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Abstract
The precise assessment of cognitive load during a learning phase is an important pathway to improving students’ learning 
efficiency and performance. Physiological measures make it possible to continuously monitor learners’ cognitive load in 
remote learning during the COVID-19 outbreak. However, maintaining a good balance between performance and compu-
tational cost is still a major challenge in advancing cognitive load recognition technology to real-world applications. This 
paper introduced an adaptive feature recalibration (AFR) convolutional neural network to overcome this challenge by cap-
turing the most discriminative physiological features (EEG and eye-tracking). The results revealed that the optimal average 
classification accuracy of the feature combination obtained by the AFR method reached 95.56% with only 60 feature dimen-
sions. Additionally, compared with the best result of the conventional correlation-based feature selection (CFS) method, the 
introduced AFR algorithm achieved higher accuracy and cheaper computational cost, as well as a 2.06% improvement in 
accuracy and a 51.21% reduction in feature dimension, which is more in line with the requirements of low delay and real-
time performance in practical BCI applications.
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1 Introduction

According to cognitive load theory by Sweller et al. [1–3], 
people have limited cognitive resources for processing and 
holding information. Learners might fail to complete cogni-
tive tasks that exceed human working memory capacity due to 
cognitive overload [4]. Therefore, controlling and optimizing 
learners’ limited cognitive resources to achieve the best learn-
ing effect is important in engineering education [5].

The recent spread of COVID-19 has driven most schools 
to remote learning, leading to the emergence of a grow-
ing number of distance-learning applications. In a real-
world classroom, experienced instructors can acutely sense 
whether the students understand the material and concepts 
being taught, which allows teachers to adjust teaching strat-
egies immediately and reasonably. However, for remote 

teaching, it becomes difficult for teachers to judge the teach-
ing effect through observation. Therefore, instructors desper-
ately need new tools for monitoring and evaluating students’ 
cognitive states to effectively conduct remote teaching.

Physiological signals have emerged as an alternative for 
overcoming this challenge. Traditionally, it is accepted that 
physiological signals are the most effective indicator of cog-
nitive load because they provide efficient temporal resolution 
of long-term monitoring [6] and higher feasibility for esti-
mating cognitive load compared to subjective rating methods 
[7]. In particular, electroencephalography (EEG) has been 
proven to be an effective, noninvasive method for detecting, 
estimating, or predicting human brain activities [8, 9]. The 
different rhythms generated by electrical brain activity, such 
as delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta 
(14–30 Hz), and gamma (31–50 Hz), are the most popular 
features in the context of cognitive load recognition [10], 
especially the theta and alpha range, which seem to involve 
higher brain function, reflecting task difficulty or cognitive 
load among diverse task demands [11–15]. Moreover, non-
linear EEG features (i.e., spectral entropy) also perform well 
in EEG cognitive analysis [16–18].
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In addition, eye-tracking is also a commonly used meas-
ure in analysing the effectiveness of learning materials [19]. 
For eye-tracking data, previous studies have confirmed that 
pupil diameter and fixation duration are sensitive indica-
tors of variations in mental workload [20, 21]. Furthermore, 
combining EEG and eye-tracking signals can gather multi-
modal information, thereby leading to better accuracy and 
cognitive load measurement performance [22, 23].

However, improving classification performance and 
reducing computational costs is still a major challenge to 
advancing cognitive load recognition technology from labo-
ratory to real-world applications. To address this, researchers 
have attempted to develop appropriate classifiers using dif-
ferent machine learning (ML) techniques. Nue et al. devel-
oped a lightweight CNN model to classify cognitive states 
for real-time computing environments, which reduces train-
able parameters while maintaining high performance [24].

This paper focuses on improving the feature selection 
methods to select the most discriminative features to remedy 
the above challenge. In previous studies, the common algo-
rithm used for feature selection was the CFS method, where 
the features are selected by ranking their correlation coeffi-
cient between the features and class labels [25, 26]. It has been 
shown to be effective in reducing feature dimensions [27].

Recently, the widespread use of deep learning in a vari-
ety of fields has shown its superiority over conventional 
machine learning, which motivates us to apply an adaptive 
feature recalibration (AFR) convolutional neural network to 
select the most discriminative features. The AFR algorithm 
is representative of the attention mechanism and was first 
proposed by Hu et al. in computer vision [28, 29]. In this 
research, we applied the AFR method to enhance feature 
learning in the EEG and eye-tracking feature selection field, 
which is realized by diverting attention to the most critical 
features and disregarding irrelevant features, thus determin-
ing what to focus. It is a novel perspective on enhancing 
cognitive load recognition performance since cognitive 
load recognition performance relies mainly on the quality 
of selected features that characterize cognitive activity [30].

To apply cognitive load recognition techniques to a 
remote learning environment, physiological signals are used 
as a medium, and the AFR method is introduced to main-
tain a good balance between performance and complexity. 
In this paper, we acquired a two-level cognitive load using 
EEG and eye-tracking from 42 healthy subjects. First, 123 
kinds of handcrafted features were extracted, and statisti-
cal analysis was performed to verify whether physiologi-
cal features can be used to discriminate different cognitive 
load levels in distance learning. Then, the AFR method was 
employed to select discriminate features for classification, 
which was accomplished by a radial basis function support 
vector machines (SVMs) classifier. Additionally, to demon-
strate the advantages of the AFR method, the classification 

accuracy and feature dimensions used for classification are 
compared between the introduced AFR method and the tra-
ditional CFS method.

2  Material

2.1  Participants

This study was reviewed and approved by the Ethics Committee 
of Zhejiang University of Science and Technology. Forty-two 
undergraduate students (16 females, 26 males) with an average 
age of 20.81 ± 1.13 years provided written informed consent to 
participate in the study. In addition, participants’ scores in a pro-
gramming course were utilized to guarantee that they had similar 
prior knowledge ( F(1, 38) = .18, p = .67 ). Participants with (1) 
a history of major craniocerebral injury or neurological disease 
or (2) low arousal levels prior to the trial phase were excluded 
from the experiments [31].

2.2  Task and stimuli

The participants were asked to complete a Python-themed 
online course learning task. According to the conclusion 
of Mayer et al., positive emotions in multimedia learning 
facilitate cognitive processes and learning, which can be pro-
duced by the design of various multimedia elements, such 
as the layout, colour, and sound [32, 33]. Therefore, we took 
colour as an independent variable to design two versions 
of the online course that would induce two different cogni-
tive load levels. Screenshots of the two online courses are 
presented in Fig. 1. As shown in Fig. 1, the Neutral Emo-
tional Design (NED) online course was achromatic, and the 
Positive Emotional Design (PED) adopted the “Palenight 
Theme” to highlight code format. All other variables were 
maintained at constant values (including course content 
and teacher teaching style). We hypothesized that an online 
course designed with positive emotion produces lower cog-
nitive load levels.

2.3  Procedures

Subjects were randomly assigned to either the PED group 
or the NED group. Before the experiment began, we put 
electrode caps on them, injected conductive adhesive into 
the electrodes, and calibrated the eye-movement camera. We 
then asked participants to close their eyes for 3 min so that 
we could take a baseline measurement. Then, the formal 
experiment began: students were presented with the desig-
nated online course, which lasted an estimated 6 min. Upon 
viewing the assigned online course, the participants’ per-
ceptions of task difficulty were collected using a nine-point 
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Likert scale (i.e., how easy or difficult was the online course 
to understand? [34]), which has been shown to be effec-
tive in assessing learners’ cognitive load during the learning 
process [35, 36]. Meanwhile, the participants completed the 
learning performance test to evaluate their ability to under-
stand and retain the information presented in the courses. 
The entire process lasted an estimated 40 min.

3  Methods

The combined recording of EEG and eye-tracking data 
obtained in the experiment was analysed in a variety of ways, 
including signal preprocessing, feature extraction, feature 
selection, and cognitive load classification. An overview of 
the detailed analysis procedure is presented in Figs. 2 and 4.

3.1  Signal preprocessing

The EEG collection device used in this study was Open-
BCI, and the eye-tracking equipment was Tobii T120. EEG 
was measured at 15 electrode positions with a sampling rate 
of 125 Hz (see Fig. 3), arranged according to the interna-
tional 10/20 system [37]. The original EEG and eye-tracking 
data were preprocessed and analysed in MATLAB using 

customized MATLAB scripts. We visually examined the 
EEG and eye-tracking data and excluded four subjects’ 
data due to poor quality signals, leaving the PED and NED 
groups with 19 valid subjects’ data.

First, event markers at the start and the end of stimulus in 
both EEG and eye-tracking data served as synchronization 
events, and the eye-tracking data were integrated into the EEG 
data as additional channels with an upsampling rate operation 
(i.e., channels that contain the pupil diameter of each eye and 
the fixation duration); second, empirical mode decomposition 
(EMD) was used to decompose and filter the EEG signal; 
thereafter, the EEG signals were rereferenced by the average 
of all electrodes; finally, to correct artefacts such as blinking 
and muscle tension, the independent component correlation 
algorithm (ICA) was performed [38–40].

3.2  Feature extraction

The primary purpose of feature extraction is to derive salient 
features that can map physiological signals into consequent 
cognitive states. Additionally, extracting appropriate features 
plays an important role in classification tasks.

In this paper, we conducted two separate EEG data anal-
yses (i.e., nonlinear dynamics and wavelet transform) and 
calculated cognitive-related eye-tracking measures (pupil 

Fig. 1  Screenshots of two versions of the online courses

Fig. 2  The procedure of data processing (data acquisition, preprocessing, and feature extraction)
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diameter and fixation duration) based on data epochs with a 
size of 4 s. Consequently, we extracted 123 kinds of cogni-
tive load-related features, which consisted of 75 frequency 
band power features (5 rhythm × 15 channels), 45 entropy 
features (approximate, sample, and wavelet entropy × 15 
channels), and 3 eye-tracking indicators (pupil diameter of 
each eye and fixation duration).

3.2.1  Nonlinear dynamics

EEG signals are highly complex, and nonlinear analysis is 
an especially important method to analyse physiological 
time series that contain complex dynamics. In this paper, 

we studied EEG signals using two nonlinear dynamical 
methods: approximate entropy and sample entropy [41, 42].

Approximate entropy Approximate entropy (ApEn), pro-
posed by Pincus in 1991, can be used to describe the irregu-
larity of a time series [18]. The approximate entropy value 
reflects the degree of complexity corresponding to a time 
series, indicating the probability of generating a new pattern 
as the dimension increases. Intuitively, the more irregular 
and complex the time series is, the larger the corresponding 
ApEn value. ApEn can be reliably estimated from relatively 
short and noisy data. The details of the algorithm are shown 
below [43, 44].

A time series {x(N)} = {x(1), x(2), x(3),… , x(N)} consist-
ing of N pieces of data is defined, and the corresponding 
approximate entropy is calculated according to the follow-
ing steps:

Step 1: Each t successive data in a time series can form a 
t-dimensional vector, that is:

where 1 ≤ j ≤ N − t + 1.
Step 2: The maximum distance between time series 
{Xt(j)} and {Xt(k)} is denoted as d[Xt(j),Xt(k)] , which is 
the largest absolute value of the difference between each 
component:

where 0 ≤ p ≤ t − 1;1 ≤ j, k ≤ N − m + 1, i ≠ j

Step 3: Given a positive threshold � , if the maximum 
distance of two time series does not exceed the threshold 
� , the two time series are considered similar. The number 
of time series that are similar to time series {Xt(j)} can be 

(1){xt(j)} = {x(j), x(j + 1),… , x(j + t − 1)}

(2)d
[
Xt(j),Xt(k)

]
= max{|x(j + p) − x(k + p)|}

Fig. 3  Electrode placement configuration according to the 10–20 sys-
tem

Fig. 4  The overall framework of the AFR and CFS models for cognitive load classification
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counted, and its proportion to the total number of time 
series is given as:

where ∅j represents the number of time series that match 
d
[
Xt(j),Xt(k)

]
< 𝜔

Step 4: For each ∅t
j
(w) , calculate its logarithmic average:

Step 5: Increase the dimension to t + 1 . Repeating steps 
1–4, ∅t+1(w) can be calculated as:

Step 6: The approximate entropy is defined as:

Sample entropy Sample entropy (SampEn), proposed by 
Richman et al. [45], is a time series complexity measure 
based on improved ApEn, in which it does not need to per-
form its own matching [46]. Intuitively, the value of SampEn 
reflects the degree of complexity in a time series. The sam-
ple entropy is defined as follows:

3.2.2  Wavelet transform

Wavelet transform is a typical and practicable time–fre-
quency analysis method that has been widely used in analys-
ing EEG signals [47–49]. By using the Daubechies wavelet 
as the basis function of the wavelet transform, the EEG sig-
nal was decomposed into five subbands [50]: delta (1–3 Hz), 
theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz), and 
gamma (31–50 Hz); in this manner, the frequency compo-
nents of five frequency bands in the EEG signal could be 
extracted. For EEG signals of 15 channels, three features 
were extracted from the wavelet coefficients of each sub-
band, which were calculated as [51]:

(1) Wavelet energy

(3)∅t
j
(w) =

1

N − t + 1
∅j

(4)∅t(w) =
1

N − t + 1

N−t+1∑

j=1

ln∅t
j
(w)

(5)∅t+1(w) =
1

N − t

N−t∑

j=1

ln∅t+1
j

(w)

(6)ApEn(t,w,N) = ∅t(w) − ∅t+1(w)

(7)ϕt(w) =
1

N − t

N−t∑

i=1

ϕt

i
(w)

(8)SampEn(t,w,N) = ln�t(w) − ln�t+1(w)

(2) Wavelet energy ratio

(3) Wavelet entropy

where Di,j represents wavelet coefficients of the corre-
sponding decomposition levels.

3.3  Feature selection

Feature selection is a critical step in bringing cognitive load 
recognition techniques to practical use since selecting appro-
priate features can improve the model’s learning efficiency 
and significantly benefit the performance of cognitive load 
recognition [52]. In this paper, two feature selection methods 
are compared. The first is the AFR method introduced in this 
paper, which utilizes a convolutional neural network to select 
discriminative features. The second is the conventional fea-
ture selection method represented by CFS, which selects 
prominent features according to statistical parameters (i.e., 
correlation coefficient). Both of them obtain a weight dis-
tribution, the former from squeeze-and-excitation networks 
and the latter from the correlation coefficient (Fig. 4).

3.3.1  Adaptive feature recalibration method

The AFR method aims to improve feature representation 
ability by adaptively selecting the discriminative features 
through the squeeze-and-excitation (SE) network [29].

Our AFR CNN model contains three SE blocks, which 
are inserted into three normal convolution layers. The spe-
cific structure is illustrated in Fig. 5, and the parameters of 
each CNN layer are described in Table 1. A special clas-
sification task is set to evaluate the quality of the weight 
coefficients generated by the first SE block. In particular, 
we choose a depthwise convolution (DC) layer instead of 
a generic convolution (GC) for the first SE block since a 
generic convolution mixes the channel information, which 
is not conducive to channel interpretation [28].

For each SE block, the “squeeze” operation first aggre-
gates feature maps across the time dimension by carrying 
out global average pooling, which shrinks feature map 
F ∈ RN×d to S ∈ RN×1 , where N denotes the total feature 
size and d denotes the data length. Then, an “excitation” 

(9)E(i) =

ni∑

j=1

D2

i,j

(10)R(i) = E(i)∕
∑n

j=1
E(j)

(11)We = −

n∑

i=1

R(i)lnR(i)
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operation is followed, which captures the featurewise 
dependencies and outputs per-feature modulation weights 
by two fully connected layers. In particular, the first fully 
connected layer is followed by a ReLU activation func-
tion to perform dimensionality reduction. The reduction 
factor needs to be carefully adjusted within the training 
process. The second fully connected layer is followed by 
a smoothing sigmoid activation function to increase the 
dimensionality. The output of the SE operation can be 
formulated as:

where W1 and W2 refer to the two fully connected lay-
ers, σ is the sigmoid, and � represents the ReLU activation 
function.

We implement our model with the PyTorch framework. 
The binary cross-entropy was chosen as a loss function 
since our training task can be regarded as a binary task. 
Its mathematical representation is as follows.

(12)e = σ
(
W2�

(
W1(S)

))

where yi refers to the class label, pi denotes the probability 
that the class label is consistent with the class label predicted 
by the model, and N represents the total number of samples. 
Additionally, ADAM was introduced as the optimizer with a 
learning rate of 1e − 2 to speed up the correction of the loss 
function. The batch size was experimentally selected as 38, 
and the model was trained for 150 epochs. During the training, 
the dataset was split into 80% for training and the remaining 
20% for validation. We adopted a fivefold cross-validation and 
took the average accuracy as our result.

After approximately 50 iterations, the accuracy is close to 
100% with the loss down to zero. Because of available limited 
labelled training samples, the neural network may suffer from 
overfitting. However, our primary goal is to select discrimina-
tive features for a given task, regardless of its generalization 
ability on other tasks. In contrast, a degree of overfitting will 
help the prominent features to be more obvious [53].

3.3.2  Correlation‑based feature selection method

The correlation-based feature selection (CFS) method is a 
supervised method of feature selection, through which each 
feature obtains a correlation coefficient, determining how 
highly the feature correlates with the target class [54, 55]. We 
calculated the correlation coefficient between the features and 
the label of each feature to express each feature’s correlation 
with cognitive load. A large correlation coefficient value indi-
cates a strong correlation between the feature and the target 
class, which can be used as the basis for selecting features. 
Features most relevant to cognition load can be identified by 
ranking their coefficients in descending order. The correlation 
coefficient between each feature and cognitive load is calcu-
lated as follows:

(13)L = −
1

N

N∑

i=1

[
yi ∙ log

(
pi
)
+
(
1 − yi

)
∙ log

(
1 − pi

)]

Fig. 5  The structure of the AFR convolutional neural network (batch normalization after each convolutional block is omitted in the figure)

Table 1  The parameters of each CNN layer

Layer Param Output shape 
(batch, channel, 
signal)

Input 38 × 123 × 90

Depthwise conv Filter = 123, ksize = 7, stride = 2 38 × 123 × 44

Generic conv Filter = 48, ksize = 5, stride = 2 38 × 48 × 21

Generic conv Filter = 8, ksize = 3, stride = 2 38 × 8 × 10

Fully connected Weight = 38 × 80 × 32 38 × 32 × 1

Fully connected Weight = 38 × 32 × 16 38 × 16 × 1

Fully connected Weight = 38 × 16 × 2 38 × 2 × 1
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In this index, C stands for “covariance” and R stands for 
“correlation coefficient.”

3.4  Classification

To demonstrate the effectiveness of the AFR method, a uni-
form classifier needed to be predefined to compare the classi-
fication performance of the distinguishing features selected by 
the two methods. According to previous research [56], SVMs 
usually result in better generalization than softmax due to 
their maximum margin property [57]. In addition, the radial 
basis function (RBF) can map raw data to infinite-dimensional 
space, which usually leads to better performance and is widely 
used in practical applications [58]. Furthermore, the original 
SVM implementation solves binary class/nonclass separation 
problems, which is in line with our goal [56]. Thus, RBF-
SVM was adopted as a reference to evaluate the performance 
of the introduced method in our research.

The SVM approach was first introduced by Vapnik as a 
potential alternative to conventional artificial neural net-
works  [59–61]. When SVM is used, a set of training sam-
ples needs to be given, where each sample contains several 
features and is accompanied by a property label clarifying 
to which of the two categories it belongs. SVM is realized 
in the following way: a dataset with labels is given, with 
the task of finding a linear plane wTxi + b meeting the fol-
lowing condition:

where xi denotes the feature vector and yi stands for its 
corresponding label.

In addition, the RBF-SVM model was trained using 
fivefold cross-validation on the datasets in this study.

(14)Rriy
=

Criy√
Cri

Cy

(15)yi
(
wTxi + b

)
≥ 1, i = 1, 2,… ,N

4  Results

4.1  Statistical analysis of physiological features

To verify the effectiveness of applying physiological meas-
ures to distinguish two cognitive states, one-way analysis 
of variance (ANOVA) and Mann–Whitney U tests were 
conducted to make comparisons between the NED group 
( n = 19 ) and the PED group ( n = 19 ). The descriptive 
statistics of all variables in each group are presented in 
Table 2.

Figure  6 shows the weight distribution of five 
frequency band powers in different brain regions. 
One-way ANOVA revealed that there was a main 
effect with the dependent var iable theta band 
(F(1, 37) = 9.36, p = 0.004, �2

p
= .206) and alpha band power 

across the two groups(F(1, 37) = 4.43, p = .042, �2
p
= .110) . 

Compared to the NED group, subjects had increased theta 

Table 2  Means and standard deviations of all variables by conditions

NED group PED group

M SD M SD

Delta power 35.26 18.9 38.00 15.85
Theta power 10.70 5.08 16.12 5.83
Alpha power 11.72 4.36 16.37 8.60
Beta power 38.11 18.92 26.46 13.02
Gamma power 4.58 2.39 3.11 1.90
Sample entropy 0.66 0.044 0.60 0.43
Approximate entropy 1.44 0.10 1.19 0.093
Wavelet entropy 2.14 0.018 2.13 0.019
Left pupil diameter 3.71 0.42 3.29 0.35
Right pupil diameter 3.72 0.46 3.37 0.31
Fixation duration 314.00 137.50 218.12 103.23
Perceived task difficulty 5.71 1.76 4.28 1.23
Learning performance 3.10 1.73 5.09 2.07

Fig. 6  The weight distribution 
of five frequency band powers 
in different brain regions
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and alpha activity while learning the PED online courses, 
indicating that the participants in the PED group had a 
lower cognitive load level than those in the NED group 
[62].

Boxplots of approximate, sample, and wavelet entropy 
in the two experimental groups are shown in Fig.  7a. 
One-way repeated-measures ANOVA revealed a sig-
nificant main effect across two groups on approximate 
entropy  (F(1, 37) = 624.03, p < .001, η2

p
= .617) ,  sam-

ple entropy (F(1, 37) = 191.58, p < .001, η2
p
= .331) , and 

wavelet entropy (F(1, 37) = 27.31, p < .001, η2
p
= .069) . For 

subjects who watched the online course adopting a positive 
emotional design, the mean spectral entropy (i.e., approxi-
mate, sample, and wavelet entropy) was higher than those 
who watched the online course with a neural emotion design, 
suggesting that the PED online course can reduce the cogni-
tive load on learners [63].

Figure 7b shows the boxplot of eye-tracking features 
across the two conditions. The one-way ANOVA revealed 
a main effect of the two online courses on the left pupil 
diameter (F(1, 37) = 8.28, p = .008, �2

p
= .24) , right pupil 

diameter (F(1, 37) = 5.19, p = .031, �2
p
= .13) and fixation 

duration (F(1, 37) = 4.35, p = .047, �2
p
= .143) . Subjects in 

the PED group had smaller pupil diameter and shorter fix-
ation duration than those in the NED group. These results 
reveal that learning material employing neutral emotional 
design had a higher cognitive load assumption when com-
pared to PED online courses [20, 64].

In addition, subjective ratings of cognitive load and 
objective scores of the learning performance test col-
lected after the experiment were also analysed to con-
firm the results drawn from the physiological measures. 
For the ANOVA with the dependent variable subjec-
tive ratings, learners who watched NED online courses 
perceived higher difficulty than those who viewed PED 
online courses, F(1, 38) = 7.83, p = .009, �2

p
= .19 . There 

was also a significant learning performance effect, 
F(1, 38) = 5.65, p = .028, �2

p
= .24 , indicating that the PED 

group can better understand and retain the information 
presented in the courses. These results support our hypoth-
esis and are consistent with the conclusions of Mayer and 
Estrella [32] and Um et al. [33].

Fig. 7  Boxplot data for partici-
pants across the two groups: a 
spectral entropy (approximate 
entropy, sample entropy, and 
wavelet entropy). b Eye-track-
ing (left and right pupil diam-
eters, and fixation duration)
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4.2  Recognition performance comparison

To demonstrate the advantage of the introduced AFR 
method, we evaluated the performance of the distinguish-
ing features selected by the AFR method and used the CFS 
method to make an overall comparison. In the experiments, 
classification accuracy (ACC) was adopted as the evaluation 

criterion, and all these methods were retested on the datasets 
obtained from 38 valid participants in this study.

We first calculated the average weight distribution 
between features and the class labels for all EEG and 
eye-tracking features and sorted them in descending 
order. Then, a useful tensor was declared, and the fea-
tures corresponding to the top 10 weight distributions 
were initialized as the initial useful tensor. Every time 
an extra 10 features were added to the useful tensor, an 
RBF-SVM was employed. The changes in classification 
accuracy are depicted in Table 3.

In Table 3, we can learn that the AFR method can 
achieve relatively high average accuracies compared to 
the CFS method. For the top 110 dimensions, the results 
achieved by the AFR method are 2.34%, 1.96%, 1.00%, 
2.00%, 2.18%, 2.76%, 2.64%, 2.06%, 1.28%, 1.88%, and 
0.76% higher than those of the CFS method in average 
accuracy. Specifically, when the number of dimensions 
reaches 60, our AFR method reaches the highest aver-
age accuracy of 95.56%. Moreover, when the classifica-
tion accuracy reaches the maximum value, the feature 
dimension decreases to 60, which is much smaller than 
the original full dimension. However, all features need 
to be added to the useful tensor for the CFS method to 
achieve the highest average accuracy (93.5% with a full 
feature dimension of 123).

Table 3  Means and standard deviations of classification accuracies 
achieved through the AFR and CFS methods

Feature dimen-
sion

AFR CFS

M SD M SD

10 81.06 0.35 78.72 0.12
20 90.36 0.15 88.4 0.29
30 92.92 0.23 91.92 0.40
40 95.32 0.18 93.32 0.15
50 95.2 0.20 93.02 0.19
60 95.56 0.16 92.8 0.11
70 95.12 0.29 92.48 0.16
80 94.76 0.40 92.7 0.18
90 94.1 0.37 92.82 0.12
100 94.58 0.29 92.7 0.17
110 94 0.21 93.24 0.21
120 93.34 0.21 93.28 0.29
All 93.44 0.21 93.4 0.19

Fig. 8  The classification performance of the selected feature combination using the AFR and CFS methods (a standard error of less than 0.3 was 
omitted in the figure)
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5  Discussion

In this study, we combined EEG and eye-tracking measures 
to evaluate cognitive load in distance learning. As expected, 

the statistical analysis results in “Sect. 4.1” indicate the 
feasibility and validity of using physiological measures to 
monitor cognitive load in remote learning. The learners with 
lower cognitive load had higher theta and alpha band power, 

Fig. 9  The feature weights obtained by the AFR method (“mean weight” and “mean + standard deviation weight” are marked in the figure)

Fig. 10  The average feature weight on each subject of different kinds of features
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higher approximate, sample, and wavelet entropy, smaller 
pupil diameter, and shorter fixation when watching online 
courses. The results in “Sect. 4.2” demonstrate that our AFR 
method is better in maintaining a good compromise between 
performance and computational cost compared to the CFS 
method, as well as a 2.06% improvement in accuracy and a 
51.21% reduction in feature dimension. Therefore, we dem-
onstrated that the application of physiological measures and 
the AFR method is beneficial to enhancing the feasibility of 
cognitive load recognition in distance learning.

There are three possible explanations for the excel-
lent performance of the AFR method. First, this might 
be because the AFR method is highly sensitive to irrela-
tive noise, which is consistent with previous findings [65]. 
Figure 8 shows the visualization result of the classification 
performance with discriminative features obtained by the 
AFR and CFS methods. As shown in Table 3, for the AFR 
method, the classification accuracy achieved by 60 dimen-
sions (95.56%) is better than that achieved by full feature 
dimensions (93.44%), which demonstrates the ability of the 
AFR method to effectively remove interference information. 
In addition, the accuracy of the AFR method presents an 
overall downwards trend after the highest point in dimen-
sion 60 (see Fig. 8), indicating that fusing irrelevant inter-
fering features reduces the recognition accuracy. In contrast, 
for the CFS method, all features need to be added to the 
useful tensor to achieve the highest average accuracy. As 
shown in Fig. 8, the CFS method accuracy shows a fluctuat-
ing upwards trend after 40 dimensions, indicating the poor 
ability of the CFS method to identify redundant or irrelevant 
information.

Second, we plotted the average weights of all subjects for 
each feature and highlighted features with average weight 
values larger than “mean + standard deviation” (see Fig. 9). 
It can be seen that the highlighted physiological features 
were not limited to a particular type of feature, which were 
in turn scattered in all types of features, indicating that the 
AFR method can help us combine the robust advantages of 
multiple and multimodal physiological features to signifi-
cantly enhance the cognitive load recognition performance. 
These findings were consistent with previous studies show-
ing that combining multimodal physiological features could 
enhance recognition [66].

The last possible explanation might lie in the strength 
of the multiresolution convolutional neural network, which 
makes the AFR method not only powerful but also superior 
to statistical and machine learning algorithms [65]. AFR 
explicitly models the interdependencies between the features 
and efficiently captures features that are most salient for a 
given task through a residual squeeze-and-excitation block, 
which helps the lower layers of the network to exploit more 
contextual information outside its local receptive field [67].

The application of physiological measures and the AFR 
method opens the way for cognitive load recognition dur-
ing the online teaching of engineering courses and the 
results will hopefully serve as helpful feedback for teach-
ers to adjust teaching strategies immediately and reason-
ably. Additionally, this technology also provides evidence 
for evaluating online courses. In this case, the learners 
who received the PED online course had higher theta and 
alpha band power, higher approximate, sample, and wave-
let entropy, smaller pupil diameter, and shorter fixation 
duration, indicating that online courses employing positive 
emotional design consume less cognitive load than those 
using neural emotional design, thereby leading to better 
learning performance [62].

However, one limitation of this study is that we ignored 
individual-specific bias. The weight distributions of indi-
vidual features for each subject are visualized in Fig. 10. 
Although the results for most subjects are generally consist-
ent with Fig. 9, the discriminative features showed differ-
ences among different subjects. This is an important issue 
for future research since developing a suitable algorith-
mic model to address individual-specific bias may further 
enhance the performance of cognitive load recognition.

The future development of this research will focus 
on combining the channel attention mechanism with 
the spatial attention mechanism. The channel attention 
mechanism diverts attention to the most critical features, 
while the spatial attention mechanism diverts attention 
to the most relevant parts. The combined use of the two 
mechanisms may further enhance feature learning, lead-
ing to higher classification performance and lower total 
computational cost by emphasizing important information 
while suppressing noise.

6  Conclusion

The major takeaway of this study was to introduce physi-
ological measures and the AFR method for higher feasibil-
ity in cognitive load recognition. We utilized multimodal 
physiological signals as tools to monitor the learners’ 
cognitive loads and adopted the AFR algorithm to further 
enhance the feasibility of cognitive load recognition in 
remote learning. The results demonstrated that physiologi-
cal measures can significantly distinguish different cogni-
tive load levels. Additionally, the introduced AFR algorithm 
can be effectively used to capture discriminative features, 
thus achieving good performance in terms of accuracy and 
computational cost. Continuously monitoring learners’ cog-
nitive states provides not only instantaneous recognition of 
cognitive overload or underload but also valuable feedback 
to distance-learning system designers and administrators so 
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they may take appropriate countermeasures to improve the 
overall learning effect.
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