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Abstract

Efficient Bio-immunomagnetic separation (BIMS) of recombinant hepatitis B surface antigen

(rHBsAg) with high binding capacity was studied using affinity ligand immobilized bacterial

magnetosome nanoparticles (Magnetospirillum gryphiswaldense strain MSR-1 bacteria) as

an immunomagnetic sorbent. Our results showed immunomagnetic adsorption, acted by

affinity interactions with the immobilized monoclonal antibody, offered higher antigen

adsorption and desorption capacities as compared with the commercially available immu-

noaffinity sorbents. Four different ligand densities of the Hep-1 monoclonal antibody were

examined during covalent immobilization on Pyridyl Disulfide-functionalized magnetosome

nanoparticles for HBsAg immunomagnetic separation. The average of adsorption capacity

was measured as 3 mg/ml in optimized immunomagnetic sorbent (1.056 mg rHBsAg/ml

immunomagneticsorbent/5.5 mg of total purified protein) and 5mg/ml in immunoaffinity sor-

bent (0.876 mg rHBsAg/ml immunosorbent/5.5 mg total purified protein during 8 runs.

Immunomagnetic sorbent demonstrated ligand leakage levels below 3 ng Mab/Ag rHBsAg

during 12 consecutive cycles of immunomagnetic separation (IMS). The results suggest

that an immunomagnetic sorbent with a lower ligand density (LD = 3 mg Mab/ml matrix)

could be the best substitute for the immunosorbent used in affinity purification of r-HBsAg

there are significant differences in the ligand density (98.59% (p-value = 0.0182)), adsorp-

tion capacity (97.051% (p-value = 0.01834)), desorption capacity (96.06% (p-value =

0.036)) and recovery (98.97% (p-value = 0.0231)). This study indicates that the immunosor-

bent approach reduces the cost of purification of Hep-1 protein up to 50% as compared with

5 mg Mab/ml immunoaffinity sorbent, which is currently used in large-scale production. As

well, these results demonstrate that bacterial magnetosome nanoparticles (BMs) represent

a promising alternative product for the economical and efficient immobilization of proteins

and the immunomagnetic separation of Biomolecules, promoting innovation in downstream

processing.
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Introduction

The downstream processes in the purification and separation of proteinaceous biopharmaceu-

tical products often consisted of single or multiple various chromatographic and non-chro-

matographic steps [1]. Although immunoaffinity chromatography (IAC) is one of the most

efficient and essential specific purification methods, it suffers from some limitations, such as

high costs of media and buffers and losing efficiency during several elution steps aggregation

and leakage of ligands [2–5]. In column chromatography, the mass transfer properties of

porous materials lead to restrictions because their application necessitates long residence dura-

tions, which reduce productivity. As a result, new affinity materials with high dynamic binding

capabilities and low processing time should be considered. Magnetic particles that are nonpo-

rous are intriguing possibilities for such materials. Even from unclarified broth, magnetic sepa-

ration of proteins can be simply scaled up and achieved. Commercially available high-gradient

magnet separation (HGMS) equipment can quickly scale up and produce GMP-compliant

magnetic separation of proteins even from the unclarified broth. Many novel methods such as

aqueous two-phase systems, crystallization, charged ultrafiltration membranes, precipitation,

flocculation, filtration, and magnetic separation or combining some of these methods have

been recently developed to overcome the significant obstacles of IAC methods [6–12]. Immu-

nomagnetic separation (IMS) utilizing immunomagnetic anti-HBsAg -antibody conjugated

Bacterial Magnetosome nanoparticles (BMs), is a well-established, simple, rapid, cost-effective,

highly sensitive, specific, and high-throughput batch separation method that can be proposed

as a promising alternative for IAC to purify the biomolecules in the downstream process. Dif-

ferent forms of magnetic nanoparticles, particularly ligand-conjugated magnetic nanoparticles,

are widely used for rapid and efficient separation of different microorganisms and biomole-

cules such as proteins, nucleic acids, enzymes, bacteria, and viruses. Magnetic nanoparticles

can be employed to separate proteins: According to preliminary research, using nano-sized

magnetic particles in the nanometer range (8–15 nm) produces a huge specific surface area of

90 m2/g1. In comparison to chromatographic beads, a recent study could demonstrate the

competitiveness of Protein G bound on such nanoparticles. Preparation of immunomagnetic

adsorbent involves attaching the biological macromolecules as an affinity ligand to the functio-

nalized magnetic nanoparticles [10, 13–15] that have high selectivity and capacity for the

desired protein adsorption. Magnetic nanoparticles as adsorbents are mainly iron oxide nano-

particles produced by physical, chemical, and biological methods that have been equipped

with monoclonal antibodies (Mab) [15–17]. Biologically or green synthesized iron oxide nano-

particles are termed bacterial magnetosome nanoparticles (BMs) [15, 18–22].

Magnetosomes are intracellular organelles produced by magnetotactic bacteria that are

composed of magnetite (Fe3O4) and greigite (Fe3S4). Magnetite is a single domain iron oxide

nanoparticle surrounded by lipid bilayer membrane accompanied by specific soluble and

transmembrane proteins [15, 21, 23–25]. Biologically or green synthesized magnetic nanopar-

ticles are far superior to artificially synthesized magnetite nanoparticles in terms of features,

such as narrow size distribution, shape control, large active surface area, high physical and

chemical purity, stability, non-pyrogenicity, high magnetism, biocompatibility, and a proper

density of surface functional groups, which these makes its excellent candidate materials for a

variety of bio-applications [15, 18, 25–28].

Bacterial magnetosome nanoparticles and their characterization were led to consider them

as of the unique bio-magnetic nano-carriers for enzymes, drugs, antibodies, and nucleic acids

for detection, isolation, and separation [8, 10, 13, 18, 20, 23, 25, 26, 28–32]. For most of these

applications, BMs nanoparticles must be attached to the biomolecules, which often occur

through physical, biological, or chemical methods. Bio-conjugation or immobilization is a
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chemical linking method to form a robust, permanent, and stable covalent attachment between

biomolecules and nanoparticles, at least one of which is a biomolecule [33–37].

Immunomagnetic separation (IMS) is a versatile method with multiple applications. Opti-

mal monoclonal antibody (Mab) coupling is essential to achieve the best efficiency in immu-

nomagnetic separation. The following parameters, in particular, ensure that the

immunomagnetic sorbents behave consistently: coupling efficiency, elution capacity, product

purity, and ligand leakage. The latter has a unique function in the pharmaceutical sector, par-

ticularly in medicines that require high, repeated doses. The proportional influence of ligand

density (LD) on the specific activity of immobilized ligands, efficiency in capturing/releasing

antigens, and immunosorbent costs is an important aspect to consider. The interactions

between antibody-antigen molecules become more challenging with high LD, and the antigen-

binding efficiency suffers [10, 38–41]. The immunomagnetic matrix needs to exhibit excellent

potential in the physical-chemical stability, binding capacity, and efficient recovery for target

proteins. Bacterial magnetosome nanoparticles display virtually all the desirable characteristics

of a matrix to immobilize biologically active molecules. The coupling efficiency and specific

activity are the two most important variables used to characterize affinity ligand sorbents. The

coupling efficiency (%) is calculated by dividing the number of moles of an antibody linked by

the number of moles of antibody available. The specific activity is represented as a percentage

of the milligrams of antigen bound per milligram of an antibody linked. The usefulness of

affinity ligand sorbents will be defined by the values of these two parameters, whether from an

analytical or commercial standpoint [8, 10, 14, 38–40].

This study demonstrates the applicability of magnetic beads for technical-scale HBsAg par-

ticles (that were already semi-purified from the methylotrophic yeast P. pastoris) magnetic

separation and compared the process to packed-bed chromatography with immunoaffinity

resin. We evaluated antibody coupling efficiency, HBsAg adsorption, desorption, recovery effi-

ciency, and Mab leakage as its purification performance.

Materials and methods

Bacterial magnetosomes and its characterization

The bacterial Magnetospirillum gryphiswaldense strain MSR-1 (Catalogue # 6361) was pur-

chased from Leibniz-Institute, DSMZ-German Collection of Microorganisms and Cell Cul-

tures (Germany), cultured for 50 h at 28˚C in the medium containing 40 mM NaNO3, 25 mM

sodium pyruvate, 200 μM ferrous sulfate in microaerobic condition (2–5 ppm O2) was opti-

mized previously [22]. The bacteria were collected by centrifugation (10,000 g, 8 min, at 24˚C)

and suspended in phosphate buffer saline (PBS, pH 7.4). The biomass was disrupted by ultra-

sonication through an ultrasonic cracker (180 W, 2 s work, 3 s interval, 200 repetitions, Ningbo

Hi-tech, China) and extracted with NdFeB magnets (50 mm, 20 mm, 10 mm) that produced

an inhomogeneous magnetic field (2.0 Tesla) (Yonjumag-China). The collected bacterial mag-

netosomes nanoparticles (BMs) were washed eight to ten times with PBS while agitating via

low-level ultrasonication. The purified BMs nanoparticles were dispersed into 0.1 M PBS (pH

7.4). The core thickness, core surface characterization, as well as the altered properties of the

core-surface construct were examined after surface modification. Transmission electron

microscopy (TEM) (JEOL 7000F, USA) and dynamic light scattering in combination, were

used to provide supplementary information about size, morphology, aggregation and surface

thickness of BMs nanoparticles [22].

X-ray diffraction (XRD) (EQuniox, Intel-France) was used to analyze the morphology,

structure, surface, and magnetic characteristics of BMs nanoparticles [42, 43]. The average size

of the magnetite crystals with the XRD pattern was calculated by Scherrer’s equation D = Kλ/
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(β cos θ), where D is the average thickness in vertical direction of the crystal face, K is Scherrer

constant (K = 0.94), λ is the wavelength of X-ray, β is the half-high width of the diffraction

peak of the sample (FWHM) (FWHM is the full width at half-maximum of the diffraction

peak) [44–47] (Table 1).

Preparation of HBsAg

The rHBsAg was created by fermenting a recombinant Pichia pastoris (C-226) strain in saline

medium supplemented with glycerol, and methanol was used to induce its expression in the

fed–batch mode, as described previously [48]. Briefly, grown yeast cells were disrupted on a

bed mill after adding 1 M HCl to the homogenate and centrifuged. The supernatant was

adsorbed on Hyflo SuperCell and equilibrated to pH 4.0 over 2 hours with continuous stirring.

rHBsAg was eluted after the washing stage, and a semi-purified material of 15–25% purity was

utilized as the starting material for immunomagnetic separation and immunoaffinity chroma-

tography [47, 49].

Monoclonal antibody (Mab)

Monoclonal antibody against r-HBsAg was generated previously in Balb/c mice with IgG2b

isotype [50]. This Mab is utilized as an Immuno ligand in the purification of rHBsAg, which is

used to make a commercially available recombinant Hepatitis B virus vaccine (Heberbiovac

HBK, Heber Biotech, Cuba). Protein G affinity chromatography was used to purify this mono-

clonal antibody from ascites, and after a buffer exchange with Sephadex G-25 Coarse (Amer-

sham-Pharmacia Biotech, Uppsala, Sweden), the Mab was kept at 4˚C in coupling buffer (0.1

M Na2CO3/ 0.1 M NaHCO3/0.5 M NaCl-pH 8.3). The affinity constant was identified by

Pierre Martineau method [51]. Briefly, r-HBsAg-coated wells were allowed to interact with

purified anti-rHBsAg Mab (2 μg/ml), followed by the addition of 0.39, 6.25, 25 and 100 nM of

free r-HBsAg protein and then incubated for one h at room temperature. Protein concentra-

tion was measured using Lowry et al. method [52], and IgG specific concentration was mea-

sured using a direct ELISA assay. The Purity and size of purified Mab were determined by

SDS-PAGE under reducing/non-reducing conditions. The binding activity against r-HBsAg

protein was analyzed by ELISA and western blotting.

Preparation of immunomagnetic adsorbent

To prepare bio-immunomagnetic adsorbent (Immuno-magnetosome), BMs nanoparticles

were initially activated using a cross-linker apparatus. Briefly, 500 mg of wet BMs nanoparti-

cles containing NH2 groups in 1 ml PBS was incubated with 90 mg of Sulfo-LC-SPDP for 90

minutes at room temperature. The excess non-reacted cross-linker was removed by NdFeB

magnet. The activated BMs were reduced with DTT (115 mg/ml) for 30 minutes at room tem-

perature to to induce free sulfhydryl groups. Subsequently, the cross-linker (30 mg of Sulfo-

SMCC) was added to the Mab solution (containing 15 mg/ml Mab, 1 mM PBS; pH 7.4) and

Table 1. The obtained structural parameters of XRD analysis. The average crystallite size D of the particles is calcu-

lated from the Scherrer equation: D = Kλ/(βcosθ), where K is the Debye-Scherrer constant (0.89), λ is the X-ray wave-

length (1.54 nm), β is the peak width of half-maximum (FWHM/2 = 2.5288 Å), and θ is the Bragg diffraction angle.

Breifly, β×3.1416/180!2.52887 × 3.1416 /180! 0.0441; 2 Theta = 35.546! θ = 17.773; Cos θ = 0.474363; D = Kλ/ (β
cos θ)!D = 0.94 × 1.54 / 0.0441 × 0.474363! 69.199 nm.

hkl 2θ (deg.) dhkl or (FWHM/2)(A˚) DXRD (nm) I (%)

311 35.546 2.52887 69.19 100

https://doi.org/10.1371/journal.pone.0267206.t001
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the mixture was incubated for two h at room temperature [53]. Excess cross-linker was removed

by dialysis (12 kDa cut-off) in immobilization buffer at 4˚C overnight. Finally, 15 mg of acti-

vated Mab was added to 500 mg of activated BMs, with stirring for two h at room temperature.

The immobilized Mab to BMs (Mab-BMs) were collected by the NdFeB external magnetic field

and stored at 4˚C (Fig 1). The immunoaffinity column was prepared using CNBr-activated

Sepharose 4B (GE Healthcare Bio-Sciences AB, Sweden) as described previously [48].

Purification of r-HBsAg with immunomagnetic and immunoaffinity

adsorbents

Five-milliliter of immunosorbent samples (CNBr activated Sepharose CL-4B) were packed

into the PD-10 columns (Amersham-Biosciences, Uppsala, Sweden) and equilibrated with 20

mM Tris-HCl + 3 mM EDTA, pH 6.7. To prevent column clogging, five ml immunomagnetic

adsorbent was added into a standard test tube and equilibrated as above. To purify the HBsAg

by both adsorbents, column and vessel were loaded with an excess of a partially purified r-

HBsAg preparation according to previously standardized conditions (5.5 mg r-HBsAg/15 mg

Mab) in the equilibrium buffer. After washing off the unbound antigen and impurities with

wash buffer (20 mM Tris-3 mM EDTA and 1 M NaCl, pH 6.7), the pure antigen was eluted

from immunoaffinity and immunomagnetic adsorbents with elution buffer (containing 20

mM Tris-3 mM EDTA, 3 M KSCN, and 1 M NaCl, pH 6.7 and 100 mM glycine, pH 2.5) for 2

h at 16˚C with constant mixing at 1150 rpm. The supernatant was then removed and the neu-

tralizing buffer (1 M Tris buffer, pH 9) was added to the solids. HBsAg recovery (mgHBsAg

mLadsorbent
−1) was quantified by reading the absorbance of eluted HBsAg at 280 nm. For each

matrix material, three technical replicates were prepared (three independent experiments),

and from each of them, two independent samples were measured (analytical duplicates). The

Fig 1. Activation of BMs with Sulfo-LC-SPDP and Mab with Sulfo-SMCC cross-linkers and their immobilization.

https://doi.org/10.1371/journal.pone.0267206.g001
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stability and reproducibility of the adsorbents were characterized by measuring the amount of

antibody released and variation of their adsorption and desorption capacities during 12 conse-

cutive purification cycles.

Efficiency of immunomagnetic adsorbent (Mab-BMs)

In immunomagnetosome adsorbent, immobilized product was verified by ELISA assay as fol-

lows. Equal amounts of Mab-BMs and activated BMs-sulfo-LC-SPDP suspension were incu-

bated initially with semi-purified r-HBsAg followed by the incubation with goat HRP

conjugated anti-mouse antibody (Sigma, Germany) at 37˚C for 1 hour. The contents were

washed five times with PBST 0.05% followed by addition of (100 μl) 3, 3´, 5, 5´-tetramethyl-

benzidine solution. The reaction was then stopped by adding 1 M H2SO4 and the OD was read

at 450 nm. The concentration of Mab attached to BMs or Sepharose was measured by Bradford

assay according to the instructions of the Bradford kit of Thermo Fisher Scientific Company

(MA, USA) [48]. Briefly, 50 μl of dispersed Mab-BMs matrix was added to 1.5 ml of Coomassie

Plus reagent (Thermo Fisher Scientific, MA, USA) and incubated for 5 min. After exposure to

the magnetic separator, absorbance of the supernatant was measured at 595 nm. The result

was compared with a standard curve of bovine gamma globulin at different concentrations of

62.5, 125, 250, 500, 750, and 1000 μg/ml.

Furthermore, the iron concentration of the Mab-BMs absorbent was measured using the

potassium thiocyanate method [54]. Briefly, Mab-BMs solution (1:50) was diluted with 300 μl

of 6N HCl containing 1% H2O2, in which iron was dissolved and oxidized to the ferric state.

Addition of 5% potassium thiocyanate led to the formation of a red complex following the

reaction of thiocyanate with Fe III that was measured through absorbance at 476 nm. The

results were compared with a calibration curve of BMs suspension that was prepared in the

same manner with a concentration range of 20, 40, 60, 80, 100, and 120 μg/ml.

Physicochemical properties of immunomagnetic adsorbent (Mab-BMs)

The Fourier transform infrared spectra (FTIR; Thermo Scientific Nicolet 6700) was used to

confirm the adherence of Mab to the BMs nanoparticles [27].

Homogeneity and purity of the eluted HBsAg

Homogeneity of the eluted protein was carried out by a high performance size-exclusion liquid

chromatography (HPLC-SEC). After dilution in PBS/0.25 M NaCl (pH 7.0), 10 μl of samples

were loaded into a TSK G3000 PW column (7.5×600 mm; particle size 10 μm) at a flow rate of

0.2 ml/min. The chromatograms were recorded and analyzed by LaChrom D-7000 HPLC sys-

tem manager v.3.1. The purity of rHBsAg was determined by SDS-PAGE (12% mini-gel)

under reducing conditions.

Statistical analysis

ANOVA tests were performed with the Statgraphic program (version 5.0), with p-values less

than 0.05 considered statistically significant.

Results and discussion

Production and characterization of the magnetosomes

An efficient purification method for purifying rHBsAg was designed and performed in this

report using a bacterial magnetosome-coupled with anti-HBsAg monoclonal antibody in com-

parson with the standard immunoaffinity procedure. We isolated and characterized the

PLOS ONE Affinity ligand-functionalized magnetosome nanoparticles for bio-immunomagnetic separation of HBsAg protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0267206 July 25, 2022 6 / 18

https://doi.org/10.1371/journal.pone.0267206


magnetosomes nanoparticles from Magnetospirillum gryphiswaldense strain MSR-1. The yield

of extracted BMs from magnetic bacteria was around 186.87 mg/L/50h (dry weight) (Fig 2A)

[22]. The TEM image of bacterium clearly shows 50–60 magnetosomes arranged in a long

chain (Fig 2B). The TEM analysis of one magnetosome reveals a 60nm-80nm spherical particle

with double membrane cuboctahedron (Fig 2C). These results are in agreement with the

report of Araujo et al., 2015 [25]. We also measured the size distribution of magnetosome by

dynamic light scattering that showed the main diameter distribution peak around 70 nm (Fig

2D). Phase purity and crystallinity of the produced BMs nanoparticles was measured by X-ray

diffraction (XRD) (Fig 2E). Six characteristic diffraction peaks of a crystal structure (220, 311,

400, 422, 511, and 440) were seen that indicated the cubical spinal structure and high purity

[17, 25, 34]. The average crystal size (69.19 nm) was estimated from the X-ray pattern using

Scherrer’s formula and line broadening measurements of the most intense peak that was near

to the particle size values observed by TEM (Fig 2D). These results confirmed that the BMs

nanoparticles were monocrystalline.

Purification and characterization of the anti-rHBsAg monoclonal antibody

The advantages of the Mab CB.Hep-1 affinity ligand based separation techniques to purify

rHBsAg from semi-purified starting material (15–25% purity) has been previously demon-

strated in many researches [38, 48]. Murine monoclonal anti-r-HBsAg antibody (IgG2b) [50]

Fig 2. Magnetosome production by M gryphiswaldense MSR-1 and charaterization of physicochemical properties of the BMs nanoparticles. A)

magnetosome production under initial and optimized mediums. The initial medium contains 20 mM NH4Cl, 15 mM Sodium Lactate, 100 μM Ferric citrate

and microaerobic condition (5–10 ppm O2) in 30˚C and pH 6.8. The optimized medium contains 40 mM NaNO3, 25 mM Sodium pyruvate, 200 μM Ferrous

sulfate and microaerobic condition (2–5 ppm O2). There is a significant increase in production of magnetosome in the optimized medium (P< 0.5). B) TEM

image of BMs nanoparticles chain along with the bacterial cell wall. C) TEM image of BMs nanoparticle surrounded individually by an NH2 rich phospholipid

bilayer. D) BMs nanoparticle dynamic light scattering (DLS) histogram. E) X-ray pattern of BMs nanoparticles extracted from M gryphiswaldense MSR-1cell

comprised of a core Fe3O4 magnetic molecule.

https://doi.org/10.1371/journal.pone.0267206.g002
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was purified from 86 ml ascites fluid with the yield of 9.56 μg ml-1h-1 (Fig 3A). The specificity

of antibody was detected by ELISA as shown in Fig 3B. The affinity constant of the antibody

(7.9�10−8 M) was measured by Pierre Martineau method and the specificity was detected with

SDS-PAGE and western blotting (Fig 3C and 3D).

Immobilization of the Mab to magnetosomes using cross-linking

The three most common chemical approaches to immobilize biomolecules as ligand onto

magnetic nanoparticles involves cross-linking, direct covalent bonding and binding to a poly-

meric primer [55]. In the standard affinity column, Mab was immobilized on Sepharose 4B. In

this study the purified Mab was covalent directly immobilized on the surface of activated BMs

support using cross-linking reagents. Multisite attachment, numerous orientations, and steric

hindrance imposed by antibody crowding and antigen size are the most important variables

affecting the specific activity of stochastic coupling of antibodies. Only steric hindrance affects

the specific activity in covalent directed (or oriented) immobilization. By restricting the

amount of protein immobilization as ligand density and the size of the antigen, the specific

activity of immunosorbent produced by immobilization of affinity ligand can be improved to

about 100%. The desired BMs were Ferro fluid magnetic nanoparticles that consisted of a mag-

netite (Fe3O4) core with a diameter of 70 nm. A successful immobilization Mab to the

Fig 3. Identity and specificity characterization of purified anti-r-HBsAg Mab of P1C7. (A) The optical absorbance

of purified protein. (B) ELISA distinguished specific binding to r-HBsAg protein, all used proteins including

streptokinase (SK), interferon-gamma (IFN-2), and a mixture of BSA and Casein except for r-HBsAg exhibited

inconsiderable absorbance. Anti-r-HBsAg Mab of P1C7 hybridoma cell line can detect r-HBsAg protein without cross-

reactivity to others. (C) Coomassie Blue stained SDS PAGE (12%) of the purified Mab in reducing form: M (Ladder

KD), lanes 1, 2, and 3 Purified Monoclonal antibody (Mab) or (eluted protein from protein G column), lanes 4 and 5

(ascites fluid). (D) Western blot analysis of the r-HBsAg exposed to mAb of P1C7 hybridoma cell line, M (Ladder KD),

lane 1, 2, and 3 (pure r-HBsAg) after developed with purified Mab.

https://doi.org/10.1371/journal.pone.0267206.g003
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adsorbents was determined by measuring antibody uptake during the immobilization process.

In addition, the fivefold difference in ELISA absorbance between immobilized Mab to BMs

and negative un-immobilized activated BMs in the IMA adsorbent evidenced a successful

immobilization process (Fig 4A). For confirmation, the concentrations of the immobilized

Mab and BMs on the immunomagnetic adsorbent were determined by Bradford assay and

potassium thiocyanate method using dilution series of BMs suspension as a reference. The

amount of 15.02 mg/ml Mab per 500 mg/ml BMs was immobilized (Fig 4B and 4C), and 25.09

mg/ml Mab to 1 g/ml packed Sepharose (Fig 4A and 4B).

The average immobilization efficiency for both BMs and Sepharose matrixes were deter-

mined as 98.59% and 94.57%, respectively (Table 2). In the present study, the extremely higher

immobilization efficiency for BMs support can be related to superior features of biologically

synthesized nanoparticles to synthetic magnetic nanoparticles and the use of optimum ligand

density for immobilization process.

Immunomagnetic separation is an alternative method to traditional immunoaffinity adsor-

bent because it does not require expensive equipment, is cheaper and is stable with no signifi-

cant leakage of antibody. Also, biologically synthesized magnetic nanoparticles are far superior

to synthetic nanoparticles in term of narrow size distribution, shape control, large active sur-

face area [48, 56–58]. Another advantage is non-pyrogenic and FDA approved and can be iso-

lated easily in the magnetic field [15, 23, 25, 27, 28].

Purification of semi-purified rHBsAg

Crude rHBsAg extract that was previously semi-purified was used for final purification using

Mab-BMs and Mab-Sepharose adsorbents. The efficiency of both adsorbents regarding anti-

gen purification was evaluated in 12 consecutive cycles and the release of antibody was mea-

sured (Table 3).

The capacity of antigen purification by Mab-BMs was higher than the regular affinity col-

umn that is mainly depends on the amount of oriented immobilized antibody, cross-linker

and buffer composition used for equilibration and elution steps. It has reported that the use of

heterobifunctional cross-linkers in immunomagnetosome not only provides the high specific-

ity for the Fc portion of Mab without interrupting its antigen-binding ability, but also allows

the optimal spatial orientation of the immobilized Mab because of the spacer arms [59–62].

Using the Mab-BMs adsorbent, approximately 12.67 mg antigen protein was purified during

12 cycles of purifications, whereas, using the regular affinity column, only 9.366 mg antigen

was obtained. The results suggest that the immunomagnetic separation is a simple, sensitive

and reproducible method for the magnetic separation of the hepatitis B protein during in the

production process of the recombinant hepatitis B vaccine. The procedure has been approved

by the Pasteur Institute authorities and makes it possible to comply with the requirements of

the World Health Organization regarding the production of recombinant products.

Characterization of the eluted r-HBsAg

The eluted rHBsAg obtained from both methods were first analyzed by SDS-PAGE and then

confirmed by western blot analysis (Fig 5A and 5B) [63]. The purity of eluted antigen by

immunomagnetosome was 98%, and with regular affinity column was 90% (Fig 5C and 5D).

The SEC-HPLC profiles of the eluted rHBsAg showed three major peaks. In chromatogram

(Fig 5C), the first peak appears at the retention time of 22.567 min and the third peak occurs at

43.694 min indicating aggregation and formation of the monomeric rHBsAg. The main peak

with the retention time at 27.98 min represents the rHBsAg virus-like particles (VLPs) that are

sharp due to the homogeneity of the particle assembly.
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According to these chromatograms the purity of rHBsAg VLPs was 99.78% for immuno-

magnetic and 94.36% for immunoaffinity methods (significant, p-value = 0.0006). These

results also show higher recovery of rHBsAg by immunomagnetic with more effective release

of the VLP form than affinity method. (Table 4).

Fig 4. Optical absorption results of ELISA test to confirm the monoclonal stabilization of the target antibody on

the nanoparticle. A) The optical absorption of the final product of the stabilized antibody on the magnetosome is 5

times higher than the activated magnetosome nanoparticles without antibody stabilization (negative control sample).

B) Bradford assay showed an antibody concentration of 15.01 mg/500 mg BMs in ml. (C) BMs nanoparticles

concentration of 500.57 mg/ml was obtained from potassium thiocyanate method. Strong confirmation has been made

on the accuracy and performance of the stabilization process. In both experiments, results are based on a repetition as

duplicate (± SD). BGG: Bovine gamma-globulin; BMs: Bacterial magnetosome; Mab: monoclonal antibody.

https://doi.org/10.1371/journal.pone.0267206.g004
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Physicochemical characteristics of immunomagnetic adsorbent

X-ray diffraction method has been used to analyze the morphology, structure, surface, and

magnetic characteristics of BMs [27, 54]. This method provides information about the crystal-

line phase of BMs (Fe3O4) as well as the average nanoparticle diameter. Infrared analysis

shows that upon activation and immobilization of BMs to Mab, the adsorption band at 3440

cm-1 and 588 cm-1 confirmed the existence of amino group on BMs surface and Fe–O stretch-

ing vibration respectively (Fig 6A). Presence of amino groups in BMs FTIR pattern showed

that the NH2 rich phospholipid membrane was preserved [43, 54]. When BMs particles were

functionalizing with Sulfo-LC-SPDP as cross-linker, the FTIR spectra showed two broad

bands at 3470, and 1633 cm-1 refered to the NH stretching vibration and NH2 bending state of

free amine groups. As well, the FTIR spectra showed a new band of fixed propyl groups at

2923 and 2854 cm-1 that show represented the asymmetric stretching absorption of–CH3

group that appeared at 2932 and 2862 cm-1 in Sulfo-LC-SPDP cross-linker. These peaks dem-

onstrate the successful cross-linker-BMs attachment.

Table 2. Result of antibody immobilization efficiency to BMs nanoparticles as an immunomagnetic adsorbent.

Molecule Amount Mab

(mg)

Mab coupling

(mg)

Immobilization efficiency

(%)

Ligand density (mg/

ml)

Activated Bacterial magnetosome nanoparticles (BMs) as adsorbent

Average

5 04.547 90.94 1

10 09.302 93.02 2

15 14.781 98.59 3

20 19.002 95.01 4

25 23.617 94.47 5

A volume of 5 ml was applied in each case.

https://doi.org/10.1371/journal.pone.0267206.t002

Table 3. Results of the evaluation of the HBsAg immunoaffinity and immunomagnetic separations experiments.

Dynamic capacity average (μg/

200 μl)

Adsorption capacity (%) Desorption capacity (%) Average of IgG released (ng IgG/

μg Ag-1)

Runs IMA IAC IMA IAC IMA IAC IMA IAC

1 196.84 213.01 97.24 81.24 99.67 79.11 0.141 0.872

2 185.72 173.29 96.72 76.48 96.35 75.53 0.105 3.28

3 202.24 198.11 96.48 79.02 93.39 81.13 0.205 3.51

4 190.38 201.05 97.16 80.16 96.70 83.24 0.218 1.05

5 196.04 192.25 97.01 78.83 95.82 79.91 0.183 1.81

6 195.31 193.72 97.91 79.96 97.01 80.41 0.134 0.791

7 193.60 186.02 97.47 78.14 96.23 79.20 0.209 0.851

8 189.93 179.13 96.52 77.91 96.09 78.91 0.183 2.91

9 191.85 167.21 97.32 51.53 95.77 58.73 0.179 4.81

10 192.07 165.07 97.54 43.19 95.33 55.97 0.211 6.69

11 185.21 160.37 96.90 40.01 95.15 52.64 0.199 7.56

12 184.62 159.51 96.35 42.75 95.23 46.78 0.301 8.875

Average 191.984 182.395 97.05 67.435 96.06 70.96 0.189 3.584

SD 5.0420 16.8421 0.4569 16.5374 1.4076 12.7036 0.04759 2.70337

P-value 0.08413 0.01834 0.036 0.0231

�The value of every parameter was measured at least three times (mean value SD).

https://doi.org/10.1371/journal.pone.0267206.t003
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The adsorption band at 3451 cm-1, 1639 cm-1 detected amino group and band at 663 cm-1

confirmed the presence of C-OH on Mab. While the Mab functionalized with Sulfo-SMCC

cross-linker via reaction of the NHS-ester group of the cross-linker with amino group in Mab

Fc regain, the FTIR spectra showed new bands at 2362 and 2339 cm-1. These bands indicated

the presence of the maleimide reactive group of cross-linker that it appeared at 2360 and 2336

cm-1 in Sulfo-SMCC cross-linker (Fig 6B).

In FTIR spectra for the Mab-BMs conjugated nanoparticles (Fig 6C), the main characteris-

tic absorbance peaks were located at 3423, 2922, 2854, 2361, 2341, 1694, 1632, and 581 cm−1.

The bands, 3470 and 1633 cm-1, refer to the NH and NH2 groups in both activated BMs and

Mab. Whereas the bands 2922 and 2854 cm-1 show–CH3 groups that are related to functiona-

lized BMs, and the band 581 cm−1 from BMs appeared in the final Mab-BMs conjugated nano-

particles. The broad peaks; 2922, 2854, 2361, 2341 show proper and successful attachment of

BMs to Mab.

Fig 5. Characterization of eluted rHBsAg by immunomagnetic separation (IMS) or immunoaffinity

chromatography (IAC). (A) SDS-PAGE analysis show the 24 KD band corresponding to rHBsAg purified by

immunomagnetic separation method. (B) Western blot analysis show the 24 KD band corresponding to rHBsAg

purified by immunomagnetic separation method. (C) and (D) Size Exclusion High-performance liquid

chromatography (SEC-HPLC) analysis of eluted r-HBsAg to determine and quantify the level of VLP, monomeric and

aggregated forms of eluted r-HBsAg by IMS and IAC methods, respectively.

https://doi.org/10.1371/journal.pone.0267206.g005

Table 4. ANOVA results of the variable effects on the response recovery of rHBsAg by immunomagnetic and immunoaffinity matrixes.

ANOVA

Source of Variation SS df MS F P-value F crit

Rows 0.3693 2 0.18465 6.298465 0.137015 19

Columns 45.76082 1 45.76082 1560.915 0.00064 18.51282

Error 0.058633 2 0.029317

Total 46.18875 5

https://doi.org/10.1371/journal.pone.0267206.t004
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Reproducibility and stability of immunomagnetic and IAF adsorbents

The immunomagnetic adsorbent was reproducible and the capturing of antigen during 12

cycles was constant and four times higher as compared with the immunoaffinity adsorbent.

The immunomagnetic adsorbent was also stable over 60 days since the leakage of antibody was

not significant. On the other hand, after eight cycles the efficiency of immunoaffinity was

decreased due to the leakage and aggregation of antibody. However, during 60 days, the effi-

ciency of immunomagnetic started after 12 cycles and the adsorption capacity for HBsAg was

decreased slowly by time during 10, 20, 30, 45 and 60 days by 96.85%, 96.35%, 96.01, 95.92 and

95.27% respectively, as compared with the efficiency of first day (97.051%) that it is not signifi-

cant (p value = 0.0056) (Table 5).

Conclusions

In this study, we isolated magnetosomes from Magnetospirillum gryphiswaldense strain MSR-1

with 69.19 nm diameter and successfully developed immunomagnetic adsorbent using Mab

for purification of rHBsAg. In our production facilities in Pasteur Institute of Iran, we semi-

purified the r-HBsAg antigen using several expensive chromatography columns. After a few

purification cycles, the column loose the efficiency due to denaturation and antibody leakage.

Therefore, establishing a more economical procedure for final purification of rHBsAg appears

to be necessary. The purification of antigen with immunomagnetic method was significantly

higher as compared with the standard immunoaffinity method during the 12 purification

Fig 6. FTIR spectra of immobilization of Mab to BMs (IMA adsorbent), (A) BMs nanoparticles, Sulfo-LC-SPDP

crosslinking agent and BMs functionalized (B) Mab, Sulfo SMCC crosslinking agent, Mab functionalized (C) BMs

functionalized, Mab functionalized and Mab-BMs immobilized nanoparticles as a IMA adsorbent.

https://doi.org/10.1371/journal.pone.0267206.g006
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cycles (12.67 mg vs. 9.366 mg r-HBsAg). This method was stable, the process was reproducible

and without any leakage of antibody. Immunomagnetic method is simple, rapid, sensitive,

reproducible and low cost with high efficiency that could be applied as an alternative method

for purification of rHBsAg from semi purified yeast extract for recombinant vaccine develop-

ment industry.
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S1 Video. Demonstration of the response of magnetospirillium gryphiswaldense to the
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dance with Earth’s magnetic field or any other magnetic fields.
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Table 5. ANOVA results of the variable effects on the response stability of immunomagnetic adsorbent (immunomagnetic matrix).

Source Sum of Squares df Mean Square F-value p-value

Model 1.12 2 0.5609 10.14 0.0119 significant

A-time 0.9853 1 0.9853 17.82 0.0056

A2 0.1520 1 0.1520 2.75 0.1484

Residual 0.3318 6 0.0553

Lack of Fit 0.0761 3 0.0254 0.2977 0.8269 not significant

Pure Error 0.2557 3 0.0852

Cor Total 1.45 8

R1- stability of immunomagnetic adsorbents
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