
RESEARCH ARTICLE

Robust innate immune responses at the

placenta during early gestation may limit in

utero HIV transmission

Erica L. JohnsonID
1*, Dominika SwiebodaID

2, Amanda Olivier1, Elizabeth Ann

L. EnningaID
3, Rana ChakrabortyID

3

1 Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta,

Georgia, United States of America, 2 Department of Pediatrics, Division of Infectious Diseases, Emory

University School of Medicine, Atlanta, Georgia, United States of America, 3 Department of Pediatric and

Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of

America

* erijohnson@msm.edu

Abstract

In 2019, >90% of new HIV infections in infants globally occurred vertically. Studies suggest

intrauterine transmission most often occurs in the third trimester; however, there are no

mechanistic studies to support these observations. We therefore obtained early/mid-gesta-

tion and term placentae from 20 HIV/Hepatitis B/CMV negative women. Isolated primary

placental macrophages (Hofbauer cells [HCs]) were exposed to HIV-1BaL and/or interferon

(IFN)-α, IFN-β, IFN-λ1, and RIG-I-like receptor (RLR) agonists. qRT-PCR, FACS, ELISA,

Luminex, and Western blot analyses determined expression of activation markers, co-

receptors, viral antigen, cytokines, antiviral genes, and host proteins. Early gestation HCs

express higher levels of CCR5 and exhibit a more activated phenotype. Despite downregu-

lation of CCR5, term HCs were more susceptible to HIV replication. Early gestation HCs dis-

played a more activated phenotype than term HCs and HIV exposure lead to the further up-

regulation of T-cell co-stimulatory and MHC molecules. Limited HIV replication in early/mid

gestation HCs was associated with increased secretion of anti-inflammatory cytokines, che-

mokines, and a more robust antiviral immune response. In contrast, term HCs were more

susceptible to HIV replication, associated with dampening of IFN-induced STAT1 and

STAT2 protein activation. Treatment of early/mid gestation and term HCs, with type I IFNs

or RLR agonists reduced HIV replication, underscoring the importance of IFN and RLR sig-

naling in inducing an antiviral state. Viral recognition and antiviral immunity in early gestation

HCs may prevent in utero HIV infection, whereas diminished antiviral responses at term can

facilitate transmission. Defining mechanisms and specific timing of vertical transmission are

critical for the development of specific vaccines and antiviral therapeutics to prevent new

HIV infections in children globally.
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Author summary

Mother-to-child transmission is the main source of HIV infection in children globally.

Studies suggest vertical transmission most often occurs late in the third trimester; how-

ever, there are no studies to support these observations. Our study shows that gestational

age plays a significant role in the ability of placental macrophages to generate robust anti-

viral responses, which are necessary to prevent or reduce viral burden. Specifically, we

show that viral recognition by RIG-I-like receptors and robust antiviral immune

responses in placental cells during early gestation may prevent in utero HIV infection. We

also demonstrate that term placental macrophages are limited in their antiviral capacity

due to restricted type I IFN signaling. Understanding the mechanisms and timing of verti-

cal transmission are important to understand for the development of specific vaccines and

antiviral therapeutics to prevent new HIV infections in children globally.

Introduction

In 2018, an estimated 160,000 new pediatric HIV infections occurred worldwide, most by

mother-to-child (or vertical) transmission (MTCT). Even with optimal adherence, maternal

antiretroviral therapy (ART) reduces but does not eliminate MTCT of HIV [1–4], which can

occur in utero, intrapartum, and postpartum through breastfeeding. We have shown that a dis-

tinct immunological repertoire in placental macrophages (Hofbauer cells [HCs]), exhibiting

remarkable plasticity, may be temporally regulated during gestation [5–8]. These phenotypic

alterations may influence HIV intrauterine transmission to the fetus/neonate, which is thought

to mainly occur during the third trimester [9, 10] based on low rates of viral detection by nucleic

acid testing on fetal tissue from abortions in the first and second trimester [11], as well as by sta-

tistical modeling [12]. An initial case report from 1986 documented detection of HIV antigens

in a fetus at 15 weeks’ gestation [13]. Subsequent reports in 1991 and 1995 provided compelling

evidence for late intrauterine HIV transmission using PCR [12, 14]. Statistical models trended

(P = .061) towards decreased frequency of early in utero HIV infection among infants born to

women with HIV-infection [15]. In addition, the Perinatal HIV Prevention Trial (PHPT-I)

from Thailand in 2000 documented an in-utero transmission rate of 5.1% when zidovudine was

initiated at 35 weeks versus 1.6% when initiated at 28 weeks [16], suggesting that most intrauter-

ine HIV transmission events occurred between 28 to 36 weeks gestation [17]. Despite these

reports and associations over 30 years, there are a lack of basic mechanistic studies to explain

why transmission tends to occur near the end of gestation [18, 19].

The placenta is immunologically active and unique in its ability to sustain a healthy preg-

nancy and offset infection [20–22]. This organ also remains a target following maternal infec-

tion with rubella, CMV, HSV, HIV, Zika, or hepatitis B and C virus [23]. During maternal

HIV infection, virions can interact with placental macrophages (Hofbauer cells [HCs]) after

breaching the trophoblast layer prior to entering the fetal circulation [24–26]. HCs express

HIV (co) -receptors CD4, CCR5, CXCR4, and DC-SIGN on their cell surface [25, 27–29].

Since these cells are uniquely positioned between maternal and fetal circulations, HCs are rec-

ognized as key mediators for MTCT of HIV [25, 27–29]. Several studies show that HIV can be

detected in placentae from both transmitting and non-transmitting women, and sequester

virus in vivo during early and late gestation [30–35]. Placental cells also express pattern-recog-

nition receptors (PRRs) [22, 36–41]. Viral proteins activate PRRs, which in turn stimulate

transcription factor NF-kB and/or type I IFN. Type I IFN, through the IFN-α/β receptor

(IFNAR), induce a multitude of IFN-stimulated genes (ISGs) that can block viral replication

and alert the immune system in response to virus [33, 42, 43]. Along with type I IFNs, type III
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IFNs or IFN-λ regulate a similar set of genes to restrict viral infection [44, 45]. However, type I

IFNs act systemically, while IFN-λ primarily targets mucosal barriers (i.e. the placenta), cir-

cumventing significant inflammatory risk associated with type I IFN responses. We previously

demonstrated that viral PRRs and type I/III IFN responses in HCs may be temporally regu-

lated and that phenotypic and functional changes of HCs throughout gestation may be respon-

sible for the differential effects and outcomes of maternal infection during pregnancy [5].

In this study, primary HCs isolated from early/mid-gestation placental tissue and term

were exposed to HIV-1BaL and/or IFN-α, IFN-β, IFN-λ, and RLR agonists. We determined

expression of activation markers, co-receptors, viral antigen, cytokines, antiviral genes, and

host proteins. We showed that term HCs were more susceptible to HIV replication and exhib-

ited increased HIV gene expression compared to early gestation HCs. Early gestation HCs dis-

played a more activated phenotype than term HCs and HIV exposure lead to further up-

regulation of T-cell co-stimulatory and MHC molecules. Limited HIV infection and replica-

tion in early/mid gestation HCs correlated with increased secretion of anti-inflammatory cyto-

kines and a more robust antiviral immune response compared to the dampened antiviral

response shown by term HCs. In addition, treatment of early/mid gestation and term HCs,

with type I IFNs or RLR agonists completely blocked or significantly reduced HIV replication,

emphasizing the importance of the these signaling pathways in inducing an antiviral state at

the placenta during viral infection. Our findings also suggest that dampening of STAT1 and

STAT2 protein activation in term HCs may account for observed increases in HIV replication.

Interestingly, unlike early gestation HCs, HIV-1 infection of term cells induced significant

upregulation of STAT5 phosphorylation, which alludes to the unique ability of this STAT pro-

tein to promote HIV infection in macrophages [46]. In sum, we show that viral recognition

and robust antiviral immune responses in placental cells during early gestation may prevent in
utero HIV infection and that diminished antiviral responses observed in term HCs may pro-

mote vertical transmission.

Results

Early/mid-gestation HCs express higher protein surface levels of CCR5

compared to term HCs

To understand whether gestational age impacts HIV susceptibility in HCs, we measured expres-

sion of the HIV co-receptors CCR5, CXCR4 and DC-SIGN in HCs isolated from early/mid-ges-

tation (12–24 week [wk] gestational age) and term (>37 wk) placentae. Analysis by flow

cytometry revealed a higher frequency of CCR5+ HCs in early/mid gestation (p = 0.0024). An

average of 89.3% of HCs isolated from placentae between 12-22-weeks’ gestation were CCR5+,

compared to 63.1% at term. Early/mid gestation and term CXCR4+ and DC-SIGN+ cells were

constant in frequency, suggesting their expression is not dependent on gestational age (Fig 1A

and 1B). Analysis by quantitative reverse transcription-PCR (qRT-PCR) showed a significant

increase in CCR5 (p<0.001) and CXCR4 (p<0.001) mRNA expression in term HCs, compared

to early/mid-gestation (Fig 1C). Similar to surface protein expression, DC-SIGN mRNA expres-

sion remained constant across gestation. These data initially suggested to us that HCs may be

more susceptible to HIV infection in early/mid-gestation, compared to term.

Paradoxically, term HCs are more permissive to HIV infection than early/

mid-gestation HCs

Several studies suggest that in utero transmission of HIV via the placenta likely occurs during

the third trimester [9, 10]; however, there are a lack of mechanistic studies to explain this
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observation. To determine whether gestation impacts viral replication in placental target cells,

we compared replication of HIVBaL in HCs isolated from early/mid-gestation (12–24 wk gesta-

tional age) and term (>37 wk) placenta. p24 levels were detected in supernatant 5-days post

infection (dpi). Surprisingly, mean production of p24 antigen in term HCs infected with HIV

was significantly increased (p = 0.004), compared with production in early/mid-gestation HCs

(Fig 2A). In addition, we measured HIV viral gene transcription 5 days after infection, using

qRT-PCR. We noted that term HCs infected with HIV exhibited lower median cycle threshold

(Ct) values (± standard error [SE]) for gag (5.49 ± 1.42) and env (4.59 ± 1.54) transcripts than

that of infected early/mid-gestation HCs gag [11.1 ± 2.22] and env [9.78 ± 1.65]. Significantly

lower gag and env Ct values in term HCs indicates higher levels of viral transcription, com-

pared with early/mid-gestation cells. These results demonstrate that term HCs are more sus-

ceptible to HIV infection and more replication competent, compared to early/mid-gestation

HCs. Our data support previous clinical observations that in utero transmission likely occurs

in the third trimester.

HIV infection induces activation of HCs

Macrophages can respond to their microenvironment by altering their activation phenotype

resulting in the broad classification of classical (M1) or alternative (M2) macrophage activa-

tion. Common surface markers to identify macrophage activation include CD80, CD86 and

the class II major histocompatibility complex (MHC) molecule HLA-DR for M1 and CD163

for M2 [47]. Recently, our group documented that early/mid-gestation is associated with an

Fig 1. Early/Mid-Gestation HCs express Higher Protein Surface Levels of CCR5 compared to Term HCs. A,

Surface expression of CCR5, CXCR4 and DC-SIGN was determined by flow cytometry on freshly isolated HCs from

early/mid-gestation (red markers) and term (black markers) placental tissue. Data shown are expressed as the

mean ± standard error of biological triplicates from 10 individual donors analyzed by unpaired t-test analysis using the

two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli. ��p< 0.001 indicates significance between

early/mid-gestation HCs compared to term HCs. B, Representative flow cytometry histograms of typical distributions

of fluorescence intensity (along x axis) are provided. C, Messenger RNA levels were measured by qRT-PCR to

determine the relative expression of CCR5, CXCR4, and DC-SIGN. Gene expression data are represented as fold

change normalized to β-actin (ΔΔ cycle threshold method). ��p< .001 indicate significance between early/mid-

gestation HCs compared and term HCs.

https://doi.org/10.1371/journal.ppat.1009860.g001
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abundance of activated HCs, whereas term cells appear less galvanized [5]. To investigate

whether HIV infection differentially activates placental macrophages throughout gestation, we

measured cell surface expression of the CD80, CDC86, HLA-DR, and CD163, at 48hpi with

HIVBaL (Fig 3). Following infection, we observed significant activation of HCs across all gesta-

tional ages. HIV-infected HCs isolated at term upregulated surface protein expression of

CD86, HLA-DR, and CD163, while early/mid-gestation HIV-infected HCs showed significant

increases in the surface expression of CD86. Although early/mid-gestation HCs exhibit a more

Fig 2. Term HCs are more Permissive to HIV Infection than Early/Mid-Gestation HCs. A, Human placental

macrophages (HCs) were isolated from freshly obtained placenta from donors at term (black markers) or during early/

mid-gestation (red markers). HC were infected with HIV BaL strain (HIV-1BaL) at a multiplicity of infection of 0.1.

HIV-1 replication was measured in the cell supernatants at 5 days post infection by HIV-1 p24 viral antigen enzyme-

linked immunosorbent assay. Data shown represent individual donors (n = 9) analyzed by unpaired t-test analysis

using the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli. ��p< 0.001 indicates significance

between early/mid-gestation HCs compared to term HCs. B, Six days after viral infection, HIV-infected HC’s

messenger RNA levels were measured by qRT-PCR to determine the relative expression of gag and env. Gene

expression data are represented as ΔCt (normalized to β-actin). Data shown represent individual donors (n = 9)

analyzed by unpaired t-test analysis using the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli.
��� p< 0.0001 indicate significance between early/mid-gestation HCs compared and term HCs.

https://doi.org/10.1371/journal.ppat.1009860.g002

Fig 3. HIV Infection Induces Activation of HCs. Hofbauer cells from early gestation (red bars) and term (black bars)

placentae were infected with HIV-1BaL or mock infected. Surface-marker expression of CD80, CD86, HLA-DR, and

CD163 was determined by flow cytometry 48 hours post-infection (hpi). Data shown are expressed as the

mean ± standard error of biological triplicates from 10 individual donors analyzed by paired t-test analysis (mock

infected HCs vs HIV infected HCs) and unpaired t-test analysis (early/mid-gestation HCs vs. term HCs)using the two-

stage linear step-up procedure of Benjamini, Krieger and Yekutieli. ��� p< 0.0001, ��p< .001, and �p< .05 indicate

significance between HIV-infected HCs and mock-infected HCs. #p< .05 indicate significance between early/mid-

gestation HCs and term HCs.

https://doi.org/10.1371/journal.ppat.1009860.g003
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activated phenotype than term HCs at a basal level, upon HIV infection term HCs become

more galvanized. This increase in activation status correlates with enhanced viral replication

in term HCs. These data suggest that HIV has the potential to prime and activate HCs upon

infection.

HIV infection of early/mid-gestation HCs induces the secretion of IL-6 and

IL-10

During pregnancy, Th2 (e.g., IL-10) and Th3 responses (e.g., transforming growth factor β),

which support pregnancy, are enhanced, whereas Th1 cytokines (i.e., IL-12, and IFN-γ), which

are potentially detrimental to the foreign fetus, are suppressed [6, 48]. Maternal infections in

pregnancy can trigger pro-inflammatory responses leading to intrauterine infection [49], via

activation of PRRs with increased secretion of Th1 cytokines, including IL-1 and TNF-α [50].

These contribute to poor pregnancy outcomes including disruption to fetal immunity [51, 52].

Here we assessed cytokine and chemokine release following HIV infection of HCs isolated

early/mid-gestation and at term (Fig 4). Despite increases in cellular activation, term HCs

infected with HIV failed to induce substantial increases in cytokine and chemokine secretion,

compared to paired mock-infected cells. In addition, term cells at basal levels express signifi-

cantly lower concentrations of immunoregulatory cytokines (IL-10 and IL-1RA) and β-che-

mokines (MIP1α and MIP1β), compared to early/mid-gestation HCs. In contrast, HIV

infection of early/mid-gestation HCs prompted robust secretion of IL-6 and IL-10. HIV infec-

tion also induced significant upregulation of MIP1α and RANTES in early/mid-gestation

HCs. Together, our data suggest that term HCs are compromised in their ability to promote

anti-inflammatory responses upon exposure to HIV.

Fig 4. HIV Infection of Early/Mid-Gestation HCs Induces the Secretion of IL-6 and IL-10. A, Hofbauer cells

(isolated from early/mid-gestation and term) were infected with HIV-1BaL (black bars) or mock-infected (gray bars).

Quantification of inflammatory cytokine, anti-inflammatory cytokine, and chemokine protein levels were determined

in the supernatants by Luminex following 48 hours of in vitro culture. All values are represented as pg/mL. Data shown

are expressed as the mean ± standard error of biological triplicates from 10 individual donors analyzed by paired t-test

analysis using the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli. ��� p< 0.0001, ��p< .001,

and �p< .05 indicate significance between HIV-infected HCs and mock-infected HCs.

https://doi.org/10.1371/journal.ppat.1009860.g004
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HIV induces type I IFN production in early/mid-gestation HCs

During viral infection, early innate immune signaling triggers the production of type I and

type III IFNs, and antiviral effector molecules that block viral replication [53]. In addition,

viral sensing by PRRs is a key step in responding to viral infections. To determine impact of

gestation on whether placental macrophages trigger IFN responses during HIV infection, we

measured mRNA concentrations of the type I IFNs (IFNα and IFNβ) and type III IFN

(IFNλ1). We also measured the secretion of IFNα, IFNβ and IFNλ1 proteins in HC superna-

tant following infection by HIV at 48hpi. At the mRNA level, HIV-infection of early/mid-ges-

tation HCs induced an approximate 10-fold decrease in the mRNA expression of IFNα, while

IFN-β transcription was significantly upregulated (Fig 5A). In contrast, HIV infection of term

cells only upregulated the mRNA expression of IFN-α. As expected, treatment with the type I

IFNs, induced their corresponding mRNA transcription in both cellular subsets. However, we

did not detect changes in IFNλ1 mRNA expression across gestational ages with or without

infection or treatments. Similarly, at the protein level, HCs across gestation and with or with-

out HIV-infection failed to secrete IFNλ1 (Fig 5B). However, treatment with the IFNλ1 dem-

onstrated a block in the transcription of the IFN-α and IFN-β in early/mid-gestation HCs. At

the protein level, all HCs also failed to secrete IFN-β, despite significant increases at the level of

transcription (Fig 5B). In contrast, both subsets of HCs expressed IFNα at a basal level. Specifi-

cally, early/mid-gestation HCs produced more IFNα at a basal level, compared to term HCs.

Fig 5. HIV Induces Type I IFN Production in Early/Mid-Gestation HCs. Hofbauer cells (isolated from early/mid-

gestation and term) were infected with HIV-1BaL and treated with IFN-α (100 IU/mL), IFN-β (100 ng/mL), IFN-λ1

(100 ng/mL), RIG-I agonist (10ng/10,000 cells) or mock-infected. A, Messenger RNA levels of the type I IFNs (IFN-α
and IFN-β) and the type III IFN (IFN-λ1) was measured by qRT-PCR. Gene expression data are represented as fold

change relative to time-matched, mock-infected cells (gene expression normalized to β-actin–ΔΔ cycle threshold

method). Data shown are expressed as the mean ± standard error of biological triplicates from 10 individual donors

analyzed by paired t-test analysis using the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli. ���

p< 0.0001, ��p< .001, and �p< .05 indicate significance between mock-infected and HIV-infected or IFN-treated

cells. B, Quantification of IFN-α, IFN-β, and IFN-λ1 protein levels were determined in the supernatants by Luminex

following 48 hours of in vitro culture. All values are represented as pg/mL. Data shown are expressed as the

mean ± standard error of biological triplicates from 10 individual donors analyzed by paired t-test analysis using the

two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli. ��p< .001 indicate significance between HIV-

infected HCs and mock-infected HCs.

https://doi.org/10.1371/journal.ppat.1009860.g005
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In addition, HIV infection of these cells significantly increased IFNα production, while HIV

infection of term HCs did not impact IFN-α secretion. These findings suggest that the produc-

tion of IFN-α upon HIV infection may play a key role in protection at the placenta, particularly

in early/mid-gestation HCs.

HIV-1 infection induces an antiviral state within early/mid-gestation HCs

To characterize the type I and type III IFN response in placental HCs throughout pregnancy

and following HIV infection, we measured mRNA concentrations of the RLRs (RIG-I, MDA-

5, and LGP2) and key host antiviral effectors, including the signal transducer and activator of

transcription (STAT) proteins by qRT-PCR. Comparisons were made between mock-infected

cells vs. cells treated with IFNα (1000 U/ml), IFNβ (1000 U/ml) or IFNλ1 (100 ng/ml) or

infected with HIV-1BaL for 24 hours. HIV infection of early/mid-gestation HCs generated an

overall robust type I IFN response, characterized by significant upregulation of the RLRs,

STAT1, STAT5, and all the antiviral effectors tested (ISG15, OAS1, IFIT1, IFIT2, IFIT3, and

Viperin) (Fig 6). In comparison, HIV infection of term HCs minimally triggered IFN signal-

ing. There were no significant differences in RLR expression between mock and HIV-infected

term HCs. In addition, Viperin was the only antiviral effector that displayed substantial upre-

gulation in term HCs, in response to HIV. However, HIV infection significantly impacted the

mRNA expression of the STAT proteins. STAT1, STAT2, STAT3, and STAT5 transcription

was significantly upregulated following HIV infection of term HCs. The increase observed by

STAT2 and STAT3 was significantly greater than the production by early/mid-gestation HCs

(Fig 6).

At a basal level, early/mid-gestation HCs exhibit a more profound antiviral state when com-

pared to term [5]. As expected, treatment with the type I IFNs upregulated the expression of

Fig 6. HIV-1 Infection Induces an Antiviral State within Early/Mid-Gestation HCs. A, Hofbauer cells (isolated

from early/mid-gestation and term) were infected with HIV-1BaL, mock-infected or treated with IFN-α (100 IU/mL),

IFN-β (100 ng/mL) or IFN-λ1 (100 ng/mL). The type I IFN response was evaluated by measuring messenger RNA

levels of the Pattern Recognition Receptors (PRRs; RIG-I, MDA-5, and LGP2), signal transducer and activator of

transcription (STAT1, -2, -3, and -5), along with key antiviral effectors (ISG15, OAS1, IFIT1, IFIT2, IFIT3, and

Viperin) by qRT-PCR. Gene expression data are represented as fold change relative to time-matched, untreated cells

(gene expression normalized to β-actin–ΔΔ cycle threshold method). Data shown are expressed as the

mean ± standard error of biological triplicates from 10 individual donors analyzed by paired t-test analysis using the

two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli. ��� p< 0.0001, ��p< .001, and �p< .05

indicate significance between mock-infected and HIV-infected or IFN-treated cells.

https://doi.org/10.1371/journal.ppat.1009860.g006
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RLRs, STATs, and the antiviral effectors in HCs isolated at different timepoints throughout

pregnancy. However, the early/mid-gestation HCs generated a more robust antiviral response

to the type I IFNs, compared to term cells. RLR expression following type I IFN treatment was

10- to 100-fold greater in early/mid-gestation cells, compare to term. In addition, mRNA

expression of ISG15, OAS1, IFIT1, IFIT2, and IFIT3 was significantly higher in type I IFN-

treated early/mid-gestation HCs compared to term. Interestingly, the type III IFN, IFNλ1,

mounted a robust RLR and IFN response in early/mid-gestation HCs comparable to the cells

treated with IFN-α and IFN-β. However, this response was dampened in HCs isolated at term.

Taken together, gestational age plays a significant role in the ability of HCs to generate robust

antiviral responses.

HIV infection is blocked by type I and type III signaling across gestation

Given our findings that HIV infection of early/mid-gestation HCs induces an antiviral state,

and the importance of the type I IFN signaling in the restriction of HIV infection, we next

determined the ability of innate immune signaling to restrict HIV replication within placental

macrophages. Here we pretreated HCs with IFNα, IFNβ, and IFNλ1 prior to infection and

replenished the IFN-treated media 16hpi. In addition, to trigger RLR signaling, HCs were

transfected with a highly specific RIG-I agonist prior to infection [54]. p24 levels were detected

in supernatant 5dpi. Compared to untreated cells, we observed a drastic and significant reduc-

tion in viral replication in all cultures pretreated with type I and type III IFN or transfected

with the RIG-I agonist (Fig 7A). Early/mid-gestation HCs demonstrated the greatest antiviral

response to type I IFNs with 100% inhibition of viral replication following treatment (Fig 7A

and 7B). In term HCs, IFNα and IFNβ also significantly reduced viral replication by approxi-

mately 80%. Similarly, IFNλ1 and treatment with the RIG-I agonist significantly reduced viral

burden in early/mid-gestation and term HCs, albeit at a reduced potency when compared to

treatment with the type I IFNs. In sum, these data demonstrate that type I and type III signal-

ing can elicit a potent block to HIV replication in HCs at the maternal-fetal interface.

Differential levels of STAT protein activation in term HCs may contribute

to observed increases in HIV replication

Engagement of type I IFNs to the IFN receptor complex leads to activation of STAT proteins

by tyrosine phosphorylation. These complexes translocate to the nucleus and bind IFN-stimu-

lated response elements (ISREs) in DNA to activate the transcription of hundreds of ISGs,

which mediate antiviral responses [55, 56]. This signaling axis is critical for restricting most

Fig 7. HIV infection is blocked by type I and type III signaling across gestation. A, Early/mid-gestation HCs (red

markers) and term HCs (black markers) were infected with HIV-1BaL alone or in the presence of IFN-α, IFN-β, IFN-

λ1, RIG-I agonist, or mock-infected. HIV-1 replication was measured in the cell supernatants at 5 days post infection

by HIV-1 p24 viral antigen enzyme-linked immunosorbent assay. Data shown represent individual donors (n = 10)

analyzed by unpaired t-test analysis using the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli.
���p< 0.001 indicates significance between early/mid-gestation HCs compared to term HCs. B, Graphical

representation of the percent inhibition of HIV-1 replication from A.

https://doi.org/10.1371/journal.ppat.1009860.g007
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RNA viral infections including HIV. Our data shows that term HCs are limited in generating

type I IFN responses, which may be responsible for observed increases in HIV infection and

transmission during late gestation. However, we show significant upregulation of the STAT

mRNA following HIV infection. To determine whether this increase in mRNA transcription

translates to protein expression, we analyzed total protein levels and protein phosphorylation

of STAT1, STAT2, STAT3, and STAT5 in HCs isolated at various gestational ages. We show

that untreated and uninfected early/mid-gestation HCs express higher levels of total STAT1,

STAT2, STAT3, and STAT5 compared to term HCs (Fig 8A). Our data also shows that early/

mid-gestation cells express low levels of pSTAT2 at a basal level, while both early/mid-gesta-

tion and term HCs displayed constitutive levels of activated STAT3 and STAT5. Following

IFNα treatment, STAT1 and STAT2 were also phosphorylated at a significantly greater level in

early/mid-gestation HCs. In comparison, IFN-induced STAT3 exhibited higher levels of acti-

vation in term HC, compared to cells isolated from early/mid-gestation.

Interestingly, HIV-infection minimally induced the phosphorylation of STAT1 and STAT2

in both early/mid-gestation and term HCs. However, STAT3 and STAT5 phosphorylation was

evident following HIV infection (Fig 8B). While the levels of STAT3 phosphorylation were

similar among the HC subsets, STAT5 phosphorylation was drastically and significantly ele-

vated in term HCs infected with HIV. Taken together, these data suggest that gestational age

differentially impacts STAT protein expression and activation, and that robust activation of

STAT5 following HIV infection of term cells may play a role in viral dissemination.

Discussion

Very little information is known about how viruses establish infection in the placenta and

developing fetus. Reports have suggested that gestational age plays a major role in the trans-

mission of specific viruses; however, there are no mechanistic studies to support these observa-

tions. In particular, in utero HIV transmission has most often been documented in the third

trimester. With an estimated 160,000 new HIV infections occurring worldwide in infants and

Fig 8. Differential Levels of STAT Protein Activation in Term HCs may contribute to observed Increases in HIV

Replication. A, Hofbauer cells were infected with HIV-1BaL, treated with IFN-α (100 IU/mL), or left untreated (NT)

for 72 hours. Lysates were prepared and subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The

gel was blotted and the indicated proteins were detected by immunoblotting with indicated antibodies. B, The pixel

intensities for pSTAT1, pSTAT2, pSTAT3, and pSTAT5 of the untreated, IFN-α–treated and HIV-infected Hofbauer

cells were quantified using the Odyssey Imaging system and normalized t the β-actin signal. Data shown are expressed

as the mean ± standard error of biological triplicates from 10 individual donors analyzed by paired t-test analysis using

the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli. ��� p< 0.0001, ��p< .001, and �p< .05

indicate significance between early/mid-gestation HCs compared and term HCs.

https://doi.org/10.1371/journal.ppat.1009860.g008
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children (most by MTCT), there is a pressing need to understand the host and viral factors

that regulate vertical transmission. We sought to fill this knowledge gap by identifying the

impact of gestation on viral susceptibility and antiviral signaling in placental macrophages

(HCs). Here, we report that robust innate immune responses at the placenta during early ges-

tation may offset vertical transmission of HIV in utero. We also demonstrate that term placen-

tal macrophages are limited in their antiviral capacity possibly due to restricted type I IFN

signaling. Defining mechanisms and timing of vertical transmission are critical to understand-

ing development and administration of specific vaccines and antiretrovirals to prevent new

infections in HIV-exposed infants, globally.

Macrophages are a heterogeneous immune cell population and actively participate in a

myriad of biological processes, including maintaining tissue homeostasis, viral sensing, and

cell autonomous antiviral immune responses. These cells are characterized by a high level of

plasticity, whereby their phenotype and function are strictly regulated by the local micro-envi-

ronment [57]. The placental milieu is dynamic over the course of gestation and can be charac-

terized by alternating pro- and anti-inflammatory states associated with fertilization,

implantation, maintenance, preparation for labor, and parturition [58–61]. As such, the bal-

ance of macrophage polarization (M1 [pro-inflammatory] and M2 [anti-inflammatory]) at the

maternal-fetal interface has emerged as vital in sustaining a healthy pregnancy. In normal

pregnancy, the M1/M2 equilibrium is a continuum, with M1 predominating during implanta-

tion and early gestation, followed by a shift towards a tolerogenic M2 phenotype in the second

and third trimesters, and a return to M1 at the start of parturition [62–67]. Recently, our

group undertook a comprehensive ex vivo classification of human placental macrophages

(HCs) throughout gestation [5]. We demonstrated that activated HCs were abundant in early

pregnancy and noted molecular signatures, specific to inflammatory phenotypes early in gesta-

tion compared to term. In addition, the polarity and plasticity of HCs in response to cytokines

and innate immune signals was differentially regulated across gestation [5]. These findings

suggest that HCs recognize and respond to viral pathogens temporally at the various stages of

pregnancy. Here, we extended these studies to show that HCs isolated from term placentae are

more permissive to HIV infection than early/mid-gestation HCs. Although term HCs

expressed lower frequencies of CCR5 on their surface, they secreted significantly lower levels

of IFN-α and IL-10 and lacked productive type I IFN signaling following HIV-1 exposure.

Alternatively, the lower viral burden in early/mid-gestation HCs may be associated with

increased cellular immune activation, elevated levels of IL-10, along with robust RLR and type

I IFN signaling. Thus, the capacity of HCs to support productive HIV-1 infection appears to

be dependent on gestation and the pregnancy stage-specific microenvironment, which impacts

the phenotype and immune responses in HCs.

Although CCR5 is a major co-receptor for the entry of HIV M-tropic strains into macro-

phages, a higher percentage of CCR5-expressing cells in early/mid-gestation did not equate

with increased in vitro HIV replication. This biphasic effect is intriguing and might be due to

CCR5 competition with inhibitory chemokines MIP-1α, MIP-1β, and RANTES, which are

induced by HIV-1 replication. Previous studies have demonstrated that such competition

might occur in the immediate vicinity of chemokine-secreting cells although the global con-

centrations obtained in culture supernatant does not reach inhibitory levels [68, 69]. In addi-

tion, HIV-infection induces IL-10 secretion in early gestation HCs. The inhibitory effect of IL-

10 on HIV replication has been previously reported [70–72], where IL-10 did not decrease sus-

ceptibility to infection, but exhibited antiviral effect by limiting virus production. Similar het-

erogeneity has been noted in alveolar and vaginal macrophages, which are susceptible to HIV-

1, whereas intestinal macrophages are typically resistant [73, 74]. HIV resistance in intestinal

macrophages may be the result of high levels of IL-10 and TGF-β, which down-regulate
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expression of CCR5 and CXCR4, as well as innate signaling mediators [74, 75]. In earlier stud-

ies, we have demonstrated that HCs limit HIV-1 replication by the induction of IL-10 and

TGF-β [28]; here we extend those studies to show that secreted immunoregulatory cytokines

are significantly upregulated in HCs isolated early in gestation. Collectively, these findings sug-

gest that functional polarization throughout gestation may be an important regulator of sus-

ceptibility to HIV-1 infection and efficiency of viral replication in placental macrophages.

The placenta is a robust immune organ that has the capability to respond to pathogens via

PRRs. One particular PRR family, the RIG-I-like receptors (RLRs), respond to RNA viral infec-

tions, including HIV, signal downstream to produce type I IFNs, and upregulate IFN-stimu-

lated genes (ISGs). At the maternal-fetal interface, type I IFNs (IFN-α and IFN-β) regulate

inflammation, contribute towards fetal immunity, and are implicated in protection against

viruses [76–78]. Type I IFNs are the first line of defense against viral infections and play a

prominent role in control of HIV replication [79–81]. The production of type I IFNs is the

hallmark of effective antiviral immunity, yet interestingly, many viruses can antagonize the

IFN pathway to enhance infection and replication. Similar to type I, type III IFNs (IFN-λ1–4),

which are secreted by placental trophoblasts, can mount antiviral responses and induce ISGs

[82–85]. Here, we demonstrate that early/mid-gestation and term HCs constitutively secrete

substantial levels of IFN-α in culture. This constitutive, baseline expression of type I IFNs in

tissue has been shown to contribute to the modulation of the local immune responses and pro-

tection against viral infection [86]. During pregnancy, high levels of IFN-α may protect the

fetus from acquiring intrauterine infections, such as herpes simplex virus [77]. Here we noted

that early/mid-gestation HCs constitutively secrete significantly elevated levels of IFN-α and

in response to HIV-1 infection, compared term HCs, underscoring that the placenta in early

gestation may be less conducive to viral infection and dissemination. Along with IFN-α, others

have noted that loss of IFN-β signaling in the placenta leads to uncontrolled viral replication,

fetal infection, and maternal mortality [87, 88], and that IFN-λ secretion by trophoblasts con-

fers protection against ZIKV infection [89, 90]. These studies suggest a critical role for type I

and III IFNs as important mediators of antiviral signaling at the placenta. Indeed, we show

that HCs across gestation, with or without HIV-infection, exhibited robust induction of type I

and III IFN mRNA; however, we failed to detect IFN-β and IFN-λ1 protein in any of the super-

natants. This finding is consistent with previous observations in ZIKV-infected HCs, where

we did not observe IFN-β in the supernatants despite robust induction of transcripts [91, 92].

These results indicate that HCs may have an intrinsic deficiency in translation and synthesis of

IFN-β. However, given the important role of IFN-α, -β, and -λ in protection against pathogens

at the maternal-fetal interface, limiting viral infection via the production of IFNs is likely a

coordinated effort between HCs, trophoblasts, and other resident maternal and fetal immune

cells.

Type I IFNs invoke a potent antiviral state in the cell following stimulation of two IFN

receptor subunits to activate the Janus kinase (JAK) family of cytoplasmic tyrosine kinases,

JAK1, and tyrosine kinase 2 (TYK2). Phosphorylated JAKs activate the signal transducers and

activator of transcription factors (STAT), STAT1, STAT2, STAT3, and STAT5 [93–96].

STAT4 and STAT6 can also be activated by type I IFNs, but activation of these proteins is

restricted to certain cell types, such as endothelial cells [97, 98]. Similar to type I IFN, type III

IFNs have been shown to activate the STAT proteins and IFN regulatory factor 9 (IRF9) [99].

These complexes translocate to the nucleus and bind IFN-stimulated response elements

(ISREs) in DNA to activate the transcription of hundreds of ISGs, which mediate antiviral

responses [55, 56]. We demonstrate that early/mid-gestation HCs respond more robustly to

IFN treatment, compared to term HCs. Type I IFN-treated cultures upregulated IFN and ISG

transcripts in HCs isolated from early gestation associated with low levels of HIV-1 replication.
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We also noted that HIV-1 infection induces a prominent antiviral state in early/mid-gestation

HCs, characterized by transcription and secretion of IFN-α and significantly elevated tran-

scription of the RLRs, STAT1, STAT5, ISG15, OAS1, IFIT1, IFIT2, IFIT3, and Viperin. This

data confirms that early/mid-gestation HCs are primed and equipped to respond robustly

through viral-induced IFN secretion, which may offset vertical transmission during early preg-

nancy. In comparison, IFN treatment and HIV infection of term HCs minimally triggered

type I IFN signaling. We noted that transcription of the STAT1, STAT2, STAT3 and STAT5

was upregulated following HIV infection of term HCs. In fact, the increase observed in STAT2

and STAT3 was significantly greater than that observed in early/mid-gestation HCs. However,

when we evaluated whether STAT transcription correlated with STAT protein levels and acti-

vation, we found that HIV-infected term HCs did not phosphorylate STAT2 and there was no

significant difference in STAT3 phosphorylation. STAT5 phosphorylation was significantly

upregulated at term, compared to early/mid gestation. The importance of STAT5 activity in

during viral infection is largely unknown, however recent observations have identified key

molecular links between STAT5 activity and the induction of HIV replication. Studies have

demonstrated that overexpression of STAT5 increased virus production in unstimulated pri-

mary T cells–both the number of p24+ cells and their level of p24 production–suggesting that

STAT5 promotes a permissive state for HIV infection [100]. In addition, several STAT5-acti-

vating cytokines were able to exert upregulatory effects on HIV replication in mononuclear

phagocytes [101] suggested a potential role in controlling viral expression. Furthermore,

STAT5 has been shown to bind directly to one or more putative DNA binding sites present in

the U3 region of the HIV long terminal repeats (LTR), which could potentially lead to trigger-

ing or enhancing viral transcription [100, 102]. In this regard, STAT5 could become a promis-

ing antiviral drug candidate [46]. Viperin was the only antiviral effector that displayed

substantial upregulation in term HCs, in response to HIV infection. Viperin, an ISG, is

induced through the type I IFN pathway. However, recent studies have indicated that Viperin

can also be upregulated independently of IFN, through an IRF1 or IRF3 mechanism, which

can be activated by viral factors or by the peroxisomal MAVS signaling pathway [103, 104].

During pregnancy, IRF1 is an important regulator of the inflammatory response during

human labor [105], and further studies are warranted to examine the role of Viperin and the

IRFs in regulating HIV infection during pregnancy and parturition.

This study had two important limitations. First, the number of donors used in this study

was restricted due to the difficulty in acquiring these specimens and the complexities of isolat-

ing the primary cells from fresh tissue. Although the overall numbers are relatively small, sta-

tistical differences were identified between cells isolated at different time points in gestation

and between infected and mock-infected groups, indicating sample size was sufficient.

Another limitation is that the placental macrophages were isolated from tissue and placed into

single cell culture, which may not fully represent responses seen in an intact placenta. Placental

macrophages are the most abundant immune cell in the placenta and play a key role in the syn-

thesis of mediators involved in establishment and maintenance of pregnancy, fetal develop-

ment including tissue modeling and maintaining healthy tissue homeostasis, parturition, local

immune ontogeny, and maternal-fetal tolerance [106, 107]. In addition, these cells are a major

target for HIV [21, 23, 28, 30, 32, 108]. However, the complex milieu, including the changing

architecture of placental villi throughout gestation, are potential variables that cannot be fully

recapitulated in vitro. It is likely that MTCT of HIV is likely influenced by a variety of factors,

such as maternal immunity, placental integrity, trophoblast regulation, fetal cell responses,

along with HC regulation. Further research is necessary to recreate more complex and physio-

logically meaningful placental models in vitro. Nevertheless, our data, expands the understand-

ing of HIV susceptibility and transmission throughout pregnancy and highlights the potential
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of placental macrophages and innate immune signaling to limit HIV transmission during

early gestation.

To summarize, our study provides mechanistic insights to support previous clinical obser-

vations that in utero HIV transmission likely occurs in the third trimester. We show that gesta-

tional age plays a significant role in the ability of HCs to generate robust antiviral responses,

which are necessary to prevent or reduce viral burden. Specifically, we show that viral recogni-

tion and robust antiviral immune responses in placental cells during early gestation may pre-

vent in utero HIV infection and that diminished antiviral responses observed in term HCs

may promote viral transmission. Our studies also identify potential deficiencies in IFN-β
translation throughout gestation and increases in total and phosphorylated STAT5 at term;

both of which may be important host factors involved in viral transmission at the maternal-

fetal interface. These findings are important in defining the mechanisms and specific timing of

vertical transmission, which may contribute to the development of specific vaccines and antivi-

ral therapies.

Materials and methods

Ethics statement

Early gestation human placentae were obtained from a free-standing clinic in GA from con-

sented donors who elected to terminate pregnancies prior to 21 weeks and 6 days of gestation.

Human term placentae (>37 weeks gestation) were collected from hepatitis B, HIV-1 seroneg-

ative women (>18 years of age) immediately after elective caesarean section without labor

from Emory Midtown Hospital, Atlanta, GA. This study was approved by the Emory Univer-

sity Institutional Review Board (IRB 000217715). Written informed consent was acquired

from all donors before sample collection. Samples were de-identified before primary HC

isolation.

Placental dissection and Hofbauer isolation

HCs were isolated from membrane-free villous placenta as previously described [28]. Briefly,

the tissue was thoroughly washed and mechanically dispersed in Hank’s balanced salt solution

(HBSS) to minimize peripheral blood contamination. The minced tissue was re-suspended in

complete medium containing 10% Trypsin/EDTA (Sigma-Aldrich, St. Louis, MO, USA) for 1

hour, followed by resuspension in media containing 1 mg/ml collagenase A (Worthington Bio-

chemical, Lakewood, NJ, USA) and 0.2 mg/ml of DNAse I (Sigma-Aldrich) and incubated in a

shaking water bath at 37˚C for 1 hour. The digested tissue was washed with PBS and passed

through gauze and a 70 μm cell strainer (BD-Falcon Biosciences, Lexington, TN, USA). The

mononuclear cell population was isolated by density gradient centrifugation on Histopaque-

1077 (Sigma-Aldrich). CD14+ Magnetic Cell Sorting was performed using anti-CD14 mag-

netic beads (Miltenyi Biotech, Bergisch Gladbach, Germany) as recommended by the manu-

facturer. On average, the purity was>95%. After isolation, HCs were cultured in complete

RPMI medium consisting of 1x RPMI (Corning Cellgro, Corning, NY, USA), 10% FBS

(Optima, Atlanta Biologics), 2mM L-glutamine (Corning), 1mM sodium pyruvate (Corning),

1x Non-essential Amino Acids (Corning), 1x antibiotics (penicillin, streptomycin, amphoteri-

cin B; Corning) at 37˚C and 5% CO2. HCs were treated with the following as indicated, follow-

ing resuspension per the manufacturer’s instructions: 100IU/mL IFN-α A/D (Novus,

Centennial, CO, USA), 100ng/mL IFN-β (Peprotech, Cranbury, NJ, USA), 100ng/mL IL-29

(Peprotech), 5’ppp-dsRNA (Invivogen, San Diego, CA, USA), and control for 5’ppp-dsRNA

(Invivogen).
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Viral infection of Hofbauer cells

HIV-1 infection of HCs were performed as previously described [28, 108, 109]. 1.0 × 105 cells/

well in a 96-well plate (Corning) were infected at a multiplicity of infection (MOI) of 0.1 over-

night at 37˚C with the HIV-1 BaL strain (HIV-1BaL). This isolate was obtained through the

NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH: HIV-1Ba-L contributed by Dr.

Suzanne Gartner, Dr. Mikulas Popovic and Dr. Robert Gallo [110]. Cells were then washed

with PBS to remove unabsorbed virus and replenished with complete media. To monitor HIV

production, cell supernatants were collected 5 days post-infection. Viral replication was

detected by p24 released into the supernatant by enzyme-linked immunosorbent assay

(ELISA) (Advanced BioScience Laboratories, Rockville, MD, USA). The HIV-1BaL strain is

R5-trophic and was isolated from infant lung tissue [110].

Flow cytometry

Cells were washed with PBS and gently detached using 0.5 mM EDTA in PBS. Then, HCs

(5 × 105 per sample) were blocked for 10 minutes on ice with 0.25μl/sample Human TruStain

FcX (BioLegend, San Diego, CA, USA) in FACS buffer (1x PBS, 0.1% BSA, 1mM EDTA) and

live/dead stained for 10 minutes on ice with Calcein Violet 450AM (eBiosciences, San Diego,

CA, USA). HCs were stained for surface markers (S1 Table) for 20 minutes on ice using 0.25μl/

sample of the following anti-human antibodies in FACS buffer: CD14-APC [M5E2], CCR5-PE

[3A9], DCSIGN-PE-Cy7 [9E9A8], CXCR4-BV605 [12G5], CD80-PE [2D10.4], CD86-FITC

[2331], CD163-BV605 [GHI/61], and HLA-DR-PerCP-Cy5.5 [G46-6] (BioLegend and BD Bio-

sciences, Franklin Lakes, NJ, USA). Stained cells were analyzed 48 hours post-infection on a BD

LSR II flow cytometer driven by the DiVA software package (BD) following calibration using

6-peak Rainbow Calibration Particles (BioLegend). Analysis of the acquired data was performed

using FlowJo software (Tree Star, Ashland, OR, USA). Compensation values were calculated

using UltraComp eBeads (Life Technologies). Gating strategy is included (S1 Fig).

RNA isolation and quantitative RT-PCR

Messenger RNA (mRNA) was extracted using the RNAeasy kit (Qiagen). The complementary

DNA was transcribed using QuantiTect RT kit (Qiagen). HC gene expression was quantified

by qRT-PCR using QuantiTect SYBR Green PCR Kits (Qiagen) with specific primers for host

and integrated viral genes (S2 Table). Delta cycle threshold (ΔCt) values from the calibrator

and experimental groups were measured by subtracting Ct values from target vs the house-

keeping transcript, β-actin. Gene expression data are represented as ΔCt values or as fold

change relative to paired, time-matched, mock-infected controls (gene expression normalized

to β-actin − ΔΔCt method).

Luminex

Cytokine and chemokine concentrations (S3 Table) in the supernatants of mock, HIV-

infected, and/or IFN-treated HCs (500,000 cells per condition) and accompanying controls

were assessed in duplicate using the Human Cytokine Magnetic 25-Plex Panel (Pub. No.

MAN0003646; Invitrogen) per the manufacturers’ instructions. Plates were read on a Luminex

100 Analyzer and concentrations were determined by comparison to a 7-point standard curve.

ELISA

IFN-λ1 and IFN-β concentrations in the supernatants of mock, HIV-infected, and/or IFN-

treated HCs (500,000 cells per condition) and accompanying controls were assessed in

PLOS PATHOGENS Placental innate immunity and HIV transmission

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009860 August 25, 2021 15 / 23

https://doi.org/10.1371/journal.ppat.1009860


duplicate using the Human IL-29/IFN-λ1 DuoSet ELISA Kit (DY7246; R&D Systems, Minne-

apolis, MN, USA) and the Human IFN-β ELISA Kit (41410; PBL, Piscataway, NY, USA)

according to the manufacturers’ instructions. Plates were read on a SpectraMax 250 plate

reader and concentrations were determined by comparison to a standard curve.

Immunoblotting

Cells were lysed in radio-immunoprecipitation assay buffer (ThermoFisher) with protease

inhibitors (Roche, Basel, Switzerland). Samples were subjected to denaturing sodium dodecyl

sulfate–polyacrylamide gel electrophoresis. Gels were blotted on nitrocellulose membranes

(GE Healthcare). After blocking with buffer (Li-Cor; Lincoln, NE, USA), the membrane was

incubated with the following primary antibodies overnight at 4˚C (S4 Table): mouse anti-

STAT1 (ab155933), mouse anti-pSTAT1 (ab29045), mouse anti-STAT2 (sc-1668), rabbit anti-

pSTAT2 (ab53132), mouse anti-STAT3 (ab119352), rabbit anti-pSTAT3 (ab76315), mouse

anti-STAT5 (sc-74442), rabbit anti-pSTAT5 (ab32364), and mouse anti-β-Actin (ab8226)

[Abcam, Cambridge, UK; Santa Cruz Biotechnology, Santa Cruz, CA, USA]. Next, the mem-

brane was incubated with the appropriate IRDye goat anti-mouse and IRDye goat anti-rabbit

secondary antibodies (Li-Cor). Prior to western blot analysis with the Odyssey Infrared Imag-

ing System (Li-Cor), the combined linear range of detection for the targets and β-actin were

determined. All images were analyzed using the Odyssey Application Software within the pre-

determined ranges.

Statistical analysis

All figures are representative of at least 3 independent experiments and 10 individual donors.

Data were analyzed using multiple one-sample t-tests comparing mock, infected, or treated

values. Analyses were corrected for multiple comparisons by controlling the false discovery

rate. Discovery was determined using the two-stage linear step-up procedure of Benjamini,

Krieger and Yekutieli, with Q = 5%, without assuming consistent SD [111]. Data were analyzed

by two-tailed t-test using the two-stage step-up method by Benjamini, Krieger and Yekutieli.

Differences were defined as significant when p� .05. All statistical analysis was performed

using GraphPad Prism 9.1.1 software. In each of the main and supplemental figure legends,

“n” represents the number of placental donors from which HCs were derived. Further experi-

mental statistical details are described in the figure legends.
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