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We introduce a systematically improvable family of variational wave functions for
the simulation of strongly correlated fermionic systems. This family consists of Slater
determinants in an augmented Hilbert space involving “hidden” additional fermionic
degrees of freedom. These determinants are projected onto the physical Hilbert space
through a constraint that is optimized, together with the single-particle orbitals, using a
neural network parameterization. This construction draws inspiration from the success
of hidden-particle representations but overcomes the limitations associated with the
mean-field treatment of the constraint often used in this context. Our construction
provides an extremely expressive family of wave functions, which is proved to be
universal. We apply this construction to the ground-state properties of the Hubbard
model on the square lattice, achieving levels of accuracy that are competitive with those
of state-of-the-art variational methods.
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Many-body quantum systems are computationally challenging because of the exponential
dependence of the size of the Hilbert space on the number of particles. Variational
approaches address this problem by considering a class of wave functions depending
on a set of parameters over which an optimization is performed. In this way, the
computationally intractable search over the full Hilbert space is reduced to a search over
a submanifold of dimension merely polynomial in the number of particles. Variational
approaches have proved successful in providing qualitative and quantitative insights into
the nature of the ground state and the low-energy excited states of a number of interacting
quantum systems. For example, in the case of spin systems with arbitrary pairwise
interactions, it has been proved (1, 2) that the ratio between the energy of optimized
mean-field states and the true ground-state energy approaches a finite constant in the limit
of large system size. The subsequent development of systematically improvable variational
wave functions has led to quantitative agreement with exact energies of one-dimensional
systems using matrix product states and recently also in two dimensions using neural-
network and tensor-network states (3, 4).

The remarkable success of variational states in the description of quantum spin systems
unfortunately does not have a parallel in correlated systems of fermions, however. It
is known, for example, that the natural mean-field analog of direct-product states,
the so-called Slater determinant (SD) states, fails to even qualitatively describe the
thermodynamic limit of Fermi–Hubbard-type Hamiltonians (2) and the development
of systematically improvable neural-network–based trial wave functions is currently an
active field of research both in second quantization (5–7) and in first quantization (8–14).
In the latter approach, the wave-function amplitudes must be antisymmetric functions
of the particle configurations, while being able to capture correlations beyond the single-
particle Slater determinants. This is typically achieved either by considering determinants
of multiparticle orbitals (9, 11, 13) (backflow transformations) or by Slater determinants
of single-particle orbitals multiplied by a neural-network Jastrow factor that depends on
the lattice occupations (8, 10). Despite being universal in the lattice, the Slater neural-
network Jastrow wave functions seem to struggle to get competitive energies in the
strong-coupling regime.

The Hubbard model on the square lattice has been the subject of intense theoretical
scrutiny and constitutes the most iconic “simple” model of an interacting quantum system.
Despite this simplicity, a full computational solution is still to be achieved. For this model,
as well as related lattice models of interacting fermions such as the t-J and Kondo lattice
models, significant insight has been obtained using hidden-particle approaches.* Although

*In the condensed-matter physics literature, the term “slave-particle” representations has been used historically to denote
approaches in which the physical Hilbert space is viewed as the projection of an enlarged Hilbert space, often in conjunction
with a subsequent mean-field treatment. In this work, we deem it appropriate to use a different terminology and denote by
“visible” and “hidden” the previously called “auxiliary” and “slave” degrees of freedom, respectively.
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a number of different formulations are available (15–33), all such
approaches share a basic concept that consists of augmenting
the physical Hilbert space by auxiliary degrees of freedom and
subsequently performing a projection back to the subspace of
physical states. This projection can be regarded as a constraint that
selects the representative states in the augmented space that are
identified with the basis of the physical Hilbert space. In many
cases, a mean-field saddle-point approximation is applied both to
the auxiliary particle Hamiltonian and to the treatment of the
constraint, which is implemented with static and uniform La-
grange multipliers. This mean-field approximation is uncontrolled
in general, except when the saddle point is associated with the limit
of large number of flavors (17, 19). Even in those cases, going
beyond the saddle-point level is challenging and no systematic
improvements beyond the mean-field variational wave functions
are available, especially in view of the approximate treatment of the
constraint.

In this article, we draw inspiration from hidden-particle ap-
proaches to construct a systematically improvable family of varia-
tional fermionic wave functions. These states are obtained as the
exact projection of Slater determinant states in a Hilbert space
augmented by hidden-fermionic degrees of freedom. One of the
major novelties of the proposed method is that the constraint is
parameterized by neural networks, giving rise to an extremely flex-
ible family of wave-function ansätze. The constraint is optimized
together with the orbitals in the enlarged Hilbert space with the
goal of minimizing the energy. The expressive power of this class
of wave functions is demonstrated in a variational Monte Carlo
(VMC) setting, obtaining an accuracy that is competitive with
the state of the art for the ground-state properties of the Hubbard
model in the square and rectangular lattices.

This paper is structured as follows: We begin (Section 1) by
introducing the Hamiltonian and the physical degrees of freedom
of the problem. In Section 2, we introduce the fundamentals of the
hidden-fermion representation, describe the Slater determinant in
the augmented space together with the fully parameterized con-
straint function, and prove the universality of this representation.
Section 2 also contains details on the VMC implementation. In
Section 3, we present ground-state energy benchmarks for the
Hubbard model with increasingly large system sizes and demon-
strate that we can stabilize competing orders of charge and spin
stripes for the Hubbard model on rectangular lattice geometries.

1. Background: States and Hamiltonian

In this paper we develop a general technique for approximating the
ground state of interacting fermionic Hamiltonians with discrete
degrees of freedom—as defined for example by discrete orbitals or
spatial coordinates. As a specific application, we focus here on the
Fermi–Hubbard model, whose Hamiltonian reads

Ĥ =−
∑

σ∈{↑,↓}

∑
{i,j}∈E

tij
(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
+
∑
i∈V

Ui n̂i↑n̂i↓,

[1]
where the binary index σ ∈ {↑, ↓} labels two species of fermionic
modes satisfying the canonical anticommutation relations,

{ĉ†iσ, ĉjσ′}= δij δσσ′ , {ĉiσ, ĉjσ′}= 0. [2]

The fermionic modes ĉiσ are the physical (electronic) degrees
of freedom (DOF). The fermion dynamics are described by the
lattice with V sites defined by the nonzero entries of the tij
hopping matrix, as well as by the onsite coulomb repulsion Ui . In
the following, we exclusively focus on the square and rectangular

lattices with uniform hopping (tij = 1) and onsite repulsion,
leaving more general geometries to future studies.

In this work we are concerned with the subspace of definite
particle numbers N↑ and N↓ of the individual spin species, in
which case the two species are distinguishable from each other.
However, it is convenient to impose full antisymmetry between
the spin species to enhance the expressivity of the family of trial
wave functions, like in the so-called unrestricted Hartree–Fock
(HF). The projection to definite N↑ and N↓ subspace is imposed
in the sampling of the wave-function amplitudes.

2. Hidden-Fermion Formalism and
Wave-Function Ansatz

A. States in the Augmented Hilbert Space: Constraint Func-
tion. Recall that the multiparticle physical Hilbert (Fock) space is
spanned byM := 2V creation operators ĉ†iσ applied in all possible
ways to the Fock vacuum |0〉. The strategy of this paper is to define
an augmented Fock space, constructed by Mtot >M fermionic
modes.

We partition the mode operators of the augmented Fock space
into two species of auxiliary fermionic degrees of freedom â†

μ

and d̂†
ν , referred to as visible and hidden modes, respectively. We

note that, although most hidden-particle approaches enlarge the
Hilbert space with bosonic degrees of freedom, fermionic hidden
sectors have been considered in recent works (28–33) (see also refs.
22, 23, 34). We require 1≤ μ≤M , and 1≤ ν ≤ M̃ with M̃ a
free hyperparameter. Of course, Mtot =M + M̃ . The occupancy
of the visible modes â†

μ is identified one to one with the occupancy
of the physical modes ĉ†iσ , establishing a direct correspondence
between the index μ of the visible modes and the position-spin
multi-index of the physical modes (i ,σ).

Thus, the basis for the augmented Fock space is spanned by the
set of states

|n, ñ〉=
(∏

i,σ

(â†
iσ)

niσ

)⎛
⎝ M̃∏

μ=1

(d̂†
μ)

ñμ

⎞
⎠ |0〉, [3]

where n and ñ label the occupancy of the visible and hidden
modes, respectively. Note that this basis does not have a definite
number of hidden fermions, even if the visible occupations are
constrained to have definite particle number.

Since the augmented Fock space defines a superset of the phys-
ical many-body fermionic states, a collection of “representative”
states is chosen to span the basis of the physical Hilbert space
within the augmented space, similar to the constraint applied
in the hidden rotor, spin, or boson formalism (18, 24–26). This
choice produces a basis of the correct dimension, eliminating so-
called unphysical states. This constraint is applied by the following
procedure: For each visible-fermion occupancy n a particular
hidden-fermion occupancy ñ is chosen. The arbitrary choice of
the population of the hidden modes can be summarized by a
constraint function F (n) = ñ .

In the physical subspace the probability amplitude of the
spinful fermion occupancy n is given by the overlap between the
augmented basis states (Eq. 3) and a given trial state vector |Ψ〉
of the augmented Fock space, where the hidden occupancy ñ is
controlled by the visible occupancy n via the constraint

ψ(n) = 〈n,F (n)|Ψ〉. [4]
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In this work we consider the search of the optimal constraint
function, contrary to previous hidden-particle formulations where
the constraint is a fixed physically motivated rule. The resulting
wave-function ansatz is thus parameterized by both the choice of
the state in the augmented space |Ψ〉 and the constraint function
F (n). Since there exist doubly exponentially many constraint
functions, an extremely flexible family of correlated trial wave
functions is obtained.

It should be noted that the hidden single-particle orbitals d̂†
μ

define an abstract space of hidden-particle configurations. While
one may be concerned by the nature of this abstract space and the
form of the orthogonal set of single-particle orbitals that define its
basis, in practice, we work in the basis of particle configurations
in the orbitals d̂†

μ. Consequently, the relevant quantity is the
combination of single-particle orbitals in the abstract space.

Fig. 1 illustrates geometrically the general concept of the
hidden-fermion formalism. The constraint function can be
interpreted as a nontrivial rotation of the collection of states
that constitute the basis of the physical Fock space embedded
in the augmented space (light green horizontal line is rotated to
the orange segment in Fig. 1). The goal of this transformation
is to bring the target correlated state close to the parameterized
family of states in the enlarged space. In Fig. 1 the chosen family of

n �→ ñ

Augmented space
(M̃ > 0)

Fock space spanned by â†iσ (M̃ = 0)

Target correlated state

SDs in augmented space

SDs in physical space

Fig. 1. Depiction of the geometrical interpretation of the hidden fermion
formalism. The Fock space spanned by the visible-fermionic modes â†

iσ is
represented by the green horizontal line. The augmented Fock space is
represented by the light orange plane (plane of the paper). The orange
diagonal line represents the subspace in the augmented Fock space that is
isomorphic to the physical Hilbert space after applying the constraint function
(black arrows). The collection of SDs in the augmented space is represented by
the blue shape, and the intersection with the subspace of just visible DOFs is
marked in yellow. This intersection corresponds to the physical Hartree–Fock
states. The constraint function changes the collection of states that represent
the physical Hilbert space bringing the target correlated state close to a Slater
determinant in the enlarged space.

parameterized states is the family of SDs. We also show that in the
particular case of M̃ = 0 (light green subspace) the physical Fock
space is directly spanned by the visible modes and that standard
SD states can be recovered in that limit.

B. Hidden-Fermion Determinant States.
B.1. Generalities. To demonstrate the versatility of the hidden-
fermion approach, we consider in this work the special case where
|Ψ〉 is the uncorrelated Slater determinant state |ΨSD〉, which is
characterized by a total number Ntot ≥ N of orbital functions
φn : {1, . . .Mtot}→ C, where 1≤ n ≤ Ntot and Ñ = Ntot − N
is the number of added hidden fermions. In particular, |ΨSD〉 is
obtained from the Fock vacuum as

|ΨSD〉= ϕ̂†
1 · · · ϕ̂

†
Ntot

|0〉, [5]

where each ϕ̂†
α is a linear combination of the original creation

operators, whose coefficients are determined by the corresponding
orbital. In terms of the row vectors

(ϕ̂†
1, . . . , ϕ̂

†
Ntot

) = (â†
1 , . . . , â

†
M , d̂†

1 , . . . , d̂
†
M̃
) Φ, [6]

where Φ is the Mtot × Ntot matrix whose columns correspond to
the orbital functions. It will be convenient to write the matrix of
orbitals in the block form

Φ=

[
φv χv
φh χh

]
, [7]

where φv is the M × N matrix representing the amplitudes of the
visible orbitals evaluated in the visible modes, χv is the M × Ñ
matrix representing the amplitude of the hidden orbitals evaluated
in the visible modes, φh is the M̃ × N matrix representing the
amplitude of the visible orbitals evaluated in the hidden modes,
and χh is the M̃ × Ñ matrix representing the amplitude of the
hidden orbitals evaluated in the hidden modes.

Since the SD state is an eigenstate of the total number operator,
as are both the visible and hidden sectors, and anticipating that
particle configurations are sampled in the VMC framework, we
can represent the constraint as a mapping between the visible-
particle configuration x = (x1, . . . , xN ) and the hidden-particle
configuration x̃ = (x̃1, . . . , x̃N ):

f : x 
→ x̃ . [8]

To respect the Fermi statistics, it is sufficient to choose the
function f to be of bosonic nature, that is, invariant under
permutations of the visible configuration. The amplitudes of the
wave-function ansatz in the configuration basis are thus given by

ψ(x ) = 〈x , f (x )|ΨSD〉= det
[

φv(x ) χv(x )
φh(f (x )) χh(f (x ))

]
, [9]

where
[
φv(x ), χv(x )

]
, and

[
φh(f (x )),χh(f (x ))

]
denote the

N × (N + Ñ ) and Ñ × (N + Ñ ) submatrices obtained from[
φv,χv

]
and

[
φh,χh

]
, respectively, by slicing the row entries

corresponding to x and f (x ). For convenience we denote the[
φh(f (x )),χh(f (x ))

]
matrix as the hidden submatrix.
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B.2. Universality and connection to other wave-function ansätze.
This ansatz is universal in the lattice. The proof relies on the ability
of the determinant in Eq. 9 to represent a universal lookup table of
amplitudes that are matched with the amplitudes of an arbitrary
target state. In the particular case of φh = 0 and χv = 0 the
flexibility of the ansatz is relied upon χh, as φv leads to amplitudes
that correspond to an uncorrelated state in the physical space. It is
possible to construct the lookup table for Ñ ≥ 1, requiring M̃ to
grow combinatorially fast with the number of physical fermionic
modes. See SI Appendix for a detailed discussion. It follows that in
the general case where φh �= 0 and χv �= 0, the determinant in the
enlarged Fock space does not inherit the nodes of the φv orbitals.

Our construction bears some similarities to backflow transfor-
mations (35–38), in which orbitals are taken to be functions of
the coordinates of all particles. In contrast to regular backflow,
only the restriction of orbitals to hidden states has multiparticle
position dependence (Eq. 9).

Jastrow-like wave-function ansätze of the form

ψJ(x ) = J (n) det[φv(x )], [10]

where J (n) is an arbitrary function of the visible lattice occu-
pations, also appear naturally in this formalism. This connection
clearly materializes by considering Ñ = 1 and χv = φh = 0. In
this case the amplitudes of the wave-function ansatz are the
product of det[φv(x )] and a symmetric function of the visible-
particle configuration χh(f (x )). Note that this class of wave
functions includes the physically motivated Gutzwiller and Jas-
trow factors, as well as generalized neural-network Jastrow factors
(8, 10) applied to Slater determinants. The constraint function
reproducing the Gutzwiller state can be found in SI Appendix.

Configuration-interaction (CI) wave functions are also explic-
itly connected to the hidden-fermion determinant state. Using
the Laplace expansion of the determinant in Eq. 9 along its
last Ñ rows yields a linear combination of N -particle Slater
determinants. If φV and χV are chosen to be the N lowest
HF orbitals and the first Ñ virtual orbitals, respectively, then a
CI wave function is obtained, containing all possible (single to
Ñ -tuple) excitations to the first Ñ virtual orbitals. See SI Appendix
for the detailed derivation.

B.3. Parameterized constraint function, practical implementa-
tion. In contrast to physically motivated constraint functions,
a more general approach involves considering f (x ) to belong to
a parameterized family, whose parameters are optimized, together
with the orbitals, in the energy minimization. The variational
Monte Carlo seeks optimal parameters θ for a variational family
of wave functions ψθ(x ), which are assumed to be differentiable
with respect to θ. Although the requirement of differentiability
appears to be in tension with the combinatorial nature of f (x ),
this obstacle is easily overcome by parameterizing instead the
composition of functions φ(f (x )) and χ(f (x )), which appears
in the hidden submatrix of the enlarged determinant (Eq. 9). This
parameterization is connected to the notion of a continuous set
of orthogonal hidden modes d̂†

μ, which accounts to M̃ →∞.
Remarkably, this automatically satisfies the condition that M̃
must grow combinatorially with M for the determinant in Eq. 9
to be a universal lookup table of amplitudes. The hidden-fermion
configurations f (x ) are thus represented by some internal state
of the parametric function. However, in practice we are never
interested in such an internal state.

Since the hidden submatrix is a matrix-valued function that
by construction is a permutation-invariant function of the visible
configuration x , we choose to represent it by neural networks,
taking as an input the visible occupation numbers n , without loss
of generality. Neural networks are the perfect candidate to reduce
the intractable complexity of choosing the optimal constraint, as
they define an extremely flexible family of functions. Further-
more, sufficiently large neural networks can represent arbitrary
constraint functions, since they satisfy a universal approximation
theorem (39). The set of variational parameters θ of our ansatz
consists of the matrices φv and χv together with the weights
and biases parameterizing the corresponding neural network.
Fig. 2 details the precise parameterization used in this work. In
practice, each row of the hidden submatrix is parameterized by
its own neural network, as shown in Fig. 2 by different-colored
neural-network blocks. We consider multilayer perceptrons with
hyperbolic-tangent activations. The hyperparameters of the ansatz
include the neural-network architecture as well as the number of
added hidden fermions Ñ .

φ1(x1) . . . φN (x1) χ1(x1) . . . χÑ (x1)
...

...
...

...
φ1(xN ) . . . φN (xN ) χ1(xN ) . . . χÑ (xN )

x1

x2

x1
x2
... }

xi

..
.

= ψ(x)

n

xN

φ1(fÑ (n)) φN (fÑ (n)) χ1(fÑ (n)) χÑ (fÑ (n))

χÑ (f1(n))χ1(f1(n))φN (f1(n))φ1(f1(n))

. . .

. . .
. . .
. . .

. . .

. . .
. . .
. . .

Fig. 2. Hidden-fermion determinant-state amplitudes with a neural-network parameterized constraint function. The top part of the determinant is constructed
by slicing N rows from the top M rows of the Φ matrix, according to visible-particle configuration x. Each row of the bottom submatrix

[
φh(f(x)), χh(f(x))

]
(hidden

submatrix) is parameterized by the outputs of a separate neural network (indicated by different colors), whose input is the flattened visible-lattice occupancy n.

4 of 8 https://doi.org/10.1073/pnas.2122059119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122059119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122059119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122059119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122059119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122059119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122059119/-/DCSupplemental
https://doi.org/10.1073/pnas.2122059119


The cost of evaluating the enlarged determinant and its deriva-
tives with respect to the variational parameters scales with the
number of visible and hidden fermions asO

(
(N + Ñ )3

)
, coming

from the used LU (lower-upper) factorization. Typically we choose
Ñ ∼O

(
N
)
, and therefore the asymptotic cost of the evaluation

of the hidden-fermion determinant state isO
(
N 3

)
. The computa-

tion of the wave-function amplitudes and gradients is the only step
in the VMC algorithm where the required resources are larger, by
a constant factor, than those for the computation of anN -fermion
determinant.

C. Methods. Both the amplitudes of the matrices φv and χv,
together with the weights and biases of the neural networks
parameterizing the rows of the hidden submatrix, are jointly
optimized using the stochastic reconfiguration method (40), an
extension of the classical natural gradient optimization method
(41) to variational quantum states. Given that we are interested
in the approximation of the ground-state wave function, we rely
on the variational principle and use the expectation value of the
Hamiltonian with respect to the variational state as the objec-
tive function to be optimized. For every Hamiltonian parameter
choice a new trial state is optimized from scratch.

General expectation values and gradients of the objective func-
tion are computed using Markov chain Monte Carlo sampling
according to the probability distribution defined by the square
of the wave-function amplitudes |ψθ(x )|2, working in the basis
of particle configurations. We use the Python library NetKet
(42) for the implementation (see SI Appendix for details), where
gradients of the wave-function amplitudes with respect to the
variational parameters are computed by the so-called automatic
differentiation implemented in the Python library Jax (43).

3. Numerical Experiments

In this section we benchmark the hidden-fermion determinant
wave-function ansatz with a fully parameterized constraint func-
tion. We first study the square lattice at average site occupation
n = 1/2 and n = 5/8. We use the 4× 4 square lattice as a test bed
to study the accuracy (compared to exact diagonalization [ED]) of
the proposed ansatz. The accuracy is quantified by the difference
between the ED ground-state energy and the variational energy,
relative to the ED ground-state energy. We analyze the effect
of the neural network complexity and compare against relevant
results in the literature. Finally we focus on rectangular geometries
of size 4× L, where we consider 1/8 hole doping (n = 7/8).
Periodic boundary conditions are set in the short side of the
rectangle in all cases. We study the case of both open and periodic
boundary conditions on the long side. In the former, we compare
our energies with density matrix renormalization group (DMRG)
results and study the competing stripe orders of the system. In
the latter and in the smallest system size (4× 4) we analyze the
relative error in the ground-state energy, obtained from ED. In
the larger sizes (L= 8 and L= 16) we compare the ground-state
energy with the results obtained using a Slater–Jastrow ansatz and
the neural network backflow wave function from ref. 9. In all cases
we focus on the zero magnetization and fixed visible- and hidden-
particle subspaces.

A. Benchmarks in the Square Lattice. We begin by considering
the particular case of Ñ = N , which provides a good trade-off
between computational complexity and accuracy, and a single-
hidden-layer neural network parameterizing each row of the hid-
den submatrix. This architecture is a good starting point to study
the effect of the neural-network expressive power in the accuracy

of the ansatz. In this case, the expressive power is determined only
by the number of hidden units. More hidden units improve the
flexibility of the neural network. Furthermore, this single-hidden-
layer architecture is the minimal architecture that satisfies the
universal approximation theorem (39).

Fig. 3A shows the relative error in the ground-state energy
as a function of the ratio between the number of hidden units
and input features (α), at n = 1/2 average site occupation. Dif-
ferent values of U are shown, including challenging cases (U =
7.75 and U = 10) where the ground state is strongly correlated.
There is a systematic trend to decrease the error in the energy
as α is increased, providing a clear and controllable pathway
to obtaining more expressive wave-function ansätze. Moreover,
for the largest values of α, and contrary to what is observed
on typical wave-function ansätze, the error does not significantly
increase with U as the correlations in the ground state increase.
Remarkably, the relative error at U = 10, typically the most
challenging case, is orders of magnitude lower than the error
of the Slater–restricted Boltzmann machine (Slater-RBM) wave-
function ansatz. The Slater-RBM ansatz is a particular case of the
wave function in Eq. 10, where J (n) is a restricted Boltzmann
machine of complex weights.

The direct extrapolation of the relative error to the α→∞
limit is challenging as the asymptotic scaling of the accuracy with
the neural network complexity is not a well-understood matter
in the field. However, from the different energy and variance
estimates obtained for each α we perform an energy-variance
extrapolation procedure (44) to obtain better estimates of the
ground-state energy. See SI Appendix for details. The relative error
corresponding to the variance-extrapolated energies is shown in
Fig. 3A, where the relative error is in this case defined as the
difference between the variance extrapolated and the ground-state
energies, relative to the ground-state energy.

The improvement of the accuracy with the increase of α is
accompanied by a gentle increase in the computational complexity
of the determinant amplitudes. The scaling with α is linear, as
the evaluation of the elements of the hidden submatrix requires
O
(
Ñ (M · αM + αM · (N + Ñ ))

)
operations, coming from

the two affine transformations of the fully connected neural
networks with a single hidden layer. For reference, the scaling
of the evaluation of the neural-network backflow from ref. 9 is
O(N 3), from the evaluation of the determinant of multiparticle
orbitals, while the evaluation of the matrix elements that enter
the determinant requires one to store M distinct fully connected
neural networks and O

(
N (M · αM + αM · (N )

)
operations.

This makes the asymptotic scaling of the hidden-fermion
determinant state with N , M , and α identical to the scaling
of the neural-network backflow.

In principle, deeper architectures provide a greater expressive
power than their shallower counterparts (45), at the expense
of a higher computational cost. We observe that, while deeper
architectures provide marginal gains in the energy error, increasing
the number of hidden fermions yields a greater impact on the
accuracy of the ansatz (see SI Appendix for a detailed study of the
effect of increasing Ñ and the depth of the neural networks in
the accuracy of the ansatz). Benchmarks on physically motivated
constraint functions were also performed (see SI Appendix for
details). Our experiments reveal that parameterizing f is advan-
tageous compared to the physically inspired rigid rules, which
show a marginal improvement in accuracy compared to the Slater–
Jastrow state.

At n = 5/8 average site occupation we can compare the relative
error in the energy against the state-of-the-art ansatz from ref. 46.
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Fig. 3. Exact diagonalization benchmarks of the ground-state energy in the 4 × 4 lattice with periodic boundary conditions. (A) Relative error in the ground-
state energy as a function of the inverse of the width density α of the single-hidden-layer neural networks parameterizing the rows of the hidden submatrix.
Average physical site occupation is n = 1/2 and Ñ = 8. Different values of U are considered, as indicated by each color. The error for a Slater-RBM ansatz (main
text) with hidden neuron density α = 32, at the same values of U, is included for comparison. Indicated is also the relative error from the variance-extrapolated
energy for each value of U (see SI Appendix for details). (B) Relative error in the ground-state energy as a function of the coupling constant U, at n = 5/8 average
site occupancy (first closed shell) and Ñ = 10. The rows of the hidden submatrix are given by single-hidden-layer neural networks with α = 64. The errors from
Slater–Jastrow and Slater-RBM ansätze are included for comparison. The green diamond is the relative error found with the state-of-the-art, tensor-network–
based ansatz from ref. 46. Shown is also the relative error according to the projection of the converged hidden-fermion determinant state to the subspace of
invariant wave functions under the action of π/2 rotations (C4) and the group of all possible translations T with K = 0 momentum, separately and together.

n = 5/8, which corresponds toN = 10, is the first closed shell for
the model under consideration in the noninteracting limit. Fig. 3B
shows the relative error in the ground-state energy as a function
of U . The error does not increase monotonically with the value
of U , as standard wave-function ansätze do. This is shown by the
reference errors displayed by the Slater–Jastrow and Slater-RBM
ansätze. Remarkably, the single Slater determinant ansatz with the
parameterized constraint function outperforms (by a factor of 2
in the relative error) the relative error reported in ref. 46 that uses
the state-of-the-art ansatz consisting of a pairing reference state
multiplied by Jastrow, Gutzwiller, and doublon-holon correlation
factors as well as a fat tree tensor network of bond dimension
16, all projected into the zero momentum singlet subspace, with
enforced C4 rotational symmetry. Remarkably, while the result
from ref. 46 relies on the projection of the trial state onto given
symmetry sectors, our ansatz achieves better accuracy with no
symmetry projections. Symmetry projections are an independent
avenue to improve the accuracy. So far, we have considered only
the increase of the neural-network complexity to obtain better
trial states. Not surprisingly, our ansatz is further improved when
projected to relevant symmetry subspaces after its convergence, as
shown in Fig. 3B.

See SI Appendix for more benchmarks in square geometries
at half filling, where we compare the variational energies from
the hidden-fermion determinant state at increasingly larger sys-
tem sizes with auxiliary field quantum Monte Carlo (AFQMC)
calculations (47). Our energies are in better agreement with
AFQMC than those obtained with the neural-network Jastrow
wave function from ref. 8.

B. Increasing System Size and Stripe Order at 1/8 Hole-Doped
Rectangular Geometries. To conclude this work, we investigate
the validity of the proposed wave-function ansatz on increas-
ingly larger system sizes in rectangular geometries. In particu-
lar, we choose rectangular lattices of dimensions L× 4, with
L= {4, 8, 16}. We focus on the 1/8 hole-doped and zero total
magnetization subspace, where, in the strong-coupling regime, the

ground state is expected to show hole stripes every eight lattice sites
across the long side of the rectangle (λ= 8). The high hole density
regions coincide with domain walls in the antiferromagnetic order
(48, 49). In this section we study the particular case of U = 8. For
this particular choice of coupling constant and filling, previous
works have found different competing orders close in energy to
the λ= 8 stripe order (48). To guide the wave-function ansatz
toward the λ= 8 stripe order, we add a soft mean-field constraint
to the φv matrix of orbitals. An M × N matrix is added to the
variational φv. This matrix has zeros everywhere except for a single
entry in every column. These entries are filled up with a constant
factor S that multiplies max(|φv|), following the charge and spin
order described above. This forces each of the N visible orbitals
to peak in a certain position of the physical lattice. The value of
S is a hyperparameter. The wave function is optimized with this
constraint until its convergence, and then the guiding matrix is
merged intoφv as part of the variational parameters and the energy
optimization is continued.

A good trade-off between accuracy and computational resource
use is achieved by the addition of Ñ = 16 hidden fermions for
all system sizes. We also consider a two-layer fully connected
neural network of hidden-unit density α= {60, 14, 6} for the
L= {4, 8, 16} sizes, respectively, to parameterize the rows of the
hidden submatrix.

We investigate the case with periodic boundary conditions
(PBC) on the short side of the rectangle and open boundary
conditions (OBC) on the long side (PBC-OBC). Fig. 4 A, Left
shows the energy per site as a function of L and the comparison
with DMRG variational energies used in ref. 48. The DMRG
algorithm finds two metastable solutions, one with half-filled
stripes and one with filled stripes. In the L= 8 case, we can
stabilize both metastable arrangements by tuning the value of S .
S = 0 or small values of S lead to a half-filled stripe configuration
of higher energy. In this system size the charge distribution shows
high hole density every four sites, coinciding with domain walls in
the antiferromagnetic order. Larger values of S yield a filled-stripe
configuration, showing only one stripe of high hole density in the
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Fig. 4. Energy per site and competing charge and spin orders in the 4 × L rectangular lattice at 1/8 hole doping (n = 0.875) and U = 8. (A) Periodic boundary
conditions on the short side of the cylinder and open on the long side (PBC-OBC). Left panel compares the hidden-fermion determinant-state energies with
DMRG energies. The width of the DMRG symbols shows the range of converged variational energies for different bond dimensions used in ref. 48. For L = 8,
blue points labeled as 1 and 2 correspond to filled and half-filled stripes. Right panel shows the hole and staggered spin distribution for both metastable
configurations. The diameter of the gray circles is proportional to the hole density. (B) Periodic boundary conditions along both sides of the rectangles (PBC-
PBC). Left panel compares the hidden-fermion determinant-state energies with the Slater–Jastrow and neural-network backflow ansätze (from ref. 9). The
dashed horizontal line marks the ED (4 × 4 with PBCs from ref. 51) energy. In the 4 × 4 lattice the relative error in the ground-state energy is displayed for each
ansatz. Right panel shows the hole and staggered spin distributions in the 4 × 16 lattice.

system that coincides with a domain wall in the antiferromagnetic
order. The charge and spin configurations for the two competing
orders are shown in Fig. 4 A, Right. They are in good agreement
with the DMRG hole distributions. The variational energy from
the hidden-fermion determinant state is in good agreement with
the DMRG energies. At L= 16, the best variational energy found
by tuning S lies between the DMRG energies that correspond to
the half-filled and filled stripes. Our method, not being specifically
tailored to quasi–one-dimensional problems, does not outperform
DMRG in this particular lattice geometry.

A more interesting case is the addition of periodic boundary
conditions along the long side of the rectangle, a situation that is
not amenable to DMRG calculations due to its computational
cost. Fig. 4 B, Left shows the energy per site as a function
of L and the comparison with the ED energy in the 4× 4
system. The hidden-fermion determinant with a parameterized
constraint function achieves a significantly lower energy than
both the standard Slater–Jastrow ansatz and the state-of-the-art
neural-network backflow ansatz from ref. 9. In the 4× 4 lattice,
the relative error in the energy is reduced by over one order of
magnitude compared to that in the neural-network backflow wave
function. In the 4× 8 and 4× 16 lattices the energy per site is
noticeably lower than that in the neural-network backflow and
Slater–Jastrow ansätze. These results demonstrate the scalability
of the proposed formalism, which outperforms existing state-of-
the-art wave-function ansätze used in the field. For these cases we
set S = 3.

In addition, we analyze the hole density and staggered spin
density distributions in the largest system size (4× 16) in Fig. 4 B,
Right. The hole density distribution shows repeating maxima
separated by eight lattice sites. Coinciding with the maxima in
the hole density, the antiferromagnetic order displays a domain
wall. The amplitude of the staggered magnetization is modulated
along the long side of the rectangles. These features are consistent
with observations from previous studies (48, 49) coming from
different many-body numerical methods, further validating the
accuracy of the hidden-fermion determinant state to find good

approximations to the highly correlated ground states of complex
Hamiltonians.

4. Conclusions

In this paper we have shown that the variational treatment of
interacting electrons in an augmented Fock space can be highly
beneficial to improve the generality of the wave-function ansatz,
especially in the strong correlation limit. We found that key
elements for the success of this approach are to optimize the
constraint function relating the enlarged and physical Hilbert
spaces, as well as treating this constraint exactly. A simple Slater
determinant state in the augmented Fock space is found to provide
an extremely expressive wave-function ansatz, which we proved
to be universal. The optimization of the constraint function and
of the hidden-sector orbital amplitudes was performed using a
neural-network representation. We presented numerical experi-
ments that show that the proposed wave function is competitive
with the state-of-the-art variational accuracy in the ground state of
the Hubbard model in the square lattice. Furthermore, in contrast
to standard variational approaches (8, 46), the accuracy of this
ansatz does not rely on imposing symmetries, potentially allowing
for a great level of accuracy on systems with a small number
of symmetries. This also opens the possibility of applying our
approach to systems without an underlying lattice, with potential
applications to quantum chemistry, nuclear physics, and materials
science.

In particular, we envision the accurate calculation of the
ground-state properties of molecular Hamiltonians, which in
the molecular orbital basis lacks both an underlying lattice and
exploitable symmetries. The connection between a compact
representation of a CI wave function and all possible single-,
double-, up to Ñ -tuple excitations provides an accurate post-
Hartree–Fock starting point for the trial state. The formalism
introduced in this paper is also well suited for models with
quenched disorder, such as models of interacting fermions on
fully connected lattices with random exchange interactions (50).
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While exact solutions of such models are available in the large-
M limit when the spin symmetry is extended to SU (M ), the
physical SU (2) case requires computational approaches. Similar
to molecular Hamiltonians, this class of Hamiltonians also lacks
any translational symmetries that can be exploited to improve the
accuracy of traditional wave-function ansätze.

Data Availability. All study data are included in this article and/or SI Appendix.
Previously published data were used for this work for benchmarking purposes:
from ref. 46 (Fig. 3), ref. 48 (Fig. 4A), ref. 9 (Fig. 4B), and ref. 47 (SI Appendix,
Fig. S4).
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