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Abstract: To investigate the effect of oat bran on bread quality and the mechanism of reducing the
glycemic index (GI) of bread, wheat bran (10%, w/w, flour basis), oat bran (10%), and β-glucan
(0.858%) were individually added to determine the expansion of dough, the specific volume, texture,
color, GI, starch digestion characteristics, and α-amylase inhibition rate of bread. The results showed
that the incorporation of wheat bran and oat bran both reduced the final expanded volume of the
dough, decreased the specific volume of the bread, and increased the bread hardness and crumb
redness and greenness values as compared to the control wheat group. The above physical properties
of bran-containing bread obviously deteriorated while the bread with β-glucan did not change
significantly (p < 0.05). The GI in vitro of bread was in the following order: control (94.40) > wheat
bran (69.24) > β-glucan (65.76) > oat bran (64.93). Correspondingly, the oat bran group had the highest
content of slowly digestible starch (SDS), the β-glucan group had the highest content of resistant
starch (RS), and the control group had the highest content of rapidly digestible starch (RDS). For the
wheat bran, oat bran, and β-glucan group, their inhibition rates of α-amylase were 9.25%, 28.93%,
and 23.7%, respectively. The β-glucan reduced the bread GI and α-amylase activity by intertwining
with starch to form a more stable gel network structure, which reduced the contact area between
amylase and starch. Therefore, β-glucan in oat bran might be a key component for reducing the GI of
whole oat bread.

Keywords: low glycemic index; β-glucan; dough properties; bread quality; starch digestion

1. Introduction

Diabetes is a metabolic disorder of carbohydrates, proteins, and fats caused by in-
sufficient insulin secretion or insensitivity in the body [1]. According to the latest data
released by the International Diabetes Federation, about 537 million adults worldwide
were living with diabetes in 2021 and this number is expected to increase continuously in
the next 10–25 years [2]. In addition, China has the largest number of diabetics in the world
and the incidence rate is still on the rise, becoming a significant public health problem
affecting people’s physical and mental health [2]. Recent studies have found that dietary
intervention with a low glycemic index (GI) can significantly reduce the drug dosage of
diabetics, which can finally reduce the risk of diabetes as well as related complications.
This has been recognized as a low-cost yet effective way to control diabetes [3]. Therefore,
the development of low GI food products is of great significance for diabetic patients.

Oat bran is a common by-product of the grinding process of whole oats. It is low
in digestible carbohydrates and rich in β-glucans, polyphenols, and flavonoids. It was
reported that each gram of β-glucan in oat bran can reduce the area under the glucose curve
by 4.35% (r = 0.507, p = 0.0008, n = 40) and the peak by 6.57% (r = 0.582, p < 0.0001) [4,5],
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probably owing to the high viscosity of oat β-glucan which can form a sticky solution in
the intestinal tract, reduce the contact of food and digestive enzymes, and delay gastric
emptying and the formation of blood glucose. Zhang et al. [6] pointed out that β-glucan
enhanced the viscosity of the digestive tract through its own aggregation and intertwining
and overlapping with starch, thus restricting water mobility and reducing the contact
between digestive enzymes and starch, glucose, and small intestinal microvilli. This means
that the long-term consumption of oat bran can decrease the level of blood glucose and
cholesterol, significantly contributing to the prevention of cardiovascular and cerebrovascu-
lar diseases [7]. In addition, oat β-glucan can inhibit glucose transport by down-regulating
the glucose transporter in small intestinal epithelial cells. Oat bran polyphenols are sec-
ondary metabolites of oat, including phenolic acids and flavonoids. It was found that oat
bran polyphenols can significantly reduce fasting glucose content and increase superoxide
dismutase activity in diabetic mice, suggesting that the mechanism of reducing the blood
glucose of oat polyphenols may be related to their antioxidant and scavenging free radical
ability [8]. However, it has not yet been confirmed by research which active ingredient
plays a more important role in lowering the GI.

Bread is a kind of nutritious, easy-to-digest, and convenient staple food. With the
accelerating pace of life, consumers’ demand for baking products is growing nowadays,
and at the same time, they are not willing to sacrifice the health-promoting effects of these
products. Traditional bread is usually made of ordinary wheat flour and processed with
white sugar, which has a high GI and is unsuitable for diabetics. Previous research has
focused on adding low-GI ingredients to bread formulas, such as partially replacing high-
gluten flour with wheat bran. However, this will lead to a decrease in the physical quality
of the bread. It was reported that β-glucan in oat bran was 2.6 times higher than that in
wheat bran [9], suggesting the better performance of oat bran regarding the decrease in
blood glucose as compared to wheat bran. Furthermore, oat bran products were proved to
possess better quality than other grain bran products. Pavan et al. [10] found that among
the biscuits with an added 3–7% (w/w, flour basis) wheat bran or oat bran, the physical
characteristics of oat bran biscuits were better than wheat bran biscuits. The results of
Yadav et al. [11] showed that oat bran can increase moisture content (p ≤ 0.05) and reduce
oil absorption during frying, while wheat bran has the opposite effect. These studies
suggested that oat bran has greater potential than wheat bran in developing high-quality
baked foods with low GI.

In order to verify that oat bran bread has better physical qualities and lower GI than
wheat bran bread and explore the main substances in oat bran that play a role in reducing
GI, in this study, the effects of oat bran and oat β-glucan on the physical and starch digestion
properties of bread were investigated by adding oat bran or oat β-glucan to a bread formula
and comparing it with regular bread and bread with added wheat bran. It will provide a
theoretical basis for developing oat bran food and enriching varieties of low GI food.

2. Materials and Methods
2.1. Materials

High-gluten wheat flour containing 14.38% protein, 72.19% starch, 0.45% ash, and
12.83% moisture was supplied by the Henan Wudeli Flour Group Corp. (Zhoukou, China).
wheat bran with an average particle size of 425 µm (Triticum aestivum L.) containing 13.64%
moisture, 15.83% protein, and 0.53% ash was obtained from Henan Jinyuan Grain and Oil
Co., Ltd. (Zhengzhou, China). Oat bran with an average particle size of 425 µm (Avena
sativa L.) containing 8.64% moisture, 20.80% protein, 8.58% β-glucan [12], and 2.25% ash
was purchased from Zhangjiakou Jianjun oat Food Co., Ltd. (Zhangjiakou, China). Instant
dry yeast (Saccharomyces cerevisiae) was obtained from Angel yeast Co., Ltd. (Yichang,
China). β-Glucan with an average molecular weight of 5300 Da was purchased from Ebara
Biotechnology Co., Ltd. (Guangzhou, China). All the other reagents used in this study were
of analytical grade and obtained from Sinopharm (China National Medicines Corporation
Ltd., Shanghai, China).
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2.2. Determination of Dough Properties
2.2.1. Dough Production

The dough production was conducted according to the method reported by Sang et al.,
with slight modifications [13]. The water absorption of the dough and the mixing time of
the dough should be measured by farinograph and mixograph, but due to the poor limited
experimental conditions in our lab, it could only be estimated according to the report of
Sang et al. and the experience and quality of the final bread. According to Table 1, the
ingredients of each group were put in a dough mixer and kneaded at a low speed (the first
gear of the dough mixer) for 4 min, then at a high speed (the second gear of the dough
mixer) for 15 min, until the surface of the dough was smooth and could be pulled into a
gluten film by hand.

Table 1. Ingredients in the test doughs.

Ingredients Control (g) Wheat Bran (g) Oat Bran (g) β-Glucan (g)

Wheat flour 500 (100%) 500 (100%) 500 (100%) 500 (100%)
Water 300 (60%) 330 (66%) 330 (66%) 300 (60%)
Sugar 40 40 40 40

Dry yeast 9 9 9 9
NaCl 4 4 4 4

Wheat bran - 50 (10%) - -
Oat bran - - 50 (10%) -
β-Glucan - - - 4.29 (0.858%)

Note: The recipe used by the control bread was the basic formula.

2.2.2. Extension Test of the Dough

The extension test of the doughs was conducted according to the method reported
by Sang et al. with slight modifications [13]. The doughs prepared for the extension test
were yeast-free strips with a length of 65 mm and a cross-section of 4 × 4 mm. They were
coated with a small amount of oil before measurement. The dough extension curves were
measured by TA.XT Plus Texture Analyzer (Stable Micro System Co., Ltd., Godalming,
Surrey, UK) equipped with Kieffer dough and gluten extensibility rig. Specifically, dough
strips were stretched from 10 mm to 60 mm at a rate of 3.30 mm/s under the tension
mode. The distance (mm) and force (mN) were used as the x-axis and y-axis, respectively.
The force and the distance corresponding to the vertex of the curve were defined as the
resistance (mN) and extension (mm), respectively.

2.2.3. Expansion Volume of the Dough

The method described by Sang et al. [13] was used to measure the expansion volume
of the dough. To be specific, 50 g of dough was put into the bottom of a 250 mL sterilized
measuring cylinder and fermented at 37 ◦C and 80% relative humidity for 100 min. The
dough volume gradually expanded during the fermenting process, and the difference
between the final and initial dough volume was defined as its expansion volume.

2.3. Determination of Bread Quality
2.3.1. Bread Making

The bread-making process was slightly modified from the method described by Sang
et al. [13]. The kneaded dough was divided into 5 parts (150 g each). After shaping, the
doughs were put in a toast box (151 × 67 × 67 mm) and fermented at 37 ◦C and 80%
relative humidity for 90 min. After baking for 15 min in an oven at 215 ◦C (top temperature)
and 190 ◦C (bottom temperature), the bread was immediately taken out and cooled at room
temperature for 2 h. Its quality parameters were determined within 12 h.



Foods 2022, 11, 2622 4 of 11

2.3.2. Specific Volume of the Bread

The method reported by Ozmutlu et al. was applied to measure the specific volume of
the bread with slight modifications [14]. The rapeseed replacement method was used to
measure the bread volume. Fill a 1000 mL beaker with rapeseed, scrape it flat with a ruler,
and pour it into a measuring cylinder to measure the volume. The cooled bread sample
was weighed and put into the above-mentioned 1000 mL beaker, followed by the addition
of rapeseed until the bread sample was covered and the beaker was filled. Scraping it flat
with a ruler, the volume of remaining rapeseed was the bread volume. The specific volume
of bread was the ratio of the volume to the mass of the bread after cooling.

2.3.3. Texture Analysis of the Bread

The texture analysis was conducted according to the method reported by Ozmutlu
et al. with slight modifications [14]. The cooled bread was cut into even slices with 24-mm
thickness, and the textures of intermediate slices were analyzed by TA.XT Plus Texture
Analyzer with a P/25 probe. The trigger force was 5 g. The pre-test, in-test, and post-test
speeds were set at 3 mm/s, 1 mm/s, and 5 mm/s, respectively. The sample was compressed
to 40% of its original height. The two compression intervals were 5 s, and the probe trigger
force was 5 g. The samples were measured in 5 replicates, and the mean and standard
deviation were calculated.

2.3.4. Moisture Content of the Bread

The method reported by Nilufer et al. was used, with slight modifications [15]. The
moisture content of the bread was determined by the direct drying method. An amount of
2~10 g (accurate to 0.0001 g) of crushed bread samples were weighed in the weighing bottle.
The samples were placed in the oven with the temperature pre-adjusted to 101~105 ◦C, and
the cap of the weighing bottle was tilted against the bottle edge and dried for 2~4 h. Then,
the weighing bottle was taken out with the lid and put into the dryer to cool for about 0.5 h.
After the temperature drops to room temperature, the weighing bottle was weighed, then
put into the oven again for drying for about 1 h, taken out, and put into a dryer to cool
for 0.5 h before weighing. The operation was repeated until the weight was constant (the
weight difference between the two weights should not exceed 2 mg).

2.3.5. Color Analysis of the Bread

The color analysis was measured according to the method reported by Nilufer et al.
with slight modifications [15]. The L*, a*, and b* values of the bread crust and core
were determined by the Hunter Lab colorimetric system (Model NR110, Shenzhen 3nh
Technology Co., Ltd., Shenzhen, China). The L* value represents the lightness of the bread
sample. The larger L* value indicates higher brightness. The a* value represents the green–
red degree of the bread sample, with −a* representing green and +a* representing red. The
b* value represents the blue–yellow degree of the bread sample, with −b* representing blue
and +b* representing yellow. The colorimeter was preheated for 30 min before use. After
whiteboard calibration, the lens was aimed at the top surface and bread core of the bread
slice, and the test button was pressed to read the value. The measurement was repeated
5 times.

2.4. Evaluation of Low GI efficacy
2.4.1. Estimated Glycemic Index In Vitro

The method reported by Yousif et al. [16] was slightly modified for the determination
of the estimated glycemic index in vitro. Crumbled bread core (0.5 g) was accurately
weighed in a 50 mL conical flask with a lid, and 1 mL porcine pancreatic α-amylase solution
(50 U /mL, 0.2 mol/L pH = 7.0 phosphoric acid buffer) was added for a reaction for 15 s to
simulate oral digestion. A total of 5 mL pepsin (4 mg/mL, 0.02 mol/L HCl) was then added
and stirred in a 37 ◦C water bath at 130 r/min for 30 min to simulate gastric digestion.
NaOH solution (5 mL, 0.02 mol/L) was used to neutralize the acid, then phosphoric acid
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buffer (25 mL, 0.2 mol/L pH = 6.0) and mixed enzyme solution (5 mL, porcine pancreatic α-
amylase 2 mg/mL, glucosidase 28 U/mL, 0.2 mol/L pH = 6.0 phosphoric acid buffer) were
added to simulate intestinal digestion. At 0, 20, 90, 120, 150, and 180 min, a small amount
of digestive solution (0.5 mL) was taken from digesta and placed in 5 mL centrifuge tubes,
respectively. After adding 2 mL of anhydrous ethanol solution to each centrifuge tube, the
mixture was centrifuged at 1753× g for 10 min. The glucose content of the supernatant
was determined by a glucose kit The hydrolysis rate (HR) of the sample was calculated as
the ratio of the glucose content calculated above to the total starch content in the original
sample and multiplied by a coefficient of 0.9. The hydrolysis rate curve can be obtained
by plotting HR against hydrolysis time. The area under the hydrolysis rate curve (AUC)
was calculated by Origin software, and the hydrolysis index (HI, %) of the sample was
calculated according to Formula (1).

HI =
AUC1

AUC0
× 100% (1)

where AUC1 and AUC0 were the areas under the hydrolysis rate curve of starch in the
sample and the standard white bread, respectively.

Finally, the estimated glycemic index (eGI) was obtained according to Formula (2).

eGI = 0.862HI + 8.1981 (2)

2.4.2. In Vitro Starch Digestion Characteristics

The method reported by Yousif et al. [16] was slightly modified for the determination
of starch digestion characteristics in vitro. At 0, 20, 120, and 180 min, a small amount of
digestive solution (0.5 mL) was taken from digesta and placed in 5 mL centrifuge tubes,
respectively. After adding 2 mL of anhydrous ethanol solution to each centrifuge tube, the
mixture was centrifuged at 1753× g for 10 min. The glucose content of the supernatant
was determined by a glucose kit. The contents of rapidly digestible starch (RDS), slowly
digestible starch (SDS), and resistant starch (RS) were calculated as follows:

RRDS/% =
m20 − m0

m180
× 100 (3)

RSDS/% =
m120 − m20

m180
× 100 (4)

RRS/% = 1 − RRDS − RSDS (5)

where m0 was the mass (mg) of free glucose in the sample before enzymatic hydrolysis;
m20, m120, and m180 were the mass (mg) of glucose generated after enzymatic hydrolysis for
20 min, 120 min, and 180 min, respectively.

2.4.3. α-Amylase Inhibition Rate

The method reported by Lu et al. [17] was used. Fifty grams of bread samples in each
group were added to 400 mL of NaCl solution (0.25 mol/L). The mixture was stirred at
room temperature for 2 h and then filtered. The collected filtrate was heated in a 70 ◦C
water bath for 30 min and centrifuged at 1753× g for 15 min to collect the supernatant.
α-amylase solution (1 mg/mL) was added to the supernatant at a ratio of 1:1 (v/v) and
reacted in a 37 ◦C water bath for 10 min, followed by the addition of 2 mL starch solution
further incubation at the same temperature for 5 min. The mixture was subjected to the
boiling water bath for 5 min to deactivate the α-amylase activity, after which 1 mL of iodine
potassium iodide solution was added. After cooling, the obtained solution was diluted,
and the absorbance value was measured at 535 nm (UV-1900 type UV spectrophotometer,
Shimadzu Company, Kyoto, Japan), which was recorded as A1. In the control group, 0.5 mL
distilled water was used to replace bread water extract, and the absorbance values were
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recorded as A2. In the blank group, 1 mL distilled water was used to replace α-amylase
solution and bread water extract; the absorbance values were recorded as A0.

Inhibition rate o f α − amylase =
(A2 − A0)− (A1 − A0)

A2 − A0
× 100% (6)

where A0 was the absorbance value of the mixture after diluting, A1 was the absorbance
value of the control group in which 0.5 mL distilled water was used to replace bread water
extract, and A2 was the absorbance value of the blank group in which 1 mL distilled water
was used to replace α-amylase solution and bread water extract.

2.5. Statistical Analysis

The experiment was carried out 3–6 times. The data are reported as the mean ± SD.
The statistical analysis was performed by one-way analysis of variance, employing SPSS,
version 18.5 (IBM Corp., Armonk, NY, USA).

3. Results and Discussion
3.1. Effects of Different Additives on the Extensibility and Expansion Volume of Dough

The resistance is a sign of the longitudinal elasticity of the dough, which indicates
the toughness of the dough [18]. As seen in Figure 1a, the wheat and oat bran reduced
the maximum resistance of the dough compared to the control group. The reason might
be that the bran loosens the gluten structure of the mixed dough, which reduces the
resistance [19–21]. The more significant reduction in the resistance of the dough made by
wheat bran may be ascribed to the higher fiber content in the wheat bran, resulting in a
looser gluten structure. Compared with the control group, β-glucan significantly decreased
the resistance of the dough. Therefore, replacing wheat bran with oat bran or β-glucan is a
promising approach to balance the nutritional value of low GI bread with the resistance
index of the dough.

The expansion volume of dough is an important parameter to characterize a series of
physical and chemical changes during the fermentation process and the quality of flour
baking. As shown in Figure 1b, the dough volume of the control group and the β-glucan
group continued to increase as time progressed. The dough volume of the wheat bran
group and the oat bran group showed an initial increase and then leveled off, indicating
the reduced air holding capacity caused by the bran addition, and β-glucan has little effect
on the expansion volume of the dough compared to the control group. The continuous
gluten network is a necessity for the formation and stability of the air cells in this matrix.
The crude fiber in the wheat and the oat bran can disrupt the continuity of the gluten
network, leading to the rupture of air cells and the reduction in the expansion volume of
the dough [22,23]. Another possible reason is that the bran tends to absorb more water from
the dough system, resulting in insufficient hydration and the weakening of the gluten film
as well as the merging of bubbles within the dough. This can, finally, cause the decreased
gas holding capacity of the dough and the reduced volume of the bran bread.
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3.2. Effects of Different Additives on Bread Quality
3.2.1. Specific Volume and Texture Properties of Bread

The specific volume and texture properties of the bread are shown in Table 2. The
addition of wheat and oat bran reduced the specific volume of the bread. It may be that
bran contains more insoluble dietary fiber particles, disrupting the structure of the gluten
protein [24], which hinders the formation of the gluten network in the dough and reduces
the expansion volume of the dough and the volume of bread. As a hydrophilic colloid,
β-glucan has a reinforcing effect on gluten (Figure 1a), increasing the expansion volume of
the dough, thereby increasing the specific volume of the bread [25].

According to Table 2, adding wheat bran, oat bran, and β-glucan significantly affected
the textural properties of the bread. Compared with the control group, wheat and oat bran
significantly increased bread hardness and chewiness and decreased resilience [26]. The
crude fiber content of wheat bran is higher than that of oat bran [10], which might be a
reason for the harder and less elastic texture of the bread made by the wheat bran. As a
soluble dietary fiber, β-glucan has a high water-binding capability, contributing to better
hydration and the full formation of the gluten network in the dough matrix. This helped to
improve the resilience and recovery while reducing the hardness of bread [27].

Table 2. Effects of different additives on the specific volume and texture properties of bread.

Group Specific Volume (cm3/g) Hardness (N) Resilience Chewiness Recovery

Control 3.62 ± 0.01 b 3.05 ± 0.03 b 0.69 ± 0.01 b 1.37 ± 0.06 b 0.29 ± 0.00 b

Wheat bran 3.02 ± 0.08 d 4.93 ± 0.35 a 0.67 ± 0.01 c 1.83 ± 0.24 a 0.27 ± 0.00 c

Oat bran 3.23 ± 0.02 c 5.16 ± 0.37 a 0.66 ± 0.01 c 1.98 ± 0.12 a 0.27 ± 0.01 c

β-Glucan 3.82 ± 0.04 a 2.85 ± 0.25 b 0.71 ± 0.01 a 1.12 ± 0.09 c 0.32 ± 0.00 a

Note: Different lowercase letters among the data in the same column indicate significant differences (p < 0.05).

3.2.2. The Moisture Content and Color of Bread Crust and Crumb

As can be seen from Table 3, wheat bran, oat bran, and β-glucan all considerably
increased the moisture content of bread. This may be attributed to the high water-binding
capability of some dietary fibers in bran such as β-glucan, which helped to retard the water
diffusion and increase the water retention in the internal microstructure of bread [28,29].

Overall, compared with the control group, the incorporation of wheat bran and oat
bran changed the color of bread to different degrees. Adding wheat bran and oat bran
increased the a* and b* values of the crumb (p < 0.05). It is possible that various pigments
in the oat and wheat bran such as chlorophyll, carotene, and lutein had the possibility to
darken the crumb color, leading to the increase in a* or b* in the crumb of the wheat and
oat bran groups as compared to that in the β-glucan group [30]. The other reason was that
the wheat or oat bran was richer in amino acids than the β-glucan, which enhanced the
Maillard reaction and led to a darker crumb color. Compared with the change in the color
of the crumb, there was no significant change in the crust. This was because, in addition
to the Maillard reaction, the caramelization reaction that took place during baking was
also the main cause of the brown crust. The glycosidic bonds in the fiber from the wheat,
oat bran, and oat β-glucan were broken into oligosaccharides and monosaccharides and
caramelized under high temperature [31].
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Table 3. Effects of different additives on the moisture content and color of bread crust and crumb.

Group
Crust Crumb

Moisture
Content (%) L* a* b* Moisture

Content (%) L* a* b*

Control 23.45 ± 0.32 c 45.16 ± 2.04 a 18.80 ± 0.84 a 33.31 ± 1.54 a 42.57 ± 0.18 b 65.11 ± 0.22 a 0.33 ± 0.08 c 10.60 ± 0.48 c

Wheat bran 28.03 ± 1.00 a 44.36 ± 0.96 a 19.42 ± 0.59 a 33.34 ± 0.71 a 45.90 ± 0.54 a 63.10 ± 0.72 ab 1.73 ± 0.16 b 13.51 ± 0.79 b

Oat bran 26.14 ± 0.38 b 40.72 ± 0.24 b 19.18 ± 0.17 a 29.30 ± 1.39 b 45.65 ± 0.26 a 62.93 ± 1.65 ab 2.60 ± 0.16 a 15.40 ± 0.65 a

β-Glucan 27.48 ± 0.89 ab 45.07 ± 1.07 a 19.00 ± 0.68 a 33.99 ± 0.59 a 45.62 ± 0.50 a 61.56 ± 1.47 b 0.43 ± 0.24 c 10.95 ± 0.69 c

Note: Different lowercase letters among the data in the same column indicate significant differences (p < 0.05).
The L* value represents the lightness of the bread sample. The larger the L* value, the whiter the sample. The a*
value represents the green–red degree of the bread sample, with −a* representing green and +a* representing
red. The b* value represents the blue–yellow degree of the bread sample, with b* representing blue and +b*
representing yellow.

3.3. Effects of Different Additives on Bread GI
3.3.1. eGI In Vitro

The eGI is shown in Figure 2a. Adding wheat bran, oat bran, and β-glucan all
significantly reduced the bread GI. The eGI of the β-glucan (65.76) bread was slightly
higher than that of the oat bran (64.93), although they had similar eGI. The results were
generally consistent with the findings of Kim et al. The eGI is inversely correlated with β-
glucan concentration in heated oat flour slurry [32]. The possible reason is that the β-glucan
in oat bran reduced the content of RDS in bread by inhibiting the activity of pancreatic
α-amylase, increasing the content of SDS and reducing the fluctuation of postprandial
blood glucose [33–36]. This hypothesis was also verified in the following experiments.
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3.3.2. In Vitro Digestion Properties of Starch

RDS is rapidly digested and absorbed by the human body, which can cause a rapid
rise in blood glucose and is not beneficial for health. SDS, on the contrary, can be digested
and absorbed by the body at a significantly slower rate. It can continuously release energy
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to the human body and thus prolong satiety. RS cannot be digested and utilized by the
small intestine and has no significant impact on postprandial blood glucose [37]. As seen
in Figure 2b, the addition of wheat bran, oat bran, and β-glucan considerably reduced the
RDS content and increased the SDS content in bread. Compared with the control group,
β-glucan significantly increased RS content, while oat bran decreased RS content, but the
wheat bran group had no significant effect on RS content. Compared with the oat bran
group, β-glucan bread contained higher RS content and similar SDS content. β-glucan is a
cell wall component of raw plant materials that is viscous and difficult to be digested and
absorbed [38]. It may have increased the viscosity of the entire system, which slowed down
the digestion process, prolonged gastric emptying, and prevented food from reaching the
small intestine for a short time. The high viscosity of β-glucan could also promote its
binding with other bread fractions and reduce the interaction between amylase and starch,
which retarded starch degradation [24,39,40].

3.3.3. α-Amylase Inhibition Rate

α-amylase is a critical enzyme that affects the digestion and absorption of starch in
food. Therefore, this experiment evaluated the low GI efficacy of bread by measuring the
inhibition rate of α-amylase by extracts from the different breads. As shown in Figure 2c,
wheat bran, oat bran, and β-glucan had specific inhibitory effects on the α-amylase inhibi-
tion rate, among which oat bran had the most potent ability to inhibit α-amylase activity.
The inhibition rate of α-amylase in the β-glucan group (23.7%) was larger than half (14.46%)
of that of the oat bran group, indicating that β-glucan in oat bran played a significant
role in inhibiting the activity of α-amylase. Previous studies have shown that β-glucan
can intertwine with starch to form a more stable gel network structure, which reduces
the contact area between amylase and starch, thus reducing the action of α-amylase [41].
Other active substances in oat bran also play a part in the inhibition of α-amylase [6]. For
example, phenolic acids contain phenolic hydroxyl and carboxyl groups, which can interact
with proteins to affect the activity of enzymes.

In this study, the contents of RDS, SDS, and RS in bread were determined by simulating
in vitro digestion. The results showed that β-glucan bread contained higher RS content
and similar SDS content than oat bran bread. This was mainly because β-glucan increased
the viscosity of the digestive system, thus slowing down the digestion speed. However,
in addition to β-glucan, other substances may also have some influence on the digestion
characteristics of starch in oat bran. Finally, the SDS content of oat bran was similar to
that of the β-glucan bread, while the RS content of oat bran was lower than that of the
β-glucan bread. It had been reported that in addition to the inhibitory effect of β-glucan on
α-amylase in oat bran [6], the phenolic acids in oat bran also have a certain inhibitory effect
on α-amylase, so the inhibitory rate of oat bran bread was higher than that of oat β-glucan
bread. After combining the above two conditions, the eGI of β-glucan bread (65.76) was
slightly (p > 0.05) higher than that of oat bran (64.93) although they had similar eGI.

4. Conclusions

Compared with the control group, adding 10% wheat bran or 10% oat bran both
reduced the extension resistance of the dough as well as the expansion ability, specific
volume, and softness of the bread. The final expanded volume of the dough decreased
by 31.67% and 34.36%, the specific volume decreased by 16.57% and 10.77%, the hardness
increased by 38.13% and 40.89%, the crumb’s a* value increased by 80.92% and 87.31%, and
the b* value increased by 21.53% and 31.69%. However, they both reduced the RDS content
and increased the SDS content and the inhibition rate of α-amylase, thereby reducing the
GI of bread. Compared with the oat bran group, adding oat β-glucan reduced the GI
while maintaining the excellent sensory properties of the bread. Therefore, β-glucan is the
component in the oat bran that significantly contributes to the low GI values in the whole
oat bread.
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