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Abstract: Thyroid hormone (TH) signaling controls muscle progenitor cells differentiation. How-
ever, inflammation can alter muscle TH signaling by modulating the expression of TH transporters
(Slc16a2), receptors (Thra1), and deiodinase enzymes (Dio2 and Dio3). Thus, a proinflammatory
environment could affect myogenesis. The role of a low-grade inflammatory milieu in TH signaling
during myogenesis needs further investigation. Herein, we aimed to study the impact of the bacterial
lipopolysaccharide (LPS)-induced inflammatory stimulus on the TH signaling during myogenesis.
C2C12 myoblasts differentiation was induced without (CTR) or with 10 ng/mL LPS presence. The my-
oblasts under LPS stimulus release the proinflammatory cytokines (IL-6 and IL-1β) and chemokines
(CCL2 and CXCL-1). LPS decreases Myod1 expression by 28% during the initial myogenesis, thus
reducing the myogenic stimulus. At the same time, LPS reduced the expression of Dio2 by 41% but
doubled the D2 enzymatic activity. The late differentiation was not affected by inflammatory milieu,
which only increased the Slc16a2 gene expression by 38%. LPS altered the intracellular metabolism
of TH and reduced the initial myogenic stimulus. However, it did not affect late differentiation.
Increased intracellular TH activation may be the compensatory pathway involved in the recovery of
myogenic differentiation under a low-grade inflammatory milieu.

Keywords: myoblast; C2C12; deiodinase; triiodothyronine; myogenic differentiation; bacterial
lipopolysaccharide; inflammation

1. Introduction

Myogenesis is a crucial process for skeletal muscle regeneration. The myogenic
activity depends on the stimulus that leads to activation, proliferation, and differentiation
of satellite cells into myoblasts [1]; these cells proliferate and differentiate into myocytes.
Then, myocytes fuse to form multinucleated cells called myotubes which mature to form
new myofibers [2]. Intrinsically, the hierarchical expression of a transcription factors family
known as myogenic regulatory factors (MRFs) regulate myogenesis [3]. However, extrinsic
factors such as thyroid hormones (TH) are also important signals that regulate myogenic
differentiation [4]. Additionally, T3 controls the expression of MRF factors such as Myod
and Myog [5–7].
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Deiodinase type 2 (D2) and type 3 (D3) are the primary regulators of intracellular
TH concentration in skeletal muscle [8]. An increase in D2 elevates intracellular T3 levels,
while the D3 activity culminates in a decrease in T3 levels [8]. D2 and D3 expressions
are finely controlled during myogenesis [9]. Low intracellular TH levels are necessary to
survive and satellite cell proliferation [10]. Thus, proliferating satellite cells present high
D3 expression [10]. After the satellite cell proliferative phase, D3 expression is reduced
while D2 expression increases to promote cell differentiation [11,12]. The increase in D2
activity during the myoblasts and myocytes differentiation is associated with the MyoD
and myogenin induction by T3 [11]. MyoD and myogenin regulate late myoblasts differen-
tiation and induce myocytes to express structural proteins such as MyHC and differentiate
into myotubes [11]. In addition to deiodinases, TH receptor TRα and TH transporters
MCT8 and OATP1C1 proved to be essential for fine control of TH signaling as well as
for complete muscle regeneration [13,14]. Therefore, disturbances in the expression of
deiodinases, receptors, transporters, and consequently in TH signaling during myogenesis
can compromise the regeneration and maintenance of muscle tissue.

Inflammation can disturb the TH metabolism in both clinical and experimental set-
tings [15]. Altered TH metabolism during illness is known as nonthyroidal disease syn-
drome (NTIS) or low T3 syndrome, which is characterized by concomitant low serum
levels of TH and normal serum TSH concentration [15]. Moreover, profound changes in
peripheral TH signaling in several target organs such as the liver and skeletal muscle are
observed [15]. Besides the modulation of serum TH concentrations, TH signaling in skeletal
muscle changes during NTIS [15].

In 2016, our group demonstrated that bacterial sepsis and chronic aseptic inflammation
influenced the expression of D2, D3, and TRα in the murine diaphragm [16]. An increase
in D3 and a reduction in D2 were observed in the diaphragm of septic mice, thereby
reducing intracellular TH signaling [16]. On the other hand, chronic inflammation led to
a reduction in D3 expression in the diaphragm. These changes in TH tissue metabolism
were accompanied by changes in the expression of MyHC, which could be associated
with diaphragm dysfunctions commonly seen in septic patients [16,17]. Subsequently,
our group evaluated muscle TH metabolism in three NTIS models: acute inflammation,
chronic inflammation, and the severe pneumonia sepsis model [16–18]. Comparing the
experimental models, it was observed that muscle TH metabolism is differently affected by
the disease′s type and severity [18].

Systemic inflammation induces loss of muscle mass. Septic patients and patients
with several chronic diseases can develop myopathy [19]. The decrease in muscle func-
tion is associated with high proinflammatory cytokine serum levels [20]. Furthermore, a
lipopolysaccharide (LPS)-induced proinflammatory milieu impaired C2C12 myoblast dif-
ferentiation [21]. Although the inflammatory milieu is responsible for altered TH signaling
in skeletal muscle, the implications of these changes in myogenesis have not been evaluated.
Reduced myogenesis is a factor that can lead to myopathy in critically ill patients. This
work aims to evaluate the impact of the inflammatory milieu on TH signaling during
myogenic differentiation in vitro. Understanding the relationship between TH signaling
and the inflammatory milieu can contribute to the recovery of myopathies and injuries
caused by inflammatory diseases.

2. Results
2.1. C2C12 Myoblasts Produce Cytokines and Chemokines in Response to
Bacterial Lipopolysaccharide

To confirm if the LPS dose used (10 ng/mL) was able to induce a proinflammatory mi-
lieu in vitro, we measured the proinflammatory cytokines (IL-6 and IL-1β) and chemokines
concentration (CCL-2 and CXCL-1) in the C2C12 myoblast conditioned medium at 24 h after
differentiation induction (72 h after the first challenge with LPS). We observed a significant
increase in IL-6 (Figure 1A) and IL-1β (Figure 1B) concentration in the supernatant of LPS
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treated myoblasts. Chemokines CCL-2 (Figure 1C) and CXCL-1 (Figure 1D) concentrations
also increased in the supernatant of C2C12 myoblasts treated with LPS (10 ng/mL).
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2.2. LPS Treatment Decreases the Initial Myogenic Stimulus but Does Not Affect
Late Differentiation

To assess whether the proinflammatory environment induced by LPS was able to affect
myogenic differentiation, we evaluated the gene expression of different myogenic markers.

Initially, we evaluated the myogenic master transcription factor, Myod, gene expression
during the early differentiation. We observed that Myod1 expression was significantly
reduced by LPS treatment (p = 0.009, Figure 2A), suggesting a reduction in the initial
myogenic stimulus at 24 h.

Metabolites 2022, 12, x FOR PEER REVIEW 3 of 10 
 

 

chemokines concentration (CCL-2 and CXCL-1) in the C2C12 myoblast conditioned 
medium at 24 h after differentiation induction (72 h after the first challenge with LPS). We 
observed a significant increase in IL-6 (Figure 1A) and IL-1β (Figure 1B) concentration in 
the supernatant of LPS treated myoblasts. Chemokines CCL-2 (Figure 1C) and CXCL-1 
(Figure 1D) concentrations also increased in the supernatant of C2C12 myoblasts treated 
with LPS (10 ng/mL). 

 
Figure 1. C2C12 myoblasts 24 h post differentiation induction respond to LPS by producing 
proinflammatory cytokines and chemokines. IL-6 (A), IL-1β (B) cytokines and CCL2 (C), CXCL-1 
(D) chemokines concentration in myoblast conditioned medium 72 h after first LPS stimulus (10 
ng/mL). The white bar represents the control group (CTR), and the gray bar represents the LPS 
group. Data are expressed as median and quartiles of five independent experiments. The normal 
distribution was not expected due to the small sample size (n = 5); the nonparametric test Mann–
Whitney U was applied. * p < 0.05, ** p < 0.01. 

2.2. LPS Treatment Decreases the Initial Myogenic Stimulus but Does Not Affect Late 
Differentiation 

To assess whether the proinflammatory environment induced by LPS was able to 
affect myogenic differentiation, we evaluated the gene expression of different myogenic 
markers. 

Initially, we evaluated the myogenic master transcription factor, Myod, gene 
expression during the early differentiation. We observed that Myod1 expression was 
significantly reduced by LPS treatment (p = 0.009, Figure 2A), suggesting a reduction in 
the initial myogenic stimulus at 24 h. 

To examine if the reduction in the initial myogenic stimulus induced by LPS 
impacted late differentiation (96 h), we evaluated the expression of Myog (myogenin), an 
MRF induced by Myod1, and highly expressed in myocytes [3]. LPS administration did 
not alter the Myog gene expression at late differentiation (p = 0.59, Figure 2B). Further, we 
evaluated the expression of the genes encoding MyHC I and IIb, Myh7, and Myh4, 
respectively. Myh7 and Myh4 mRNA expression were similar in control and LPS myocytes 
(p = 0.36, Figure 2C and p = 0.22, Figure 2D). 

 
Figure 2. LPS administration affects initial myogenic stimulus but not late differentiation. Myod1
expression at 24 h post differentiation induction (A) and expression of Myog (B), Myh7 (C), and Myh4
(D) in C2C12 myocytes/myotubes mixed culture at 96 h post differentiation induction. The white
bar represents the control group (CTR), and the gray bar represents the LPS group (LPS, 10 ng/mL).
Data are expressed as mean ± SD of 12 independent experiments. The data normal distribution was
confirmed by D’Agostino and Pearson omnibus test; the parametric Student’s t-test was applied.
** p < 0.01.

To examine if the reduction in the initial myogenic stimulus induced by LPS impacted
late differentiation (96 h), we evaluated the expression of Myog (myogenin), an MRF
induced by Myod1, and highly expressed in myocytes [3]. LPS administration did not alter
the Myog gene expression at late differentiation (p = 0.59, Figure 2B). Further, we evaluated
the expression of the genes encoding MyHC I and IIb, Myh7, and Myh4, respectively. Myh7
and Myh4 mRNA expression were similar in control and LPS myocytes (p = 0.36, Figure 2C
and p = 0.22, Figure 2D).
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2.3. Inflammation Differently Affects TH Signaling during Initial and Late
Myogenic Differentiation

Since T3 stimulates Myod and Myog expression, we next investigated if the proinflam-
matory environment would affect TH signaling in myoblasts during differentiation. We
initially investigated TH signaling in the early differentiation stage (24 h post-differentiation
induction). The TH transporter MCT8 (Slc16a2) expression was not altered by LPS treat-
ment (p = 0.22, Figure 3A). Next, we evaluated Dio2 expression to assess the intracellular
TH metabolism. LPS treatment significantly reduced Dio2 expression (p = 0.002, Figure 3B).
However, D2 activity was increased by LPS treatment, suggesting an increase in intra-
cellular T3 production (p = 0.0001, Figure 3C). Then, we evaluated the expression of the
TH receptor predominantly expressed in muscle, Thra1, which showed a tendency to de-
crease in LPS group (p = 0.067, Figure 3D). To better understand the responsiveness to
T3, we analyzed the expression of Hr, a T3 responsive gene. Despite the increase in D2
activity, Hr expression was not changed by LPS during the initial myogenic differentiation
(p = 0.58, Figure 3E).

Metabolites 2022, 12, x FOR PEER REVIEW 4 of 10 
 

 

Figure 2. LPS administration affects initial myogenic stimulus but not late differentiation. Myod1 
expression at 24 h post differentiation induction (A) and expression of Myog (B), Myh7 (C), and 
Myh4 (D) in C2C12 myocytes/myotubes mixed culture at 96 h post differentiation induction. The 
white bar represents the control group (CTR), and the gray bar represents the LPS group (LPS, 10 
ng/mL). Data are expressed as mean ± SD of 12 independent experiments. The data normal distri-
bution was confirmed by D’Agostino and Pearson omnibus test;  the parametric Student’s t-test 
was applied. ** p < 0.01. 

2.3. Inflammation Differently Affects TH Signaling during Initial and Late Myogenic 
Differentiation 

Since T3 stimulates Myod and Myog expression, we next investigated if the proin-
flammatory environment would affect TH signaling in myoblasts during differentiation. 
We initially investigated TH signaling in the early differentiation stage (24 h post-differ-
entiation induction). The TH transporter MCT8 (Slc16a2) expression was not altered by 
LPS treatment (p = 0.22, Figure 3A). Next, we evaluated Dio2 expression to assess the in-
tracellular TH metabolism. LPS treatment significantly reduced Dio2 expression (p = 0.002, 
Figure 3B). However, D2 activity was increased by LPS treatment, suggesting an increase 
in intracellular T3 production (p = 0.0001, Figure 3C). Then, we evaluated the expression 
of the TH receptor predominantly expressed in muscle, Thra1, which showed a tendency 
to decrease in LPS group (p = 0.067, Figure 3D). To better understand the responsiveness 
to T3, we analyzed the expression of Hr, a T3 responsive gene. Despite the increase in D2 
activity, Hr expression was not changed by LPS during the initial myogenic differentiation 
(p = 0.58, Figure 3E). 

 
Figure 3. LPS alters TH metabolism in C2C12 myoblasts during initial differentiation. Expression 
Slc16a2 (A), Thra1 (B), Dio2 (C), D2 activity (D), and expression of the TH responsive-gene Hr (E) in 
C2C12 myoblast culture at 24 h post differentiation induction. The white bar represents the control 
group (CTR), and the gray bar represents the LPS group (LPS, 10 ng/mL). Data are expressed as 
mean ± SD of at least eight independent experiments in A, B, D, and E, and five independent exper-
iments in D. The data normal distribution was confirmed by D’Agostino and Pearson omnibus test; 
the parametric Student’s t-test was applied. ** p < 0.01, **** p < 0.0001. 

Subsequently, we evaluated TH signaling 96 h post differentiation induction during 
the late myocyte differentiation stage. LPS treatment increased Slc16a2 mRNA levels (p = 
0.04, Figure 4A), suggesting increased TH flow through the sarcolemma. However, we 
did not observe changes in Dio2 gene expression (p = 0.90, Figure 4B). These data suggest 
that intracellular TH metabolism was unchanged. Also, no differences were observed in 
Thra1 and Hr mRNA levels during late myogenic differentiation (p = 0.30, Figure 4C and 
p = 0.08, Figure 4D). 

Figure 3. LPS alters TH metabolism in C2C12 myoblasts during initial differentiation. Expression
Slc16a2 (A), Thra1 (B), Dio2 (C), D2 activity (D), and expression of the TH responsive-gene Hr (E) in
C2C12 myoblast culture at 24 h post differentiation induction. The white bar represents the control
group (CTR), and the gray bar represents the LPS group (LPS, 10 ng/mL). Data are expressed as
mean ± SD of at least eight independent experiments in (A,B,D,E) and five independent experiments
in C. The data normal distribution was confirmed by D’Agostino and Pearson omnibus test; the
parametric Student’s t-test was applied. ** p < 0.01, **** p < 0.0001.

Subsequently, we evaluated TH signaling 96 h post differentiation induction during
the late myocyte differentiation stage. LPS treatment increased Slc16a2 mRNA levels
(p = 0.04, Figure 4A), suggesting increased TH flow through the sarcolemma. However, we
did not observe changes in Dio2 gene expression (p = 0.90, Figure 4B). These data suggest
that intracellular TH metabolism was unchanged. Also, no differences were observed
in Thra1 and Hr mRNA levels during late myogenic differentiation (p = 0.30, Figure 4C
and p = 0.08, Figure 4D).
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Data are expressed as mean ± SD of at least five independent experiments The data normal distribu-
tion was confirmed by D’Agostino and Pearson omnibus test; the parametric Student’s t-test was
applied. * p < 0.05.
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3. Discussion

A proinflammatory wave marks the initial muscle regeneration phase in vivo. At the
same time, the muscle progenitor cells are activated, and the myogenic process starts [22].
However, if the proinflammatory microenvironment persists, it can disturb myogenic
progression [21,23]. Myoblast/myotube C2C12 cells express Toll-like receptor 4 (TLR4)
and respond to LPS by producing proinflammatory mediators such as TNF-α, IL-6, and
CCL2 [24,25].

Our model used a low LPS dose (10 ng/mL), 10 to 100 times lower than other stud-
ies [21]. Although low, the LPS dose significantly increased IL-6, IL-1β, CXCL2, and
CCL2 production in C2C12 cells cultured in myoblast conditioned medium, indicating a
proinflammatory microenvironment.

Next, we evaluated the myogenic progression during a persistent proinflammatory
environment by analyzing the expression of crucial myogenic regulator genes. Our findings
showed that LPS significantly reduced MyoD transcription during initial differentiation
(24 h after differentiation), suggesting a reduction in the initial myogenic stimulus in C2C12
myoblasts. Our data corroborate the results obtained by Ono and Sakamoto [21], who
observed a significant decrease in MyoD protein levels in differentiating myoblasts C2C12
treated with 100 or 1000 ng/mL LPS [21].

Previous studies have shown that MyoD−/− mice primary myoblasts fail to induce the
expression of MyoG, resulting in impaired differentiation and regeneration [26]. However,
we did not observe a reduction in Myog and MyHC (Myh7 and Myh4) expression in late
differentiated myocytes, as expected. Furthermore, it is also essential to notice that in the
absence of MyoD in vitro, the myogenin expression can be induced by other MRF such
as Myf5 [26]. After the MyoD increase, myogenin is the next key MRF in the myogenic
process [26]. Myogenin induces myosin and other genes involved in late differentiation,
leading to myofiber maturation [26]. Since Myog expression does not alter in early myogen-
esis in our data, it was expected that the myosin expression (Myh4 and Myh7) would not
change in late myogenesis. Together, these data suggest that the impact of a low inflamma-
tory milieu is limited. On the other hand, Ono and Sakamoto observed a reduction in the
protein levels of MyoG and MyHC IIb in a dose-dependent manner during late differentia-
tion (100 or 1000 ng/mL LPS at 144 h after induction of differentiation) [21]. Therefore, the
difference between both studies could be due to the difference in LPS doses used.

The Myod, Myogenin protein levels, and mRNA are synchronized during myogen-
esis [26]. Thus, when their gene expression is altered, the modulations are in the same
direction, and similar intensity is observed at protein levels [27]. Therefore, our qPCR
results regarding Myod and myogenin expression can be compared with the protein levels
from other studies. However, this is not always the case, thus, the mRNA levels and
proteins activity can be regulated in opposite directions, as in the Dio2 expression and D2
activity [8].

T3 signaling is necessary for MyoD expression in early myoblast [11,14]. Additionally,
systemic inflammatory conditions can reduce skeletal muscle TH response [16]. Thra1
expression was decreased in the muscle of chronic inflamed and septic mice [16,18]. The
reduction of Thra1 expression, through silencing in C2C12 myoblasts, impaired myoblast
proliferation and differentiation, compromising myogenesis [14]. However, we did not
observe changes in Thra1 expression in early or late differentiation.

Nevertheless, T3 action depends on THRs occupancy rate, which depends both on
the number of receptors and the T3 intracellular levels. The intracellular levels of T3 are
dynamic, as they depend both on its influx/efflux and the intracellular metabolism of TH
by deiodinases. Thus, the unchanged Thra1 expression does not mean that LPS does not
alter T3 action.

MCT8 is the primary TH transporter in the skeletal muscle. Herein we evaluated the
gene expression of Slc16a2, which encodes MCT8. Myocytes express more MCT8 than
myoblasts [13]. During the late differentiation phase, LPS increased Slc16a2 expression
compared to control myocytes. However, we did not observe changes in early differentia-
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tion. This data suggests that LPS increases the TH flow through the sarcolemma only in
late differentiated cells since MCT8 promotes both the entry and exit of HTs from the cell.

During myogenesis, the expression of D2 and D3 is finely regulated. The inactivation
of TH by D3 is necessary for the survival and proliferation of satellite cells [10] while
T3 production by D2 is fundamental for muscle differentiation in neonates and C2C12
myoblasts in vitro [11,28]. Herein, we observed that the LPS-induced proinflammatory
microenvironment reduces Dio2 expression in myoblasts. At the same time, LPS increased
D2 enzymatic activity during early differentiation, suggesting an increase in intracellular
T3. The Dio2 gene is positively responsive to NFkB pathway activation by LPS [29]. Dio2 is
negatively regulated by T3, whereas D2 activity is reduced by the substrate T4 [30]. The
increase in D2 activity suggests an increase in intracellular T3, which, in a way, could
explain the reduction in Dio2 mRNA found in the same stage of myogenesis. The possible
increase in T3 level may also explain the resumption of myogenic stimulus since increased
D2 activity in myoblasts could accelerate myogenic differentiation. Additionally, the
increase in D2 activity may be a compensatory response that kept TH signaling intact and
possibly involved in the recovery of the myogenic program.

Our data analyzed the impact of the low inflammatory milieu in myogenesis in an
in vitro model. In elderly and obese subjects, it is common to observe a low chronic inflam-
mation [31,32]. In both obesity and aging patients, decreased skeletal muscle regeneration
is associated with reduced myogenesis [33,34]. However, the molecular mechanism related
to low levels of chronic inflammatory stimulus that could modulate the myogenic program
is not entirely understood. In both aged and obese adults, a high frequency of subclinical
hypothyroidism is observed in clinical practice [33,35]. Considering the importance of TH
to myogenesis [36], it is imperative to understand better how low inflammatory stimulus
could change the intracellular T4 and T3 metabolism during myogenesis. Herein, we
observed that the decrease in Myod in early differentiation period does not significantly
affects the late myotube differentiation. However, we did observe a modulation in TH
metabolism in early and late differentiated cells, suggesting that inflammation does affect
T3 delivery to the nucleus.

In our in vitro experiments studying the effects of an inflammatory challenge during
myogenesis, we explored a model related to the early regeneration process since we used
myoblasts under differentiation to myocytes. Our model is related to the end of the first in-
flammatory wave and initiation of the resolution process, and the second proinflammatory
wave was characterized by T cell and M1 macrophage influx [37].

However, our study presents some limitations. First of all, we use an in vitro model
with the C2C12 cells that is validated to study myogenesis but not to evaluate muscle
functional alterations. In addition, during myogenesis in vivo, the muscle progenitor cells
interact with systemic factors and other cell types such as mature myofibers, fibroblast,
and inflammatory cells [3]. Although, the in vitro myogenesis model is largely used, the
interaction with systemic factors and other cells type is lost as in any cell study. Another
important limitation is the lack of D3 evaluation in our study due to the difficulty of the
technique caused by low expression levels of this gene. The D3 activity analysis could
help in the understanding of TH intracellular homeostasis. Thus, D3 data, together with
intracellular TH content, could provide better information about TH inactivation and
nuclear levels during myogenesis under low-grade inflammatory conditions.

To measure responsiveness to T3 during myogenesis, we evaluated the expression
of Hr, a T3 target gene. Hr was one of the first genes described as responsive to T3 [38].
The skeletal muscle Hr expression has already been identified and used as a parameter
of T3 responsiveness [13,39]. We did not find a difference in Hr expression in myoblast
or myocytes/myotubes under LPS stimulus, suggesting that TH signaling was preserved
during myogenesis even under the low inflammatory condition.

Thus, herein we demonstrated that low inflammatory activity could not disrupt TH
intracellular signaling in myoblasts, which could explain the recovery of the myogenic
program in myocytes exposed to LPS during early differentiation.
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4. Materials and Methods
4.1. Cell Culture

Proliferative myoblasts C2C12 (CRL-1772™—ATCC—Manassas, VI, USA; donated by
Anita Boelen) in passage number 7 to 10 were expanded in growth medium (Dulbecco’s
Modified Eagle Medium, DMEM (Gibco, #12800-017, Thermo Fisher Scientific, Waltham,
MA, USA) supplemented with 10% fetal bovine serum (FBS, #12306C, Sigma Aldrich,
Saint Luis, MO, USA), 1% penicillin, and 1% streptomycin (PS—#15140, Gibco, Thermo
Fisher Scientific, Waltham, MA, USA) at incubator atmosphere 5% CO2 and 37 ◦C. The
cells were seeded in 0.1% gelatin 6 well plates (Costar, Corning Glandale, AZ, USA) at
5.23 × 103 cells/cm2 and cultured in growth medium for 48 h until reaching 80–100%
confluence. On day 0, the differentiation was induced by medium change (DMEM supple-
mented with 2% horse serum (HS—Sigma Aldrich, Saint Luis, MO, USA), 1% penicillin,
1% streptomycin). The control group only received the medium, while the experimental
group was cultured in medium with 10 ng/mL of lipopolysaccharide (LPS—E. coli O127:B8,
Sigma Aldrich, Saint Luis, MO, USA). The medium of both groups was refreshed every 48
h. The conditioned medium was collected at 24 h. Cell samples were collected in cold PBS
on days 1 (24 h) and 4 (96 h) after differentiation induction by cell scrap.

4.2. RNA Extraction and Gene Expression (qPCR)

The cell samples were centrifuged at 500 g for 5 min. The cell pellet was homogenized
in TRIzol®Reagent (Thermo Fisher Scientific, Waltham, MA, USA) and stored at −20 ◦C
until RNA extraction following the manufacturer’s protocol. RNA amount and purity
RNA (260/280 and 260/230 ratios) were measured by nano spectrophotometer (Inplen,
Westlake Village, CA, USA). cDNA was synthesized from a 1000 ng RNA input using the
High-Capacity cDNA Reverse Transcription kit following the manufacturer’s instructions
(Applied Biosystems, Waltham, MA, USA). For qPCR analysis, EvaGreen® qPCR SuperMix
(Solis BioDyne, Tartu, Estonia) and intronspaning primers were used (Supplementary Table
S1). The qPCR reaction was performed in the Eppendorf Mastercycler® RealPlex. The qPCR
reaction efficiency and melting curve were analyzed for each assay. Gene expression was
quantified using the standard curve method, and the target gene expression was normalized
by the arithmetic mean of reference gene expression: Hprt1 (HPRT) e G6pd2 (G6PDH).

4.3. Deiodinase Activity

C2C12 cells were removed from the culture flasks using cell scrapers, washed with
PBS, and centrifuged at 500 g for 5 min. Cell pellets were stored at −80 ◦C until the assay
was performed at the Thyroid Unit, Hospital de Clínicas de Porto Alegre. D2 activity was
measured as previously described [40]. Briefly, the cells were sonicated in 0.25 M sucrose in
PE buffer (0.1 M potassium phosphate, 1 mM EDTA), 10 mM dithiothreitol—DTT). The
cell lysate (100 µg) was incubated with 100,000 CPM of (125I) T4, 20 mM DTT, and 4 nM
T4 in the final volume of 300 µL of PE buffer. The solution was incubated for 120 min at
37 ◦C. Subsequently, the 125I released in the deiodination reaction was separated from the
labeled T4 by the addition of 200 µL of horse serum and 100 µL of 50% trichloroacetic acid,
followed by centrifugation for 2 min at 12,000× g. The generated 125I was quantified using
the 2427 Wizard2 automatic gamma counter (PerkinElmer, Waltham, MA, USA). D2 activity
was expressed in de-iodined T4 femtomolar per minute per mg of protein.

4.4. Cytokines and Chemokines Measurement

The C2C12 myoblast conditioned medium samples of the first experiments (n = 5) were
collected and stored at −20 ◦C until cytokine concentration measurements were performed.
IL-6, IL-1β, and chemokines CCL-2, and CXCL-1 were quantified using the MILLIPLEX-
MAP Mouse Cytokine/Chemokine Magnetic Bead Panel—Immunology Multiplex Assays
kit (MCYTOMAG-70K; Merck Millipore, MA, USA) according to the manufacturer’s proto-
col. The plate was read on the MAGPIX®System equipment (Merck Millipore, Saint Luis,
MO, USA), which provided each analyte′s median fluorescence intensity in the sample.
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The levels of each analyte were calculated using the Luminex xPonent® for MAGPIX® v
software 4.2 (Luminex Corporation, Austin, TX, USA) using the standard curve method.

4.5. Statistical Analysis

Results are presented as mean ± standard deviation or median and quartiles of the
mean of at least five independent experiments. The D’Agostino and Pearson omnibus test
was performed to evaluate the parametric or nonparametric data distribution. Parametric
data were analyzed by Student’s T-test, and nonparametric data by Mann–Whitney U
test. The difference between the groups was considered when the p-value was less than
0.05. Statistical analysis was performed using the GraphPad Prism 6 software (GraphPad
Software, Inc., San Diego, CA, USA).

5. Conclusions

We demonstrated that a low LPS dose induced myoblasts to produce cytokines and
chemokines typical of an inflammatory response. This milieu reduced the initial myogenic
stimulus and differently modulated the D2 expression and action of in myoblasts and
myocytes. However, the LPS challenge did not delay late differentiation. These data
suggest that low-grade chronicle inflammation modulates intracellular myoblast response
and influences myogenic homeostasis. Herein, the low-grade inflammatory stimulus could
impact skeletal muscle regeneration affecting aged and obese patients.
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