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Lung adenocarcinoma (LUAD) is one of the world's commonest malignancies with a high fatality rate. Chemokines
not only regulate immune response but also participate in tumor development and metastasis and yet the
mechanism of chemokines in LUAD remains unclear. In this study, transcriptional expression profiles, mutation

;‘;ﬁzﬁz‘s data, and copy number variation data were downloaded from The Cancer Genome Atlas (TCGA). Risk gene
C ) protein expression was assessed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human
ompeting endogenous RNA . R R . .

Bioinformatics Protein Atlas (HPA). Gene Expression Omnibus (GEO) data was used to validate the prognostic model. We

summarized the genetic mutation variation landscape of chemokines. The risk prognosis model was developed
based on differentially expressed chemokines, and patients in the high-risk score (RS) group had lower survival
rates. Gene Set Enrichment Analysis (GSEA) revealed that high-RS patients were associated with metabolic
transformation pathways, while low-RS patients were associated with immune-related pathways. Compared with
the high-RS group, the low-RS group had higher immune/stromal/estimate scores calculated by the ESTIMATE
package. The proportion of immune cells obtained using the CIBERSORT package was significantly different
between the two groups. Most of the immune checkpoints were highly expressed in low-RS samples. Finally, we
discovered that the IncRNA MIR17HG/AC009299.3/miR-21-5p/CCL20 regulatory network might be crucial in
the pathogenesis of LUAD. In conclusion, we developed a risk signature and chemokine-related competing
endogenous RNA (ceRNA) network.

into account the patient's actual condition can improve treatment out-
comes and reduce adverse effects. Therefore, it is urgent to explore the
characteristics and mechanisms of lung adenocarcinoma to develop in-
dividual precise treatment strategies.

1. Introduction

Globally, the death toll of lung cancer far exceeds that of other cancer
types, ranking first in the number of cancer deaths [1]. According to the

morphological properties of lung cancer cells, non-small cell lung cancer
(NSCLC) and small cell lung cancer (SCLC) can be distinguished [2]. The
vast majority of lung cancer types is NSCLC, accounting for about 85%
[3]. As the environment changes, the proportion of LUAD increases year
by year and has occupied the majority of NSCLC [4]. Despite remarkable
clinical achievements, the five-year survival rate for lung cancer remains
low at approximately 21% [1]. Individualized treatment plans that take
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Immunotherapy is known to be the most popular therapy for cancers. In
recent years, Food and Drug Administration has approved some immune
checkpoint inhibitors (ICIs) as first-line therapeutic agents for advanced
NSCLC. Tumor cells can upregulate the expression of checkpoint mole-
cules, leading to immune escape by unresponsive cytotoxic T cells in the
tumor microenvironment (TME) [5]. ICIs enhance the anticancer immune
response by targeting and antagonizing immune checkpoint molecules
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such as PD-L1, PD-1, CTLA-4, and LAG-3. Nevertheless, only one-third of
patients in NSCLC can benefit from ICI treatment [6], suggesting that TME
is heterogeneous and understanding tumor immune heterogeneity is
essential for the development of effective therapy.

Inflammatory mediators are important components of TME and pro-
mote tumor development [7]. Chemokines are signaling proteins with a
small molecular weight that are released by cells, inducing the directional
chemotaxis of nearby reaction cells, which play a key role in inflammation
and immunity [8]. They can be expressed by tumor cells, immune cells,
and stromal cells. Under the action of specific chemokines, different sub-
sets of immune cells migrate to TME to regulate the immune response [9].
Recently, chemokines have emerged as potential targets for cancer
immunotherapy and prognostic biomarkers [10, 11]. Low expression of
CCL14 is related to a bad outcome and various types of immune cell
infiltration in hepatocellular carcinoma [11]. High expression of CXCL13
and CXCR5 in breast cancer is associated with clinical stages, cancer
metastasis, and poor prognosis [12]. However, there has been no
comprehensive analysis and screening of chemokines as prognostic risk
characteristics of LUAD yet. Therefore, we systematically analyzed the
chemokines’ expression and constructed a risk prognosis model and
related regulatory network. Considering the important role of chemokines
in immune regulation, the relationship between the risk prognosis model
and immune score, immune checkpoint expression, and immune cell
infiltration was further analyzed. Our findings may add to the evidence
that chemokines play a crucial role in the genesis and progression of LUAD.

2. Materials and methods
2.1. Data procession and differential expression analysis

The microRNAs (miRNA), long non-coding RNA (IncRNA), messenger
RNA (mRNA) sequencing data and corresponding clinical data of LUAD
were downloaded from the TCGA database (https://portal.gdc.cancer.go
v). Somatic mutation data and copy number variation (CNV) data were
downloaded from TCGA and the University of California, Santa Cruz
(UCSC) Xena website (https://xenabrowser.net/datapages/), respec-
tively. Transcriptome data of mRNA and IncRNA included 535 tumor
tissues and 59 normal tissues. Transcriptome data of miRNA included
521 tumor tissues and 46 normal tissues. 513 clinical samples were
included after excluding those with missing survival time. The data (226
tumor samples) for validating the prognostic model was acquired from
the early lung adenocarcinoma expression data uploaded by Kohno T et
al in the GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE31210) (GSE31210) [13,14]. The Chemokine ligands and
receptors were derived from previous publications [15]and summarized
in Supplementary Table 1. R package “DEseq2” was used to analyze the
differential expression of chemokines in lung adenocarcinoma tissues
and normal tissues. The thresholds were set as |log2 fold change (FC)| >
1, false discovery rate (FDR) < 0.05. To verify whether the risk genes’
mRNA expression is consistent with that protein expression, we down-
loaded the lung adenocarcinoma protein expression data from the Clin-
ical Proteomic Tumor Analysis Consortium (CPTAC, https://prot
eomics.cancer.gov/data-portal) [16] with study ID: PDC000219 and
analyzed CXCL13, CCL20, CX3CR1 protein expression in tumor and
normal tissues. Meanwhile, as a complement to the protein detection
method, the Human Protein Atlas (HPA, https://www.proteinatlas.org/)
[17] demonstrated the results of CXCL13, CX3CR1, CXCL4L1 immuno-
histochemical staining in LUAD tissues and normal tissues. Unfortu-
nately, CXCL4L1 expression data was not available in CPTAC, and HPA
did not have immunohistochemical staining maps for CCL20.

2.2. Mutation and copy number variations analysis of chemokines
The “maftools” package was used to present the mutation landscape

of chemokines in LUAD. The location of CNV alteration of chemokines on
chromosomes was plotted by the “RCircos” package.
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2.3. Construction of risk prognosis model

We conducted a univariate regression analysis on the chemokines
with differential expression in TCGA-LUAD and selected the chemokines
with that P value less than 0.2 in the univariate analysis for inclusion in
the multivariate analysis. Finally, the risk prognosis model of the four
genes was established. In both the training (TCGA) and validation (GEO)
datasets, the formula was used to generate the risk score for each patient.
The formula is shown below:

Risk score = 3; x Expression; + f3, x Expressiony + -+ + f3; x Expression;

(B is the regression coefficient of each risk gene and Expression is the
genes’ expression).

The median risk score was used to separate patients into the high-RS
group and low-RS group in the TCGA (n = 501) and GEO (n = 226)
studies. Univariate and multivariate analyses of risk score and clinical
parameters were performed to assess the risk ratios for clinical parame-
ters. 3, 5-year receiver operator characteristic curve (ROC) curve was
created to ensure the model accurate. Nomogram was conducted by
“rms” to predict the 3, 5, and 7-year survival of patients. A vertical line
determined the point for each variable, and the points for all variables
were added up to give a total point, which allowed to predict survival
rates. The calibration curve was set up to verify the prediction perfor-
mance. The closer the curve slope is to 1, the better the prediction effect
is. The random sampling was repeated 600 times.

2.4. Relationships of risk gene signature with immune score and immune
cells

GSEA can evaluate the distribution tendency of genes in a pre-
determined gene set in the gene table sorted by phenotypic correlation to
judge their contribution to phenotype [18, 19]. KEGG gene set were from
the Molecular Signatures Database (http://www.gsea-msigdb.org/gsea/
msigdb/index.jsp). GSEA analysis was performed adopting the refer-
ence gene set ‘c2. cp.kegg.v7.4. symbols.gmt’ at 1,000 number of per-
mutations by JAVA program. In this study, the input to GSEA was a
matrix of all mRNA expression in TCGA-LUAD, the samples were divided
into high-risk and low-risk groups based on the median risk score of 1.0,
and all mRNA genes were ranked according to enrichment score (ES).
Pathways with ES > 0 were enriched in the high-risk group, and path-
ways with ES < 0 were enriched in the low-risk group. The ESTIMATE
package predicted stromal and immune cell scores from expression
profile data to estimate the percentage of each type of cell and the tumor
purity of the samples [20]. To learn more about how the immune system
changes in cancer patients, the relative proportions of immune cells were
calculated using CIBERSORT. We described the proportion of immune
cell infiltration with reference to LM22, which includes 547 genes for
differentiating twenty-two human hematopoietic cell phenotypes [21].
The perm was set at 1000. Only Samples with P < 0.05 were retained.

2.5. Construction of competing endogenous RNA (ceRNA) network

CCL20 was identified as the best prognostic factor among the four risk
genes according to prognosis and clinical stage. Therefore, the ceRNA
network in this study was used to reversely predict the corresponding
miRNA and IncRNA through CCL20. TarBasev.8 [22] (https://dianalab
.e-ce.uth.gr/html/diana/web/index.php?r=tarbasev8), miRTarBase
[23] (http://mirtarbase.cuhk.edu.cn/) and TargetScan [24] (https:
//www.targetscan.org/vert 72/) were used to anticipate miRNA tar-
gets that bind to mRNA. LncBase Predicted v.2 [25] (https://carolina.i
mis.athena-innovation.gr/diana_tools/web/index.php?r=Incbasev2/ind
ex-predicted) and StarBase [26] (https://starbase.sysu.edu.cn/) were
used to predict the IncRNAs targeting miRNAs. The study workflow was
shown in Figure 1.
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2.6. Statistical analysis

R software was used to conduct statistical analyses. Wilcoxon test
was applied to compare differences between two sets of data while
Kruskal-Wallis test was applied to compare three or more sets of data.
For survival analysis, the optimal cutoff values of all variables were
defined by the “survminer” R package, and P-value was calculated with
log-rank test. The correlation between the two groups of continuous
variables was analyzed by Pearson test. The meanings represented by
statistical symbols are respectively: ns, not significant; *P < 0.05;
**P < 0.01; ***P < 0.001. P < 0.05 was regarded as statistically
significant.

3. Results
3.1. Chemokine genetic variation landscape in TCGA-LUAD

Figure 2(a) summarized the type and frequency of all chemokine
somatic cell mutations. Missense mutation and SNP ranked as the top
variant type. C > A was the most common type in SNV class. ACKR1
exhibited the highest mutation frequency with 14% (Figure 2(b)).
Further analysis showed that there were significant co-occurrence mu-
tation relationships between CCL20 and CXCR5, CCL19 and CCL17,
CCL2 and CCL23, etc (Figure 2(c)). The location of chemokine CNV
variations on 23 chromosomes is depicted in Figure 2(d). There is a
prevalent CNV alteration in chemokines and more than half of them were
focused on the amplification in copy number (Figure 2(e)). On the whole,
the mutation rate and CNV frequency of atypical chemokine receptors
ACKR1 are highest in the chemokine family.

Training cohort (TCGA)

}

Gene mutation analysis

}

Differential gene expression
analysis

}

Univariate and multivariate
regression analysis

}

Prognostic model
(Four genes)

Screening for optimal
risk genes: CCL20
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3.2. Construction of risk prognostic model based on differentially expressed
chemokines in TCGA-LUAD

There were 19 up-regulated genes and 12 down-regulated genes in
tumor tissues by the standard of |log2(FC)| > 1 and FDR <0.05 (Sup-
plementary Table 2). Heatmaps of these differentially expressed genes
were displayed in Figure 3(a). The genes with P < 0.2 in the univariate
analysis were selected out for inclusion in the multivariate analysis [27].
In this regard, we believe that appropriately relaxing the inclusion
criteria to P < 0.2 can effectively avoid omitting some important vari-
ables. Although they are not statistically significant in univariate anal-
ysis, their real effects may be underestimated or covered up. The forest
plot showed the regression coefficient, hazard ratio and P-value of the
chemokines that meet P < 0.2 in the univariate analysis (Figure 3(b)).
Then the model was optimized by multivariate Cox regression, and four
chemokines were obtained to develop risk prediction model (Table 1). To
identify the gene expression of the four chemokines at the protein level,
we analyzed the protein expression of LUAD tissues and adjacent normal
tissues using CPTAC data. The results showed that CXCL13 and CCL20
protein expression was significantly higher in LUAD tissues than in
normal tissues, and the opposite was true for CX3CR1 (Figure 3(c)). As
shown in Figure 3(d), immunohistochemical staining from HPA indi-
cated that CXCL13 protein expression was upregulated and CX3CR1
protein expression was downregulated in LUAD tissues, and CXCL4L1
was not significantly different in the two tissues. It is clear from our
expression analysis that both mRNA and protein expression of CXCL13
and CCL20 are highly expressed in LUAD while CX3CR is the opposite
and the mRNA expression level of CXCL4L1 is highly expressed in lung
adenocarcinoma tissues.

Prediction of miRNA:
hsa-miR-21-5p

Prediction of IncRNA:
MIR17HG/AC009299.3

v ;

Validation cohort

Risk group survival analysis
(GSE31210)

}

Clinical independent
prognostic analysis

}

ROC curve evaluation

}

Normogram

ESTIMATE analysis

| !

KEGG enrichment analysis

i

CIBERSORT analysis

}

Immune checkpoint gene

expression

Figure 1. The workflow of the study.
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Altered in 63 (52.94%) of 119 samples.
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Figure 2. Chemokine genetic variation landscape in TCGA-LUAD. (a) Chemokine mutation classification in LUAD. (b) The mutation frequency of the top ten
chemokines. Each column on the panel represented an individual patient, with different colors representing variant types. The percentage of mutation frequency for
each gene was shown on the right. The total mutation burden (TMB) of each sample showed in the upper bar plot. (¢) The mutation co-occurrence and exclusion
analyses of chemokines. (d) Chemokine CNV alterations were observed on twenty-three chromosomes. (e) The CNV frequency of all chemokines. DEL deletion; SNP,

single nucleotide polymorphism.

In the heat map, the mean expression of CCL20 was higher in high-
RS group, while the opposite was true for CXCL13, CX3CR1 and
CXCLA4L1 (Figure 4(a)). The Kaplan-Meier (KM) survival curve revealed

that low-RS patients had consistently higher survival rates than high-RS
patients (Figure 4(b)). Patients were ranked from lowest to the highest
risk score, with the median risk score of 1.0 represented by the
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Table 1. Coefficients of multivariate cox regression analysis.

Gene Coef HR HR.95L HR.95H P value

CXCL13 -0.06627 0.935876 0.869642 1.007155 0.076794
CCL20 0.118971 1.126337 1.052461 1.205399 0.000588
CX3CR1 -0.19912 0.819449 0.719571 0.933191 0.002677
CXCL4L1 -0.2435 0.78388 0.65214 0.942232 0.009492

horizontal dotted line (Figure 4(c)). As the RS increased, the duration of
patient survival diminished and the number of deaths increased
(Figure 4(d)). Regression analysis was used to identify prognostic out-
comes of clinical indicators. Univariate regression analysis showed RS,
T, N, M and stage were related to the prognosis of patients (Figure 4(e)).
Multivariate regression analysis showed RS, T, N, M were independent
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prognostic factors (Figure 4(f)). We combined RS and clinicopatholog-
ical features to draw 3-year (Figure 4(g)) and 5-year ROC curves
(Figure 4(h)) to predict the accuracy of the model. The larger the area
under the curve, the better the accuracy of the model. Both the 3- and 5-
year ROC curves showed that the AUC of RS was higher than other
clinical features.

The expression of risk genes was employed to create a nomogram for
predicting survival time (Figure 5(a)). The “Points” axis has been
normalized to 0 to 100, and the total points can be obtained based on the
expression of the risk genes to predict the survival rate of 3, 5, 7 years.
The calibration curve was designed to demonstrate the nomogram's
precision. It can be seen that the red line is close to the gray line, which
indicates that the predicted result is consistent with the actual result
(Figure 5(b)). Concordance index (C-index = 0.64) could evaluate
discrimination power of the nomogram.
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Figure 3. Differential expression analysis between normal and tumor tissues and univariate analysis in LUAD. (a) Heatmap of chemokines that were
differentially expressed in TCGA. (b) Forest map of univariate analysis in TCGA. HR, the hazard ratios; 95%CI, 95% confidence intervals. (c¢) The protein expression
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normal: not detected/not detected.
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Figure 4. Establishment and evaluation of risk prognosis model in TCGA-LUAD. (a) The heatmap showed the four genes' expression in high/low-RS group. (b)
The survival curve exhibited prognostic difference between patients in the high/low-RS groups over the period of 20 years. (c) The risk scores of 501 patients
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3.3. The prognostic model was validated with GEO

The data from GSE31210 was utilized to validate the risk signa-
tures. The median value of the risk score in the GEO cohort of 226
patients was 0.95 according to the risk score formula. 113 of 226
samples were separated into the low-RS group and the rest into the
high-RS group. The expression of risk genes and the survival rate of
patients in the high/low-RS group were both in line with the TCGA
findings (Supplementary Figure 1(a)-(d)). Different from TCGA, RS
and stage were both independent prognostic factors through univari-
ate (Supplementary Figure 1(e)) and multivariate regression analysis
(Supplementary Figure 1(f)). The area under the curve was almost
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equal to that of the TCGA cohort (Supplementary Figure 1(g)-(h)). We
also use GEO data to draw nomogram (Figure 5(c)) and calibration
curve (Figure 5(d)) and the C-index is 0.68. Overall, these four che-
mokines were used to construct risk models that accurately predict
patient outcomes.

3.4. Therisk signature defined distinct enrichment pathway, immune score,
immune cells, and immune checkpoint genes in TCGA-LUAD

GSEA was used to analyze genes related to the high/low-RS group in
TCGA for Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis to examine potential biological function (Supplementary
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Figure 2(a)). Enrichment scores (ES) and P-value of pathways with sig-
nificance were provided in Supplementary Table 3. Genes related to high-
RS samples were enriched in protein export, citrate cycle tca cycle,
proteasome, etc (Supplementary Figure 2(b)-(d)), while genes related to
low-RS samples were enriched in allograft rejection, asthma, chemokine
signaling pathway, intestinal immune network for IGA production, pri-
mary immunodeficiency (Supplementary Figure 2(e)-(i)). Overall, pa-
tients with high-RS participated in pathways of metabolism or
translation, while patients with low-RS participated in pathways of im-
mune diseases or immune systems.

To understand the differences between the high-RS group and the
low-RS group in TME, we calculated immune/stromal/estimate scores
and tumor purity. Immune/stromal/estimate scores were significantly
higher in low-RS samples than in high-RS samples and were associated
with good prognosis, while the opposite was true for tumor purity
(Figure 6(a)-(h)). Next, we calculated the proportion of immune cells
(Figure 6(i)). The results indicated macrophages accounted for the most
proportion, followed by T cells. The proportion of 10 immune cells be-
tween the two groups exhibited significant difference (B cells memory,
plasma cells, T cells CD4 memory resting, T cells CD4 memory activated,
T cells gamma delta, monocytes, macrophages MO0, dendritic cells resting,
mast cells resting, mast cells activated) (Figure 6(j)). The relevance be-
tween immune cells and RS was shown in Figure 6(k). RS has strong
negative correlation with mast cells resting, dendritic cells resting, B cells
memory, and strong positive correlation with dendritic cells activated,
mast cells activated. Combining Figure 6(j) and Figure 6(k), we found
high proportions of mast cells resting and dendritic cells were associated
with good prognosis.

To explore the application of immune checkpoint inhibitors in pa-
tients with lung adenocarcinoma, we visualized the expression of 19
immune checkpoint genes in the two groups [28, 29, 30] (Supplementary
Figure 3). The results revealed that low-RS samples have lower expres-
sion of FGL1, but higher expression of BTLA, LAG3, CTLA4, CD274,
PDCD1, VTCN1, CD27, CD40, ICOS, TNFRSF4, PDCD1LG2, HHLA2,
HAVCR2 and VSIR. This suggests that lung adenocarcinoma patients at
low risk could benefit from immune checkpoint inhibitors.

3.5. Construction of a ceRNA network

Regression analysis and KM survival analysis suggested that CCL20
might be an independent biomarker in LUAD. Besides, high expression of
CCL20 is related to bad outcome (Supplementary Figure 4(a) and (c)).
Moreover, the expression distribution in different clinical stages showed
that CCL20 expression was positively correlated to the advanced clinical
stage (Supplementary Figure 4(b) and (d)). This suggested that CCL20
might take part in LUAD progression. We reversely predicted miR-21-5p
as the targeting miRNA sticking to CCL20 via TarBaseV.8, mirTarBase
and TargetScan for figuring out the possible molecular mechanism of
CCL20 in lung adenocarcinoma. Then miR-21-5p was used to predict
upstream IncRNA, and the intersection of LncBase Predicted v.2 and
StarBase was 8 IncRNAs (AC009299.3, FAM66E, OTUD6B-AS1,
NUTM2A-AS1, SNHG1, MIR17HG, BRWDI-IT1 and XIST)
(Figure 7(a)). The violin diagram displayed that miR-21-5p expression
was upregulated in tumors (Figure 7(b)) and correlated with poor
prognosis (Figure 7(c)). Among the 8 IncRNAs, only the expression of
MIR17HG and AC009299.3 was significantly correlated with survival
prognosis (Figure 7(d)-(e)), and survival curves of the remaining 6
IncRNAs were shown in Supplementary Figure 5. Therefore, the two
IncRNAs may be upstream targets for the regulation of chemokines in
LUAD. The ceRNA network was shown in Figure 7(f).

4. Discussion
Early detection and prompt treatment are crucial to the recovery of

lung cancer patients. However, due to the asymptomatic nature of LUAD,
many patients are not diagnosed until the middle and advanced clinical
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stage, which greatly reduces the effectiveness of the treatment [31]. In
recent years, precision medicine at the molecular level has developed
rapidly, and many targeted therapeutic drugs have emerged, improving
the quality of patients' life. But there is a great limitation that only a few
LUAD patients are ideal candidates for targeted therapy and patients
gradually appear the problem of targeted drug resistance with the
extension of treatment time. In order to make more patients have access
to treatment, we established a chemokine-related prognostic model to
provide the possibility of new therapeutic targets for clinical treatment.
Chemokines regulate immune cell chemotaxis and play a crucial role in
immunological surveillance. Besides, they participate in angiogenesis,
angiogenesis inhibition and tumor development and metastasis [32, 33].
Chemokines in TME have been reported to be of great importance during
cancer's tumorigenesis for the past few years [34].

In this study, chemokine mutation, CNV and expression were
analyzed. The results revealed that genetic alteration might lead to the
dysregulation of chemokines. To build the risk prognostic model,
differentially expressed genes were selected. Subsequently, we analyzed
the patients’ survival prognosis between the high-RS group and the
low-RS group as well as clinical independent prognosis and verified it
with GSE31210 data. We also applied the risk model to GSEA and
immune infiltration analysis and discovered the high-RS group was
correlated to metabolism and translation, while the low-RS group was
correlated to immune-related pathways. The number, type, and location
of tumor immune infiltration are crucial to the prediction of cancer
outcome. Patients in the high/low-RS group have different proportions
of immune cell infiltration. The results of the combined ESTIMATE and
CIBERSORT analysis showed that high-RS might indicate immunosup-
pressive. Furthermore, the expression of immune checkpoint genes
significantly increased in the low-RS group, which meant that low-RS
patients might benefit from the immune checkpoint inhibitors (ICIs)
therapy.

Prognostic genes including CCL20, CX3CR1, CXCL4L1 and CXCL13
might be associated with the prognosis of LUAD patients. Especially,
regression analysis and survival analysis indicated high CCL20 expres-
sion was related to poor prognosis. In addition, higher CCL20 expression
is positively correlated to the advanced clinical stage. Previous study
showed that CCL20 promotes tumor cell growth and metastasis in lung
cancer [35, 36, 37]. CXCL4L1 inhibits the growth and metastasis of lung
adenocarcinoma by preventing angiogenesis [38]. In serum, CXCL13
expression was significantly higher in the lung adenocarcinoma group
than in the healthy control group, which was consistent with our pre-
vious analysis of both mRNA and protein sequencing data from solid
tissues [39]. Results of CX3CR1 studies in lung cancer are controversial.
A study showed the expression of CX3CR1 was significantly higher in
lung cancer, promoting the tumor's development [39, 40]. But there are
opposing views thought that in the early stages of anti-PD-1 therapy, the
increased frequency of CX3CR1 subgroups in circulating CD8 T cells is
associated with the improvement of response and survival of patients
with NSCLC [41]. We consider the cause of this phenomenon may be
the instability of gene expression caused by post-translational modifi-
cation [42]. In short, we have successfully screened the chemokines to
construct a risk model that could accurately forecast the prognosis of
LUAD patients. In addition to that, we also found that high expression of
CCL20 results in poor prognosis, and the expression is significantly
different in variant clinical stages, which may be acted as a prognostic
biomarker of LUAD.

LncRNA, as ceRNA, competes with miRNA to regulate biological
functions to participate in the development of lung cancer [43]. We
predicted and constructed a IncRNA MIR17HG/AC009299.3/-
miR-21-5p/CCL20 regulation network. In fact, miR-21-5p is an onco-
gene with increased expression in many cancers [44, 45, 46]. In contrast,
overexpression of MIR17HG inhibited the invasion and migration of
cancer cells in NSCLC [47]. On the regulation of genes in the network,
MIR17HG/miR-21 and miR21/CCL20 have verified the accuracy of
binding sites by luciferase reporter assay. Overexpression of MIR17HG
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mune cells.
suppresses acute myeloid leukemia by sponging miR-21 to promote conclusions provide some evidence for our findings. AC009299.3 has not
apoptosis and miR-21 promotes the development of colorectal cancer and been studied after our investigation. Anyway, the expression of the three

cervical squamous carcinoma by regulating CCL20 [48, 49, 50]. These RNAs was associated with the prognosis of LUAD, suggesting that the
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IncRNA MIR17HG/AC009299.3/miR-21-5p/CCL20 regulatory network Although the chemokine risk model was confirmed to have strong
might be of great importance during the progression of LUAD. More performance for the prognosis of LUAD, we have to admit that the study
research needs to be performed to validate the discovery. still has some limitations. First of all, the use of a single gene set to
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establish a predictive model is an unavoidable defect, since the devel-
opment and progression of lung adenocarcinoma are actually influenced
by multiple mechanisms. Secondly, immune score and immune cells in
TME were calculated by advanced algorithms, so the predictive power of
the model for immunotherapy response is indirect. Thirdly, the data used
for analysis were downloaded from public databases. Although the
conclusions are supported by some evidence from the literature, the risk
genes model and the construction of the ceRNA network for lung
adenocarcinoma would be more convincing if fresh human tissue sam-
ples could be collected or cells obtained for experimental validation of
this study.

5. Conclusion

In conclusion, our study comprehensively elucidated the mutational
pattern of chemokines in LUAD and constructed the prognostic signature
and IncRNA MIR17HG/AC009299.3/miR-21-5p/CCL20 regulatory
network. This study will help enhance our understanding about the role
of chemokines, provide new independent prognostic factors and guide
effective immunotherapy strategies for lung cancer.
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