depalmitoylation cycles would be restricted to proteins 
which, under physiologic conditions, had regulated exposure 
of potential palmitoylation sites. Indeed, Gαs is one of only a 
very select few proteins in which direct palmitoylation within 
minutes of cellular stimulation has been conclusively determined 
[although other proteins such as PSD-95, eNOS, and Ras clearly 
have much higher turnover of palmitoyl groups in response to 
various stimuli, suggesting rapid cycling of lipid (133)].

Many proteins associated with cell death signaling are 
modified by lipids. Our group (18) and others (134–137) have 
investigated the role of palmitoylation in regulating death recep-
tor signaling. We found that components of the T cell receptor 
(TCR) complex, such as Lck, Zap-70, PLC-γ1 and other TCR 
components were required for apoptotic calcium release in 
T cells after engagement of the Fas receptor with Fas ligand (19). 
The Src kinase Lck is myristoylated and doubly palmitoylated on 
the N-terminus, and this regulates plasma membrane localiza-
tion and partitioning into lipid rafts. It is known that the Fas 
macromolecular complex assembles and signals in lipid rafts 
(138), so we asked whether Fas stimulation resulted in rapid pal-
mitoylation of Lck. Fas stimulation resulted in a rapid increase 
in de novo palmitoylation of Lck detectable within minutes of 
Fas receptor engagement (18). Unexpectedly, the lipid moiety 
was removed from Lck almost as quickly, and Lck palmitoyla-
tion was almost undetectable by 30 min. These kinetics closely 
matched the phosphorylation and de-phosphorylation of 
canonical TCR components, such as Zap-70 and PLC-γ1 (18). 
These findings strongly suggest that the enzymatic mechanisms 
controlling stimulus-dependent protein palmitoylation and 
depalmitoylation likely are directly activated by components 
of the Fas signaling pathway. In the case of Fas signaling, the 
plasma membrane-localized DHHC21 protein is essential (18). 
Presumably Fas stimulation rapidly activates DHHC21 and a yet 
unidentified acyl-protein thioesterase to regulate Lck lipidation 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FiGURe 1 | Lipidation and Fas death receptor signaling. The Src kinase  
Lck is rapidly palmitoylated upon Fas stimulation and partitioned into lipid 
rafts, where it interacts with the T cell receptor (TCR) complex and leads to 
downstream apoptotic calcium release. The plasma membrane-localized 
palmitoyl acyltransferases DHHC21 is essential for Lck palmitoylation.  
The identity of the depalmitoylating enzyme(s) for Lck is unclear.
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plasma membrane L-type calcium channels via a still unknown 
mechanism. We were able to extend these finding to xenograft 
models (149) and showed in a nested case–control study that 
statin users had a lower risk of uterine fibroid tumors and related 
symptoms (150). Statins may also be effective for inhibiting the 
proliferation of many other tumor types including breast (151), 
ovarian (152), colon (153), and other cancers.

LiPiDATiOn AnD CALCiUM-DePenDenT 
TUMOR PROGReSSiOn

In addition to regulating cell death signaling, calcium is also a 
key factor in proliferative and pro-metastatic signaling. In many 
types of cancer, alterations in expression, localization, and func-
tions of calcium pumps and channels are observed, resulting in 
ectopic calcium flux across the plasma membrane or intracellu-
lar organelles (154). Studies in prostate (155–157), colon (158), 
breast (159, 160), and ovarian (161) cancers demonstrated that 
multiple transient receptor potential (TRP) channels, a family of 
calcium permeable ion channels, are overexpressed and regulate 
proliferation in primary tumors. Additionally, TRP channels 
contribute to tumor cell migration by generating localized 
calcium signals that guide the direction of movement toward 
growth factors (162, 163). Another calcium-dependent pathway 
related to metastasis is the store-operated calcium entry (SOCE) 
mediated by ER calcium sensor stromal interaction molecule 1 
and the plasma membrane calcium channel ORAI1. This path-
way has been extensively studied in breast cancer, where it accel-
erates the turnover rate of focal adhesions by reorganizing the 
actin cytoskeleton in a Ras and Rac-dependent manner (164). 
The SOCE pathway is activated by G-protein coupled receptor-
mediated activation of the phospholipase C-IP3R pathway, 
which results in calcium release from ER stores and contributes 
to metastasis by promoting actin assembly (165, 166).

Many proteins involved in the calcium-dependent prolif-
erative and pro-metastatic pathways are regulated by lipidation 
(Figure 2). The Wnt signaling pathway is an extensively studied 
mediator of tumor progression. Immature Wnt proteins (with 
the exception of WntD) require N-glycosylation and lipidation, 
specifically palmitate/palmitoleic acylation on conserved C77/
C93 and S209/S24 residues for proper secretion and subsequent 
recognition by Frizzled (Fzd) receptors (167–169). In addi-
tion to canonical β-catenin-dependent Wnt signaling, Wnt 
ligands such as Wnt5a bind Fzd receptors and activate PLC 
via G-proteins leading to IP3R-mediated increase in cytosolic 
calcium levels (170). Activation of the non-canonical Wnt/Ca2+ 
pathway has been implicated in multiple cancer types, including 
melanoma where it promotes invasion by initiating epithelial-
to-mesenchymal transition (171, 172). Increasing in vitro data 
indicate that Wnt lipidation at the two sites is differentially 
regulated and activates distinct canonical versus non-canonical 
pathways (173), but their exact functions in different types of 
cancers remain unclear. Therefore, further characterization of 
Wnt lipidation and the mechanisms through which they regulate 
calcium-dependent proliferation and migration is necessary.

Another class of lipidated proteins that are involved in 
calcium-mediated cancer progression is the small GTPases, 

levels (Figure 1). How the activation of these enzymes occurs 
is unknown, but could possibly be regulated either directly or 
indirectly by calcium ions.

In addition to palmitoylation, there has been intense interest 
in how other lipid modifications are coupled to the cell signal-
ing/cell death machinery. As mentioned above myristoylation of 
Src kinases regulates their localization to the plasma membrane, 
which would have implications for coupling to the apoptotic cal-
cium release machinery. The Src-related kinase c-Abl is recruited 
to membranes via a myristoyl/phosphotyrosine switch (139, 140). 
The c-Abl kinase sequesters the myristoyl group in a hydrophobic 
pocket, a conformation which is essential for autoinhibition of 
the enzyme (140). Binding of phosphotyrosine ligands to the 
SH2 domain causes a conformational change which results in 
displacement of the myristoyl group from the pocket, activation of 
the kinase, and membrane localization. Thus, even though myris-
toylation is a stable modification, the regulated exposure of the 
lipid group allows stimulus-dependent regulation of the kinase. 
During cell death induced by calcium store depletion and subse-
quent ER stress, c-Abl translocates to mitochondrial membranes 
to stimulate cytochrome c release (141). It is important to note that 
the myristoyl switch is not conserved in all Src-related kinases. 
For example, Lck has bulky residues which occlude the myris-
toyl binding pocket, and combined with biochemical evidence  
(142, 143), suggest that a myristoyl switch does not operate in Lck.

Prenylation is a prominent modification of many disease 
relevant proteins. Small GTPases, such as Rab, Rho, and Ras, 
are arguably the best studied prenylated proteins; however, as 
mentioned above, many other proteins have also been shown to 
be prenylated including chaperones, kinases, enzymes, and recep-
tors (110). How prenylation is linked to apoptotic calcium release 
has mostly been elucidated by studying the effects of HMG-CoA 
reductase inhibitors (more commonly known as statins). Many 
studies have shown that statins induce cell death of multiple cell 
types, and it is generally assumed to be due to decreased prenyla-
tion of GTPases such as Ras and Rho (144–147). We showed that 
simvastatin was a potent inducer of calcium-dependent apoptosis 
in human leiomyoma cells (148). The mechanism included 
inhibition of ERK signaling downstream of Ras and activation of 
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FiGURe 2 | Lipidation structures and effects on downstream signaling in cancer. Increase GPI transamidase activity leads to increased cell proliferation in bladder 
(174), breast (175), and colon (176) cancers. Elevated hedgehog signaling is linked to sporadic tumorigenesis in prostate (177), breast (178), and bladder (179) 
cancers. Increased NMT activity and myristoylated Src kinases are linked to increased cell proliferation in breast (180), lung (181), and other cancers. Palmitoylation 
of signaling proteins in multiple pathways are linked to proliferation and invasion in melanoma (171), intestinal (182), and other cancers. Targeting farnesylation of Ras 
proteins slows down tumor progression in lung (183), leukemia (184), pancreatic (185), and other cancers. Geranylgeranylation of small GTPases facilitate cell 
proliferation and migration in lymphoma (186), leukemia (187), and other cancers.
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including Ras, Rho and Rac, which are known regulators of 
the calcium-dependent cytoskeletal rearrangement (164, 188). 
All three major mammalian isoforms of Ras (H-Ras, N-Ras 
and K-Ras4B) are farnesylated at the C-terminus (189). Ras 
farnesylation is required for membrane localization and activa-
tion of downstream pathways to induce tumorigenesis (190). 
Additionally, H-Ras and N-Ras are palmitoylated in the Golgi 
and subsequently localized to the plasma membrane, where it 
can be depalmitoylated and cycled back to the Golgi, leading 
to spatial and temporal control of Ras signaling (191). Rho and 
Rac are geranylgeranylated near the C-terminus and blocking 
geranylgeranylation leads to reduced cancer cell proliferation and 
migration (186, 192).

LiPiDATiOn AS A DRUG TARGeT  
in CAnCeR

Many oncogenic proteins require lipidation for proper function. 
Indeed, Ras is one of the most commonly mutated proteins in 

cancer (193). As such, the enzymes that mediate these modifica-
tions are excellent targets for drug development. Inhibitors of 
prenylation enzymes GGTase 1 and FTase are being developed 
to treat cancer. The GGTase 1 inhibitor PTX-200 (GGTI-2418) 
is being tested in clinical trials by Prescient Therapeutics for 
breast cancer and multiple myeloma; however, the Phase I 
trial data has not been published. Many more drugs have been 
developed which target FTases. There have been several clinical 
trials conducted with FTase inhibitors, such as lonafarnib, and 
tipifarnib (194); however, the results have been mostly disap-
pointing (195). Interestingly, positive clinical responses were 
not correlated to Ras mutation status, suggesting that the drugs 
target other pathways or substrates (196). Drugs targeting the 
post-prenylation processing enzymes RCE1 and ICMT are in 
pre-clinical development (195, 197–199).

As mentioned above, many oncogenic proteins require 
palmitoylation for proper function, including Ras and Src 
proteins. There are very few pharmacological tools to target the 
DHHC enzymes; however, the irreversible lipid-based inhibi-
tor 2-bromopalmitate (200) and several non-lipid reversible 
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inhibitors (201) are widely used as research tools to probe the role 
of palmitoylation in biological processes. There are no drugs suf-
ficiently well developed to initiate clinical trials, most likely due 
to the fact that selective DHHC enzyme inhibitors would likely  
need to be developed. As there are so many enzymes with poten-
tially overlapping substrates, this seems to be a very daunting 
task. However, new targeted screening strategies for therapeuti-
cally relevant substrates, such as Ras, show great promise (202).

As mentioned above, statins are potent inhibitors of the 
mevalonate pathway and thus may be an attractive target for 
further development as anti-cancer agents. Indeed, several 
prospective and retrospective studies have shown that statins 
have activity against a wide variety of cancers (203–209). There 
are a multitude of prospective clinical trials currently underway 
to evaluate the potential of statins as anti-cancer therapeutics. 
Interestingly, the mechanism of action for inhibiting cancer 
progression by statins may reflect targeting of multiple pathways, 

including prenylation of oncogenic proteins and the production 
of hormones synthesized from cholesterol such as estrogen and 
testosterone which can drive tumor growth. Statins are one of  
the most widely prescribed drugs in the world with excellent 
safety and tolerability profiles (210). If statins prove to be effica-
cious as a cancer preventative or treatment, this would have the 
potential to revolutionize cancer care and survival.
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