
1SCIeNtIfIC RePORts | 7: 8781  | DOI:10.1038/s41598-017-09374-z

www.nature.com/scientificreports

Repetition suppression to objects 
is modulated by stimulus-specific 
expectations
Christian Utzerath  1,2, Elexa St. John-Saaltink2, Jan Buitelaar1,2 & Floris P. de Lange2

Repeated exposure to the same stimulus results in an attenuated brain response in cortical regions that 
are activated during the processing of that stimulus. This phenomenon, called repetition suppression 
(RS), has been shown to be modulated by expectation. Typically, this is achieved by varying the 
probability of stimulus repetitions (Prep) between blocks of an experiment, generating an abstract 
expectation that ‘things will repeat’. Here, we examined whether stimulus-specific expectations also 
modulate RS. We designed a task where expectation and repetition are manipulated independently, 
using stimulus-specific expectations. We investigated to which extent such stimulus-specific 
expectations modulated the visual evoked response to objects in lateral occipital cortex (LOC) and 
primary visual cortex (V1), using functional magnetic resonance imaging (fMRI). In LOC, we found that 
RS interacted with expectation, such that repetition suppression was more pronounced for unexpected 
relative to expected stimuli. Additionally, we found that the response of stimulus-preferring voxels in 
V1 was generally decreased when stimuli were expected. These results suggest that stimulus-specific 
expectations about objects modulate LOC and propagate back to the earliest cortical station processing 
visual input.

Repeated exposure to the same stimulus results in a weaker brain response in cortical regions that are relevant 
for processing that stimulus1–3. This phenomenon, called repetition suppression (RS), has been widely studied 
within different modalities and brain regions. Despite this, its underlying mechanisms are still not fully under-
stood4. This may be explained by the fact that RS is multifaceted and the result of several concurrent processes5.

One potentially important modulatory factor of RS is stimulus expectation. In an elegant fMRI experiment, 
Summerfield and colleagues showed that RS in the fusiform face area (FFA) was more pronounced when repe-
titions of face stimuli were expected relative to unexpected6. In spite of some controversy regarding the gener-
alizability and interpretation of this observation7, 8, later studies have consistently observed a modulation of RS 
by expectation for faces in face-selective visual regions9, and for familiar non-face stimuli in the lateral occipital 
complex (LOC)10.

These previous studies investigated modulations of RS by making repetitions more or less frequent: i.e., by var-
ying Prep, or the probability of a repetition, participants come to generally (not) expect repetitions. In life however, 
expectations often pertain to specific stimuli (e.g., expecting to see a cat upon hearing a meow). Whether and how 
RS is modulated by such stimulus-specific expectations is unclear. Although, there are several neurophysiological 
studies showing a modulation of neural activity by stimulus-specific expectations11–13, To our knowledge, no one 
has yet demonstrated the modulation of RS by such stimulus-specific expectations.

Here, we extend the literature by investigating how stimulus-specific expectations about objects modulate the 
response in object-selective cortical area LOC, using fMRI. We addressed this question by presenting our partic-
ipants with different objects while varying stimulus expectation and stimulus repetition independently (Fig. 1a). 
Our participants learned that that some stimuli were likely to repeat, whereas other stimuli were likely to alternate 
to a specific different stimulus. We then tested the effects of these expectations by occasionally violating them 
during a behavioral category discrimination task, and a subsequent fMRI experiment.

Additionally, it is an open question whether these modulations of RS by expectation, which are typically 
observed in higher-order visual regions such as LOC, propagate back to primary visual cortex (V1). Many 
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neurocomputational models describe visual perception as a generative process in which prediction signals from 
upstream brain areas propagate down to modulate sensory processing at the earliest levels including V114–17. 
However, studies on the expectation modulation of RS so far do not report whether their reported effects prop-
agate back to V1. To explore this issue, we expanded our analysis to primary visual cortex. If expectations about 
object repetitions were to propagate along the visual hierarchy, we hypothesized to find corresponding expecta-
tion effects in LOC and V1.

Finally, a tangential goal of our study was to determine whether expectation and repetition effects would 
be modulated by autistic personality traits. This question was inspired by current accounts that cast autism as a 
disorder whereby the integration of priors and sensory evidence is altered18–20; recent work saw a modulation of 
repetition but not expectation suppression (ES) by normal variation in autistic traits21, 22.

To preview our results, we found that stimulus-specific object expectations modulated RS in LOC. This mod-
ulation propagated down to V1, where voxels decreased their response when stimuli were expected. These results 
were unmodulated by normal variation in autistic personality traits in our sample.

Methods
Participants. We recruited 24 right-handed, healthy student participants (17 female, mean age 22.8 ± 2.7 
years) who gave written, informed consent and received course credit for their participation. Experimental pro-
cedures were approved by the local ethics committee (Commissie Mensgebonden Onderzoek Regio Arnhem-
Nijmegen, the Netherlands) under the general ethics approval (“Imaging Human Cognition”, CMO 2014/288) 
and the experiment was conducted in compliance with these guidelines.

Stimuli. We created stimuli (a lion, turtle, bike, and a car; Fig. 1a) as object outlines following designs by 
Rossion and Pourtoise23. Using the SHINE toolbox24, we matched these images on their spatial frequencies and 
mean luminance. We also generated a Fourier scrambled version of each stimulus, by randomly shuffling the 
phase of its spatial frequencies. The scrambled images were again matched in terms of spatial frequency and 
luminance using the same SHINE procedure. Stimuli subtended a visual angle of approximately 7.5° by 5°. The 
tasks were programmed using MATLAB R2012b (The MathWorks, Natick, MA, USA) in combination with 
PsychToolbox25.

On each trial, we presented the participants with two consecutive stimuli (a pair; Fig. 1b). Pairs consisted of 
either the repetition of a single stimulus, or an alternation between two stimuli. There were four different stim-
uli, of which two had a 75% probability of repeating and two had a 75% probability of alternating, resulting in 
four possible outcomes: expected and unexpected repetitions, as well as expected and unexpected alternations 
(Fig. 1a). Stimulus transitions would always occur across category (e.g., from animal to vehicle). Which stimuli 
would repeat was counter-balanced between participants. Trial sequences were presented in randomized order.

General procedure and tasks. Within five days preceding the experiment, participants were trained on 
two tasks. First, participants practiced 128 trials of a category discrimination task. In this task, participants indi-
cated on each trial whether the second stimulus in each pair depicted an animal or a vehicle (see Fig. 1b). Only 
expected pairs were shown to facilitate learning of which stimuli would repeat or alternate. All trials started with 
the sequential presentation of one of the stimulus pairs. Each stimulus was shown for 250 ms, separated by an 
inter-stimulus interval of 500 ms. Trials ended with an inter-trial interval of 4.5 s, to which up to 2 s of jitter were 
added (Fig. 1b).

Figure 1. Paradigm and task. (a) Examples of fixed stimulus pairings. Participants learned that some stimuli 
are most likely to repeat, whereas others are most likely to alternate, thus creating expected repetitions (ER) 
and expected alternations (EA), as well as unexpected repetitions (UR) and unexpected alternations (UA). 
(b) Stimulus display, here showing an expected repetition (ER) trial. In the behavioral discrimination task, 
participants responded to the category of the second stimulus (vehicle or animal) during the inter-trial interval 
(ITI). During the fMRI oddball task, participants responded to occasional oddball targets (17.4% of trials) in 
which the stimulus was shown at 60% of its normal size.
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During the subsequent testing session, all participants completed both a behavioral and fMRI experiment. Just 
prior to the fMRI experiment, participants performed 96 trials of the behavioral category discrimination task. 
Now, expected repetitions (ER) and expected alternations (EA) occurred on 75% of the trials, such that they could 
be contrasted with unexpected repetitions (UR) and unexpected alternations (UA). The reaction time measure-
ments collected during the behavioral task allowed us to probe whether expectation and repetition affected the 
behavioral response to the stimuli, and whether participants had learned the transition probabilities (cf. Fig. 2). 
Aside from measuring these behavioral effects, this procedure ensured that participants were amply exposed to 
the trained stimulus transitions.

Afterwards, participants performed an oddball task in the fMRI. During this task, occasionally the second 
stimulus of a pair was presented at 60% of its original size (the target), and participants pressed a button whenever 
they detected a target. Of note, the learnt transition probabilities were irrelevant for this task. Of all trials, 17.4% 
contained an oddball target, and target presentation was counterbalanced across conditions. Target trials were 
not considered for fMRI analysis. This means that any sort of behavioral response could not confound the fMRI 
responses of the participants and further ensured people attended all conditions equally. Finally, 13% of trials 
were null events in which no stimuli were presented. These null trials allowed us to measure the baseline response 
of the brain against which the experimental conditions could be contrasted, and served to de-correlate the other 
conditions in which visual stimuli were presented26.

During fMRI, participants engaged in four runs of the oddball task for a total of 368 trials during approx-
imately 40 minutes total scanning time. Lastly, we performed a localizer scan to identify object-sensitive brain 
regions. The localizer lasted approximately 16 minutes and consisted of blocks of 10 s, during which one stimulus 
or scrambled image was shown at a time, flashing on and off at 2 Hz. Participants’ task was to detect whenever a 
stimulus was presented slightly off-centre for about 300 ms, which occurred approximately twice per block.

To quantify autistic traits, participants also completed the Autism Spectrum Quotient questionnaire, a 
50-item, non-clinical instrument that measures personality traits related to the autism spectrum27.

Image acquisition and pre-processing. Images were acquired on a 1.5 T Siemens Magnetom Avanto 
MRI system (Siemens, Erlangen, Germany). A high-resolution structural image was created using a T1-weighted 
sequence (TR = 2.25 s, TE = 2.95 ms, 1 × 1 × 1 mm in-plane resolution). Functional images were acquired using 
a 2D EPI sequence (TR = 2.02 s, TE = 40 ms, 3 × 3 × 3.5 mm, 26 sagittal slices). Data were pre-processed using 
SPM8 (Wellcome Trust Centre for Neuroimaging, London, UK). We discarded the first four volumes of every run 
in order to allow for initial equilibrium. Functional images were first spatially realigned to the mean and then cor-
rected for slice timing. The mean functional image was brought in register with the T1. The T1 was furthermore 
segmented using SPM8’s segment function, which yielded normalization parameters into MNI space. Finally, 
functional images were normalized into MNI space, and smoothed (6 × 6 × 6 mm FWHM).

Construction of individual Regions Of Interest (ROIs). For each participant, we defined two 
participant-specific Regions Of Interest (ROIs): V1 and LOC. LOC was individually identified based on each 
participant’s LOC localizer. We identified the 100 voxels per hemisphere that responded most strongly to objects 
in comparison to scrambled objects during the localizer session, based on the corresponding contrast image. To 
ensure reasonably consistent anatomical location between subjects, only voxels were considered that were also 
part of a significant cluster for objects > scrambles at the group level, at a voxel threshold of p < 0.001 (Fig. 3a). 
Voxels that were located near V1 were also not considered, to prevent potential overlap between ROIs (see below).

In order to identify every participant’s V1, we used Freesurfer’s automatic anatomical reconstruction algo-
rithm to parcellate every participant’s T1 in native space (surfer.nmr.mgh.harvard.edu/)28. We used an automated 
method to predict V1 based on cortical folds. This method can be used to predict the retinotopic organization 

Figure 2. Reaction times during category discrimination task (preceding the fMRI experiment). Error bars 
reflect within-subject standard error of the mean (SEM)46, 47. There were significant main effects of repetition 
and expectation. Additional information about responses can be found in supplemental Figure S3.

http://S3
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Figure 3. fMRI ROI results. (a) LOC ROI. Panel shows in violet the group response to the object > scrambles 
contrast during the localizer, and superimposed on a transversal slice of SPM’s MNI template at z = 0. For 
each participant individually, per hemisphere the 100 most object-selective voxels were chosen within this 
anatomical site. (b) Reconstructed V1 (left, right) shown in yellow on an inflated brain from one representative 
participant. (c-d) Mean parameter estimates for LOC and right V1 per condition. Error bars reflect within-
subject SEM. Additional information on the ROI and beta parameters within these ROIs can be found in the 
supplementary Figures S1, S2, and S5.

http://S1
http://S2
http://S5
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of striate cortex for an individual with accuracy equivalent to 10–25 min of functional mapping28, 29 (Fig. 3b; 
Figure S1). The reconstructed surface was brought in register with the functional scans and the labels corre-
sponding to the predicted sites of V1 were converted into volume space. Using SPM8, this ROI was transformed 
into MNI space. To ensure the selection of voxels with a positive response to objects, we only considered voxels 
that had a positive response to the contrasts objects > scramble and objects > baseline. For data analysis, we then 
selected a subset of the 100 most responsive voxels to the contrast objects > baseline in V1. This method ensured 
that these voxels were responsive to the stimuli and located at anatomically plausible sites. Additional analysis 
after data acquisition showed that both LOC and V1 had consistent condition means across different potential 
ROI sizes (Figure S2). Finally, any voxels that, based on this selection procedure, came into consideration for both 
V1 and LOC were discarded entirely. This ensured that there was no overlap between the ROIs.

Statistical analysis. Reaction times during the behavioral experiment and the oddball trials during the 
fMRI experiment were analyzed using a 2 (expected versus unexpected) × 2 (repetition versus alternation) anal-
ysis of variance (ANOVA).

With regards to the fMRI experiment, our ROI analysis was based on a General Linear Model (GLM) per-
formed in SPM8. We used a 128 s high-pass filter to remove scanner drifts. For the main experiment, we modeled 
separate regressors for expected repetitions, unexpected repetitions, expected alternations, unexpected alterna-
tions, oddballs, and null events. For the localizer, we modeled null events, object and scramble presentations. 
These regressors were then convolved with SPM8’s canonical hemodynamic response function. We furthermore 
included the motion parameters obtained during realignment, as well as their first and squared first derivatives 
as nuisance regressors.

For the ROI analysis, we then took the resulting beta parameter estimates within LOC and V1 and calculated 
each participant’s mean parameter estimate per ROI, hemisphere, and condition. For each region, we subjected 
these to a 2 (expected versus unexpected) × 2 (repetition versus alternation) × 2 (left versus right hemisphere) 
within-subjects repeated measure analysis of variance (ANOVA). Interactions were further examined using 
post-hoc t-tests. We also gauged potential modulatory effects of autistic personality traits on RS and ES using an 
analysis of covariance, whereby mean-centered AQ was entered as a covariate for the factors expectation, repeti-
tion, and hemisphere.

Results
Behavioral performance during the category discrimination experiment. Participants were 
highly accurate (95% ± 8%, mean ± SD) during the behavioral category discrimination task experiment, indi-
cating that participants successfully engaged in the task. Responses were faster when the second stimulus was a 
repetition compared to an alternation (F(1,23) = 12.62, p = 0.002), and when the second stimulus was expected 
compared to unexpected (F(1,23) = 21.07, p = 1.3e-4, see Fig. 2). There was no interaction between these two 
factors (F(1,23) = 1.33, p = 0.26). Thus, behavioral performance in the discrimination task was sensitive to both 
stimulus repetition and stimulus expectation. Additional analysis showed that effects of expectation and repeti-
tion on response time emerged already at the start of the experiment and were stable throughout, indicating that 
participants fully learned the stimulus transition prior to the fMRI experiment (Figure S3).

Behavioral performance during the fMRI oddball experiment. During the fMRI experiment’s odd-
ball task, participants were highly accurate at detecting the oddball trials during the fMRI session (97% ± 8%, 
mean ± SD), indicating that participants successfully engaged in the task. Neither percentage correct nor reaction 
times were affected by expectation and repetition during the fMRI oddball task (see Figure S4).

Effects of stimulus repetition and expectation in LOC and V1. First, we examined the effects of rep-
etition and expectation in LOC. In line with previous reports of repetition suppression for objects in this region, 
repetitions evoked less activity than alternations (F(1,23) = 11.72, p = 0.0023; see Fig. 3c). Furthermore, there was 
a significant interaction between repetition and expectation (F(1,23) = 11.4, p = 0.0011). Post-hoc tests revealed 
that repetition suppression was significantly stronger for unexpected compared to expected stimuli (t(23) = 2.21, 
p = 0.038). These effects did not interact with hemisphere (all p > 0.45).

In V1, there was no main effect of repetition (F(1,23) = 0.55, p = 0.46) nor did repetition interact with hem-
isphere (p = 0.48). Furthermore, expectation did not significantly modulate the visual response (F(1,23) = 2.2, 
p = 0.15; Fig. 3d). However, expectation interacted significantly with hemisphere (F(1,23) = 5.22, p = 0.025). 
This prompted us to inspect early visual cortex separately for each hemisphere. While there were no effects in 
the left hemisphere (all p > 0.8), the right hemisphere showed significant expectation suppression (F(1,23) = 5.1, 
p = 0.034). The expectation x repetition interaction was not significant (F(1,23) = 0.03, p = 0.86).

Additional analysis showed that these results were qualitatively similar for different selections of the amount 
of voxels included for each ROI (see Figure S2). We furthermore probed the stability of the expectation effect over 
time by contrasting expected and unexpected trials separately for each of the four runs of the experiment. This 
analysis showed that the modulatory effects of expectation were stable over time, as they did not behave differ-
ently during the different runs of the task (Figure S5).

Modulation of expectation and repetition effects by AQ. Our sample had an average AQ of 14.79 
(SD = 7.99), falling within the range of expected scores for healthy individuals27. Neither in LOC (all p > 0.7) nor 
in V1 (all p > 0.54) did effects of expectation or repetition covary with AQ. The expectation x repetition interac-
tion did not covary with AQ in either region (both p > 0.48).

http://S1
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Discussion
Here we showed that stimulus-specific expectations about objects modulate repetition suppression (RS) in 
object-selective area LOC. This extends the literature on modulations of RS by expectation, which focused on a 
more general form of expectation by manipulating the overall probability that ‘things will repeat’. Furthermore, 
the expectation modulation propagated to regions within V1, resulting in activity suppression for expected 
stimuli.

Interaction between stimulus expectation and stimulus repetition in LOC. We observed expec-
tation modulations of RS for stimulus-specific expectations. Interestingly, our results – larger RS for unexpected 
stimuli – may appear different from those described earlier6, 8, where RS effects are reported to be boosted when 
repetitions are expected. This contradiction, however, is more apparent than real. In the papers by Summerfield 
et al. and Larsson and Smith, the difference in BOLD activity was assessed between alternations and repetitions 
(i.e., RS) in the context of frequent repetitions (rep block) or infrequent repetitions (alt block). When quantifying 
RS during blocks where repetitions are frequent, the researchers contrasted frequent (i.e., expected) repetitions 
with infrequent (i.e., unexpected) alternations. In our paradigm, this corresponds to expected repetitions and 
unexpected alternations. Conversely, in blocks where repetitions are infrequent, they compared frequent (i.e., 
expected) alternations with infrequent (i.e., unexpected) repetitions (see also ref. 30). When comparing the con-
dition means to our corresponding conditions, the differences between conditions appear in good agreement.

Contrary to Prep designs, the stimulus-specific design of the current study affords the possibility to create 
(potentially more precise) stimulus expectations, which can be manipulated independently of stimulus repetition 
between trials. This may provide some benefits over relative to Prep manipulations.

Stimulus familiarity may facilitate expectation effects in LOC. We find that the BOLD response in 
LOC to objects is modulated by expectation. Earlier studies that used non-face stimuli had been inconclusive: 
Kovács and colleagues for instance found no Prep effects in ventral visual cortex for everyday objects31, congruent 
with single-unit recordings in monkeys7. However, in a subsequent fMRI study, expectation modulations of RS 
were found for non-face stimuli in ventral visual cortex. These modulations occurred for roman letters but not 
false fonts10. Supposedly, the familiarity that participants had with roman letters (but not false fonts) enabled 
expectation effects to occur10. Yet familiarity alone does not seem to suffice for eliciting expectation effects: when 
Kovács and colleagues31 presented their participants everyday objects, they observed no corresponding effect of 
expectations. These objects, too, must have at least been recognizably familiar to the participants. Why would 
familiar roman letters and our stimuli, but not (familiar) everyday object cause expectation effects?

A reconciliatory view would be that perhaps conceptual familiarity alone is not sufficient to effect these mod-
ulations. Instead, perceptual rather than conceptual familiarity might be required. Grotheer and Kovács10 them-
selves argue that many phenomena with face stimuli in ventral visual cortex can be seen as effects of perceptual 
expertise rather than of viewing faces per se. This builds on the notion that ventral visual cortex hosts brain areas 
that are not dedicated processors for various stimulus categories but instead areas of perceptual expertise32, 33. 
Similarly, electrophysiological work shows that perceptual familiarity with object images, gained over prolonged 
exposure, alters the response to objects in macaque IT34. In our experiment, participants completed a practice ses-
sion prior to the behavioral and fMRI experiments and were shown a highly restricted set of four images during 
the task. This ensured familiarity with both the physical appearance as well as predictive relationships between 
our stimuli. Likewise, expertise for roman letters comes from a lifetime of reading and writing them in various 
fonts and sizes. While the stimuli used by Kovács and colleagues31 were likely recognizable for their participants, 
perceptual familiarity with the actual stimuli might have been lacking. It is therefore possible that perceptual 
familiarity, or access to highly detailed visual representations of the stimuli, facilitates expectation effects during 
visual processing.

No effect of stimulus repetition in V1. Our study found no RS in V1. It is possible that this is a conse-
quence of our task design: as there were only four stimuli in the experiment, these stimuli were shown very often 
throughout the experiment. This might have caused adaptation even for alternation trials, eventually abolishing 
RS in V1. We think this is unlikely however. First, this would beg the question why RS is absent in V1, but pres-
ent in LOC. Second, studies on fMRI adaptation have shown that adaptation occurs even after many stimulus 
presentations35. Interestingly though, RS might depend on inter-stimulus interval (ISI) and occur only when the 
ISI is sufficiently short36. The same study also found that the ISI at which adaptation was found increased along 
the cortical hierarchy, consistent with the notion that temporal integration windows increase along the cortical 
hierarchy37. It is therefore possible that the ISI of our experiment exceeded the window during which V1 displays 
significant RS, but remained inside the window at which LOC exerts RS.

Effects of stimulus expectation in V1. Do effects of stimulus expectation trickle down to primary visual 
cortex? So far, the evidence for this issue remains divergent: an initial investigation in which expectations were 
implemented as Prep on faces revealed expectation effects in the lingual gyrus38. Yet a follow-up study, wherein 
stimulus expectation and repetition were varied independently, did not find any such back-propagation of stim-
ulus expectations9 (while observing these at higher order areas). This led to the suggestion that stimulus expec-
tation would generally not back-propagate to earliest visual areas when stimulus repetition and expectation were 
varied independently9, 30. Yet there are studies showing that the response of V1 is modulated by stimulus expecta-
tion to stimuli such as gratings39–41 or motion42 (see also ref. 43). Thus, it is an open question whether a stimulus 
expectation that acts on LOC (and RS in LOC) would also act on V1, especially since RS is in general much less 
pronounced in V1 than higher order areas44, 45.
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In the current study we found that stimulus-specific voxels in the right primary visual cortex decreased their 
activity when stimuli were expected. This would suggest that stimulus expectations can indeed back-propagate 
to V1. This is in line with neurocomputational models that cast visual perception as a generative process. Here, 
expectations at higher levels of the cortical hierarchy propagate down to modulate sensory processing at the 
earlier levels, including V114–17. Further work should be devoted to the complex interplay of visual areas during 
visual processing.

Normal variation in autistic personality traits did not affect effects of expectation and repe-
tition. Recent theoretical accounts cast autism as an altered balance between prior beliefs and sensory evi-
dence18–20. Work by Ewbank and colleagues21 suggest that even normal variation in autistic personality traits 
predicts RS in ventral visual cortex (but not the effect of expectation on RS22). We did not observe such a modu-
lation in our data, suggesting that the experimental effects observed in our specific paradigm are not modulated 
by normal variation in autistic personality traits.

Conclusion
We found that repetition suppression (RS) to objects in LOC was modulated by stimulus-specific expectations, 
such that RS was more pronounced for unexpected relative to expected stimuli. Additionally, we found that the 
response of stimulus-preferring voxels in V1 was generally decreased when stimuli were expected. This pattern 
of results suggests that stimulus-specific expectations about objects modulate LOC and propagate back to the 
earliest cortical station processing visual input.
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