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Abstract
We here evaluated the potential anti-colorectal cancer activity by erastin, a voltage-depen-

dent anion channel (VDAC)-binding compound. Our in vitro studies showed that erastin

exerted potent cytotoxic effects against multiple human colorectal cancer cell lines, possibly

via inducing oxidative stress and caspase-9 dependent cell apoptosis. Further, mitochon-

drial permeability transition pore (mPTP) opening was observed in erastin-treated cancer

cells, which was evidenced by VDAC-1 and cyclophilin-D (Cyp-D) association, mitochon-

drial depolarization, and cytochrome C release. Caspase inhibitors, the ROS scavenger

MnTBAP, and mPTP blockers (sanglifehrin A, cyclosporin A and bongkrekic acid), as well

as shRNA-mediated knockdown of VDAC-1, all significantly attenuated erastin-induced

cytotoxicity and apoptosis in colorectal cancer cells. On the other hand, over-expression of

VDAC-1 augmented erastin-induced ROS production, mPTP opening, and colorectal can-

cer cell apoptosis. In vivo studies showed that intraperitoneal injection of erastin at well-tol-

erated doses dramatically inhibited HT-29 xenograft growth in severe combined

immunodeficient (SCID) mice. Together, these results demonstrate that erastin is cytotoxic

and pro-apoptotic to colorectal cancer cells. Erastin may be further investigated as a novel

anti-colorectal cancer agent.

Introduction
The colorectal cancer is the major contributor of cancer-related mortality both in China [1]
and around the world [2,3]. It is estimated that over 100,000 new cases of colorectal cancer are
diagnosed each year, which cause over 50,000 deaths annually [4]. Chemotherapy has been
widely-utilized for treatment of colorectal cancer, however drug resistance and/or off-target
toxicity limit the efficiency of current chemo-drugs [5,6,7]. Thus, our group [8,9] and others
[10,11] have been focusing on the development of novel and more efficient anti-colorectal can-
cer agents.

Mitochondrial permeability transition pore (mPTP) is a multi-protein channel complex
lying in the mitochondria, whose main function is to maintain the balance of mitochondrial
respiratory chain [12]. mPTP is primarily composed of three proteins: including voltage-
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dependent anion channel (VDAC) in the out mitochondrial membrane (OMM), adenine
nucleotide translocator 1 (ANT-1) in the inner mitochondrial membrane (IMM) and matrix
locating cyclophilin-D (Cyp-D) [12]. It has been shown that multiple stimuli will induce ANT-
1 and Cyp-D association and mPTP opening, thus leading to reactive oxygen species (ROS)
production, ATP depletion and pro-apoptotic molecule (i.e. cytochrome c) release [12,13].
Thereafter, caspases (mainly caspase-9) and cell apoptosis will be activated [12,13].

Recent studies have identified a first-in-class VDAC-binding small molecule, namely erastin
[14,15]. It has been shown that erastin is selectively cytotoxic to certain cancer cell lines
[14,15,16,17]. For example, Yagoda et al., showed that erastin binds to VDAC, resulting in
lethal oxidative damage to cancer cells [18]. The potential role of erastin in colorectal cancer
cells, and underlying signaling mechanisms have not been studied. In the current study, we
showed that erastin was cytotoxic and pro-apoptotic to colorectal cancer cells, possibly via dis-
rupting mPTP.

Materials and Methods

2.1. Cell culture
As described [8,9], colorectal cancer cell lines, including HT-29, DLD-1 and Caco-2, were pur-
chased from the cell bank of Chinese Academy of Science (CAS) Shanghai Biological Institute
(Shanghai, China). Cells were maintained in FBS-containing RPMI/DMEMmedium. Human
NCM460 colon epithelial cell line was provided by Fudan IBS Cell center (Shanghai, China).
Cells were cultured in Ham's F12 nutrient medium (Gibco) [19].

2.2. Reagents and chemicals
Erastin was purchased from Selleck (Shanghai, China). The mPTP blockers including sangli-
fehrin A, cyclosporin A and bongkrekic acid were purchased from Sigma (Shanghai, China).
The anti-oxidant MnTBAP was also from Sigma. The caspase-3 specific inhibitor z-DEVD-
fmk and the caspase-9 specific inhibitor z-LEHD-fmk were purchased from Calbiochem
(Darmstadt, Germany). All antibodies applied in this study were obtained from Santa Cruz
Biotech (Shanghai, China).

2.3. MTT cell viability assay
Cell survival was measured by the 3-[4,5-dimethylthylthiazol-2-yl]-2,5 diphenyltetrazolium
bromide (MTT, Sigma) assay [9]. Different seeding densities were optimized at the beginning
of the experiments.

2.4. Trypan blue staining assay
Trypan blue assay was described in our previous studies [9]. Briefly, after applied erastin treat-
ment, the number of dead (trypan blue positive) cells was counted. The death ratio (%) was cal-
culated by the number of the trypan blue stained cells divided by the total number of the cells.

2.5. Colony formation assay
Following the erastin treatment, cells (2 × 103) were initially suspended in culture medium
with 0.25% agar (Sigma). The cell suspension was then planked on top of a pre-solidified 0.25%
agar onto a 100-mm culture dish. The medium was replaced every two days. After 10 days of
incubation, survival colonies were stained and manually counted.
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2.6. BrdU incorporation assay
Cells (3×103 per well) were seeded onto 96-well plates, after applied treatment, cell prolifera-
tion was assessed via the BrdU incorporation ELISA colorimetric assay (Roche, Indianapolis,
IN) with the manufacturer’s protocol. The ELISA OD value of treatment group was normalized
to that of untreated control group.

2.7. Cell apoptosis assay through Annexin V staining
After treatment, cell apoptosis was detected by the Annexin V FACS assay as previously
reported [9]. The number of Annexin V stained cells was recorded.

2.8. Quantification of apoptosis by enzyme-linked immunosorbent assay
(ELISA)
As described [8,9], the Cell Apoptosis ELISA Detection Kit Plus (Roche, Palo Alto, CA) was
utilized to quantify cell apoptosis according to the manufacturer's protocol.

2.9. Caspase activity assay
After treatment, cytosolic proteins were extracted in the buffer described [8,9]. Twenty μg of
cytosolic extracts per sample were added to caspase assay buffer with substrates of caspase-3/-
8/-9 (Roche, Shanghai, China). The release of 7-amido-4-(trifluoromethyl)coumarin (AFC)
was quantified via a Fluoroskan system set to an excitation value of 355 nm [8,9]. The results
were expressed as relative fluorescence units/μg of protein.

2.10. Western blotting
Briefly, the aliquots of 30 μg of lysed proteins of each sample were separated by 10% SDS poly-
acrylamide gel electrophoresis and transferred onto PVDF membranes (Millipore, Bedford,
MA). After blocking, the membranes were incubated with the primary antibody overnight at
4°C, followed by incubation with secondary antibody for one hour at room temperature. The
bolt was visualized by ECL (enhanced chemiluminescence) machine. Each band was quantified
via ImageJ software, and the value was normalized to each loading control band.

2.11. Reactive oxygen species (ROS) detection
Intracellular ROS was measured by flow cytometry via dichlorofluorescin (DCF) oxidation
assay. DCFH-DA enters passively into cells and is cleaved by nonspecific cellular esterases and
oxidized in the presence of ROS. After treatment, cells (3×105 per sample) were incubated with
DCFH-DA (5 μM) for one hour at 37°C. Thereafter, cells were washed with PBS and kept in 1
mL of PBS, ROS fluorescence was analyzed using the above Fluoroskan system.

2.12. Detection of mitochondrial potential reduction (ΔΨm)
As described [20], the ΔCm was measured through JC-10 fluorescence dye. When the mito-
chondrial potential is decreasing, monomeric JC-10 will form in the cytosol, which exhibits
green fluorescence [20]. Briefly, after applied erastin treatment, cells were stained with 5 μg/mL
of JC-10 (Invitrogen) for 10 min, and detected immediately on a Fluoroskan system set to an
excitation value of 485 nm [20].
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2.13. Mitochondrial immunoprecipitation (mito-IP)
Cells were trypsinized, and mitochondrial fractions were prepared via a Mitochondria/Cyto-
sol Fractionation Kit (BioVision, Shanghai, China) according to the manufacturer's instruc-
tions. Two hundred μg of cell lysates from mitochondrial fractions were pre-cleared with
20 μL of protein A/G PLUS-agarose (Santa Cruz) for 1 hour. The supernatant was then
rotated overnight with 0.25 μg of anti-ANT-1 (Santa Cruz Biotech). Next, the lysates were
centrifuged for 5 min at 4°C in a micro-centrifuge to remove nonspecific aggregates. The
protein A/G PLUS-agarose (35 μL) was then added to the supernatants for 4 hours at 4°C.
Pellets were washed six times with PBS, resuspended in lysis buffer, and then assayed by
Western blotting [20].

2.14. Stable knockdown of VDAC-1 by lentiviral shRNA
The two sets of lentivirus-packaged VDAC-1 short hairpin RNAs (shRNA-1 and shRNA-2,
non-overlapping sequences) were designed, synthesized and verified by Genechem (Shanghai,
China). Ten μL/mL of lentiviral particles were added to HT-29 cells for 12 hours. Afterwards,
lentivirus containing medium was replaced by complete medium, and cells were cultured for
another 24 hours. Afterwards, puromycin (5.0 μg/mL, Sigma) was added to select resistant sta-
bly colonies for 2–3 weeks. Expression of VDAC-1 was detected by Western blotting. Control
cells were treated with scramble non-sense shRNA lentiviral particles (Santa Cruz Biotech).

2.15 Over-expression of VDAC-1 and stably cells selection
The full-length human VDAC-1 cDNA, purchased from Genechem (Shanghai, China), was
sub-cloned into pSuper-puro-flag (a gift from Dr. Bi’s Lab)[21]. The empty vector (pSuper-
puro-flag) or VDAC-1 expressing construct was transfected into HT-29 cells via Lipofectamine
2000 protocol (Invitrogen). The stably clones were selected via puromycin (5 μg/mL). After
12–14 days of selection, stably cells were subjected to Western blotting assay of VDAC-1
expression.

2.16. In vivo antitumor efficacy evaluation
Tumor growth studies were performed in severe combined immunodeficient (SCID) mice
xenograft model. All mice were purchased from the Animal Facility of Shanghai Jiao-tong
University School of Medicine (Shanghai, China). Briefly, 2×106 viable HT-29 cells in 100 μL
of growth medium (per mouse) were subcutaneously inoculated, and mice bearing ~100
mm3 tumors were randomly divided into three groups with 10 mice per group. Mice were
treated daily with 10 or 30 mg/kg body weight of erastin (intraperitoneal injection, for 4
weeks) or vehicle control (Saline). Tumor volumes were calculated by the modified ellipsoid
formula: (π / 6) ×AB2, where A is the longest and B is the shortest perpendicular axis of a
tumor mass [22,23]. Mice body weights were also recorded every week. Humane endpoints
were always utilized to minimize mice suffering. Animals were observed on daily bases. Signs
such as significant-reduced locomotion, severe diarrhea, severe piloerection or a sudden
weight loss (> 20%) were recorded. If animals reached these endpoints they were euthanized
by exsanguination under 2,2,2-tribromoethanol anesthesia (4 mg/10 g body weight, Sigma).
All injections were performed under the 2,2,2-tribromoethanol anesthesia method. The ani-
mal studies have been approved by the Shanghai Jiao-tong University School of Medicine’s
Institutional Animal Care and Use Committee (IACUC) and Ethics committee (Contact per-
son: Dr. Jun Wang, 2014126).
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2.17. Statistical analysis
All data were normalized to control values of each assay and were presented as mean ± standard
deviation (SD). Data were analyzed by one-way ANOVA followed by a Scheffe’s f-test by using
SPSS 16.0 software (SPSS Inc., Chicago, IL). Significance was chosen as p< 0.05.

Results

3.1. Erastin exerts cytotoxic, but not cytostatic effects to cultured
colorectal cancer cells
To test erastin’s activity on colorectal cancer cell survival, HT-29 cells were treated with
increasing concentrations of erastin (0.1–30 μM). MTT assay was performed. As shown in Fig
1A, erastin potently inhibited HT-29 cell survival, which was evidenced by MTT OD reduction.
Erastin showed a dose-dependent effect (Fig 1A), and 30 μM of erastin displayed the most dra-
matic effect (Fig 1A). Erastin took at least 48 hours to exert significant cytotoxic effect in HT-
29 cells (Fig 1A). The cytotoxic effect by erastin was also demonstrated by the trypan blue
staining assay (Fig 1B) and colony formation assay (Fig 1C). Erastin (1–30 μM) treatment sig-
nificantly increased the number of trypan blue positive (“dead”) HT-29 cells (Fig 1B), whiling
decreasing survival HT-29 colonies (Fig 1C).

Interestingly, erastin (1–30 μM) appeared ineffective in inhibiting HT-29 cell proliferation,
and the BrdU incorporation was not changed in HT-29 cells after cytotoxic erastin (1–30 μM)
treatment (Fig 1D). Therefore, the cytotoxic effect by erastin is unlikely due to proliferation
inhibition. MTT results in Fig 1E showed that erastin (1–30 μM) was also cytotoxic to two
other colorectal cancer cell lines: DLD-1 and CaCo2. Yet, same erastin treatment was generally
safe to the non-cancerous NCM460 colon epithelial cells (Fig 1E). Once again, BrdU incorpo-
ration, the indicator of cell proliferation, was not affected by erastin (10 μM) in the DLD-1 and
CaCo2 cells, nor in NCM460 epithelial cells (Fig 1F). Based on these results, we show that era-
stin exerts cytotoxic, but not cytostatic, activity to cultured colorectal cancer cells.

3.2. Erastin induces ROS production and caspase-dependent apoptosis
in cultured colorectal cancer cells
Next, we evaluated the potential activity of erastin on cell apoptosis. As described in our previ-
ous studies [8,9], various apoptosis assays were performed. The caspase assay results showed
that the activity of caspase-3 and caspae-9 was significantly increased in HT-29 cells after cyto-
toxic erastin (1–30 μM) treatment (Fig 2A), indicating mitochondrial apoptosis pathway acti-
vation [24]. On the other hand, the activity of caspase-8, an indicator of extrinsic apoptotic
pathway activation [25,26], was unchanged in erastin-treated HT-29 cells (Fig 2A). Cell apo-
ptosis activation by erastin was also confirmed by the Annexin V FACS assay (Fig 2B) and His-
tone DNA apoptosis ELISA assay (Fig 2C). Erastin dose-dependently increased Annexin V
percentage and Histone DNA ELISA OD in HT-29 cells (Fig 2B and 2C).

Since erastin is a VDAC-binding compound, which may disrupt mitochondrial respiratory
chain and cause ROS production [18]. We next tested the oxidative stress level in erastin-
treated HT-29 cells. Results in Fig 2D demonstrated clearly that erastin increased the level of
ROS in HT-29 cells. To study the role of apoptosis and ROS production in erastin-induced
cytotoxicity, various pharmacological inhibitors were applied. As shown in Fig 2E and 2F, the
caspase-3 specific inhibitor z-DEVD-fmk, the caspase-9 specific inhibitor z-LEHD-fmk, or the
superoxide scavenger MnTBAP [27] all alleviated erastin-induced cytotoxicity in HT-29 cells
(Fig 2E and 2F). In two other colorectal cancer cell lines, erastin (10 μM) also induced caspase-
9 (Fig 2G) and apoptosis (Fig 2H) activation as well as ROS production (Fig 2I). Such effects by
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erastin were again not seen in colon epithelial NCM460 cells (Fig 2G–2I). Therefore, erastin
induces ROS production and caspase-dependent apoptosis in colorectal cancer cells.

3.3. Erastin induces mPTP opening in cultured colorectal cancer cells
Since erastin is a VDAC-binding compound [18], the status of mPTP in erastin-treated colo-
rectal cancer cells was then assessed. First, mitochondrial immunoprecipitation (Mito-IP)
assay [28,29] demonstrated that ANT-1 and Cyp-D formed a complex in erastin-treated HT-
29 cells (Fig 3A), which is known as the initial step of mPTP opening [12,13]. Second, the level
of cytosol cytochrome C was also increased in HT-29 cells after erastin treatment (Fig 3B),
which is a known event following mPTP opening [12,13]. Further, the increase of JC-10 green
fluorescence intensity indicated loss of mitochondrial potential (ΔCm) (Fig 3C). All these
results clearly indicated that mPTP opening following erastin treatment in HT-29 cells. Note
that similar results by erastin were also obtained in other two colorectal cancer cell lines (Data
not shown).

To study the role of mPTP in erastin-caused cytotoxicity, we applied several known phar-
macological mPTP blockers, including sanglifehrin A (SfA) [30], cyclosporin A (CsA) [31] and
bongkrekic acid (BA) [28,32]. As demonstrated, pre-treatment with these mPTP blockers sig-
nificantly attenuated erastin-induced HT-29 cell death (Fig 3D) and apoptosis (Fig 3E). To

Fig 1. Erastin exerts cytotoxic, but not cytostatic, effects to cultured colorectal cancer cells. Colorectal cancer cells (HT-29, DLD-1 and Caco-2 lines)
or NCM460 colon epithelial cells were treated with vehicle control (0.1% DMSO, “Ctrl”) or indicated concentrations of erastin for applied time, cell survival
was tested by MTT assay (A and E) and colony formation assay (C); The percentage of trypan blue positive (“dead” cells) was recorded (B); Cell proliferation
was tested by BrdU incorporation assay (D and F). For each assay, n = 5. The data presented were mean ± SD. Experiments were repeated three times with
similar results obtained. * p < 0.05 vs. group of “Ctrl”.

doi:10.1371/journal.pone.0154605.g001
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further support our hypothesis, shRNA strategy was applied to selectively and stably knock-
down VDAC-1, the key component of mPTP and binding protein of erastin [12]. Two stably
HT-29 lines expressing distinct VDAC-1 shRNAs (-1/-2) were established (Fig 3F). Impor-
tantly, erastin-induced cytotoxicity (Fig 3G) and apoptosis (Fig 3H) were significantly

Fig 2. Erastin induces ROS production and caspase-dependent apoptosis in cultured colorectal cancer cells.Colorectal cancer cells (HT-29, DLD-1
and Caco-2 lines) or NCM460 colon epithelial cells were treated with vehicle control (0.1% DMSO, “Ctrl”) or indicated concentrations of erastin for applied
time, cell apoptosis was examined by listed assays (A-C, G and H); ROS production was also examined (D and I). HT-29 cells were pre-treated with z-DEVD-
fmk (“zDEVD”, 50 μM), z-LEHD-fmk (“zLEHD”, 50 μM) or MnTBAP (10 μM) for 1 hour prior to applied erastin stimulation, cell survival and cell death were
tested by MTT assay (E) and trypan blue assay (F), respectively. For each assay, n = 5. The data presented were mean ± SD. Experiments were repeated
three times with similar results obtained. * p < 0.05 vs. group of “Ctrl”. # p < 0.05 vs. group of erastin only (E and F).

doi:10.1371/journal.pone.0154605.g002
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Fig 3. Erastin inducesmPTP opening in cultured colorectal cancer cells. HT-29 cells were treated with applied erastin for indicated time, mPTP opening
was evidenced by mitochondrial VDAC-1-ANT-1 association (A), cytochrome C (“Cyto-C”) release (B) and JC-10 intensity increase (C). HT-29 cells were
pre-treated with sanglifehrin A (SfA, 2.5 μM), cyclosporin A (CsA, 0.5 μM) or bongkrekic acid (BA, 5 μM) prior to erastin (10 μM) treatment, cell survival (D)
and apoptosis (E) were analyzed afterwards. Stably HT-29 cells expressing VDAC-1 shRNA-1/-2 or scramble control shRNA (“scr shRNA”) were treated with
erastin (10 μM), VDAC-1 expression (F), cell survival (G) and apoptosis (H) were tested. ANT-1-assocaited Cyp-D (A), cytosol cytochrome C expression (B)
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inhibited in VDAC-1-silenced HT-29 cells. These pharmacological and genetic evidences sug-
gest that erastin-induced cytotoxicity against colorectal cancer cells requires VDAC-1 binding
and subsequent mPTP opening.

3.4. VDAC-1 over-expression potentiates erastin’s cytotoxicity
To further support the key role of VDAC-1 in erastin-induced cytotoxicity, we exogenously
expressed VDAC-1 in HT-29 cells. Western blotting results in Fig 4A confirmed VDAC-1
over-expression in stably HT-29 cells with VDAC-1 construct. As a result, erastin-induced via-
bility reduction (Fig 4B) and apoptosis (Fig 4C) were augmented. Further studies showed that
over-expression of VDAC-1 facilitated erastin-induced ROS production (Fig 4D) and JC-10
OD increase (the indicator of mPTP opening, Fig 4E). Interestingly, we showed that NCM460
colon epithelial cells expressed low level of VDAC-1 (Fig 4F). Yet, when we over-expressed
VDAC-1 in NCM460 cells (Fig 4F), these cells became vulnerable to erastin (Fig 4G). There-
fore, these results further confirm that VDAC-1 is a key determinant of erastin’s activity.

3.5. Erastin administration suppresses HT-29 xenograft growth in SCID
mice
The in vivo activity by erastin was also tested. SCID mice HT-29 xenograft model was applied.
The weekly tumor growth curve results in Fig 5A demonstrated that erastin intraperitoneal
injection dramatically inhibited HT-29 xenograft growth in SCID mice. Erastin’s in vivo activ-
ity was again concentration dependent. Erastin at 30 mg/kg was clearly more potent than 10
mg/kg in suppressing HT-29 xenografts (Fig 5A). It should be noted that the mice body weight
was not significant different between each groups (Fig 5B). Neither did we notice any signs of
apparent toxicities in these mice. These results indicated that these animals were well-tolerated
to the erastin regimens here. Further, tumor daily growth, calculated as mm3/day, was
decreased with erastin administration (Fig 5C). At the end of experiments, the weights of era-
stin-administrated xenografts were also much lower than that of vehicle control mice (Fig 5D).
These results showed that erastin administration inhibits HT-29 tumor growth in vivo.

Discussion
In the present study, we demonstrated that erastin exerted potent cytotoxic effect against mul-
tiple human colorectal cancer cells possibly via inducing oxidative stress and caspase-9 depen-
dent cell apoptosis. mPTP opening was observed in erastin-treated cancer cells, which was
evidenced by VDAC-1 and Cyp-D association, mitochondrial depolarization and cytochrome
C release. Caspase inhibitors, the ROS scavenger MnTBAP, and mPTP blockers (sanglifehrin
A, cyclosporin A and bongkrekic acid), as well as shRNA-mediated knockdown of VDAC-1,
all significantly attenuated erastin-induced cytotoxicity and apoptosis in colorectal cancer cells.
On the other hand, over-expression of VDAC1 potentiated erastin’s cytotoxicity. Based on
these results, we propose that erastin binds to VDAC1 to disrupt normal mitochondrial func-
tion, causing mPTP opening, and eventually leading to caspase-9-dependent apoptosis activa-
tion in colorectal cancer cells.

It should be noted that erastin was non-cytotoxic to NCM460 colon epithelial cells. We also
failed to detect any significant caspase-9 activation nor mPTP dysfunction in erastin-treated

and VDAC-1 expression (F) were quantified. For each assay, n = 4. The data presented were mean ± SD. Experiments were repeated three times with
similar results obtained. * p < 0.05 vs. group of “Ctrl”. # p < 0.05 vs. group of erastin only (D and E) or the “scr shRNA” group (G and H). “Trans” stands for
transfection control (F-H).

doi:10.1371/journal.pone.0154605.g003
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NCM460 cells. One possible reason could be that these non-cancerous epithelial cells express
very low level of VDAC (-1), therefore cells were not targeted by erastin (see Fig 4). As a matter
of fact, when we exogenously over-expressed VDAC-1 in NCM460 cells, these cells, just like
cancerous cells, became vulnerable to erastin (see Fig 4). Another possibility is that the cancer-
ous cells are all rapid growing cells, who possibly require high level of mitochondrial respira-
tory chain to produce ATP. These cells might be more sensitive to VDAC or mPTP disruption.
The fact that erastin only targets cancerous cells indicates that it could be an ideal candidate for
anti-cancer treatment.

Although several studies have investigated the potential anti-cancer activity by erastin in vitro
[14,16,33], the in vivo evidences are still lacking. In the present study, we showed that intraperito-
neal injection of erastin at well-tolerated doses (10 or 30 mg/kg, daily) dramatically inhibited

Fig 4. VDAC-1 over-expression potentiates erastin’s cytotoxicity. Stably HT-29 cells or NCM460 colon epithelial cells expressing empty vector
(pSuper-puro, “Vec”) or VDAC-1 cDNA (“VDAC-1”) were treated with designed erastin for applied time, VDAC-1 expression, cell survival and apoptosis were
tested byWestern blotting assay (A and F), MTT assay (B and G) and histone DNA ELISA assay (C), respectively; ROS production (D) and JC-10 intensity
(E) were also analyzed. For each assay, n = 4. The data presented were mean ± SD. Experiments were repeated three times with similar results obtained.
VDAC-1 expression was quantified (F).* p < 0.05 vs. Ctrl group of “Vec” cells (B-E). # p < 0.05 vs. erastin group of “Vec” cells (B-E). “Trans” stands for
transfection control (D and E).

doi:10.1371/journal.pone.0154605.g004
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HT-29 xenograft growth in SCIDmice. Importantly, the in vivo erastin regimens didn’t affect
mice weights, nor did it induce any significant toxicities to the experimental animals. These pre-
clinical results suggest that erastin could be a promising anti-colorectal cancer agent.

Conclusions
In summary, erastin disrupts mPTP and induces apoptotic death of colorectal cancer cells. Era-
stin may be further investigated as a novel anti-colorectal cancer agent.

Fig 5. Erastin administration inhibits HT-29 xenograft growth in SCIDmice.HT-29 tumor bearing SCID mice were intraperitoneally administrated with
erastin (10/30 mg/kg body weight or “bw”, daily, for 4 weeks) or vehicle (Saline) control, tumor volumes (A) and mice body weights (B) were recorded weekly
for five weeks; Daily tumor growth was also calculated (C). At the termination of experiments, all the xenografts were isolated and weighted (D). For each
assay, n = 10. The data presented were mean ± SD. Experiments were repeated twice with similar results obtained. * p < 0.05 vs. group of “Vehicle”.
# p < 0.05 vs. group of erastin at 10 mg/kg of body weight.

doi:10.1371/journal.pone.0154605.g005
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