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Abstract

Background: Recently, next-generation sequencing techniques have been applied for the detection of RNA
secondary structures, which is referred to as high-throughput RNA structural (HTS) analyses, and many different
protocols have been used to detect comprehensive RNA structures at single-nucleotide resolution. However, the
existing computational analyses heavily depend on the experimental methodology to generate data, which results in
difficulties associated with statistically sound comparisons or combining the results obtained using different HTS
methods.

Results: Here, we introduced a statistical framework, reactIDR, which can be applied to the experimental data
obtained using multiple HTS methodologies. Using this approach, nucleotides are classified into three structural
categories, loop, stem/background, and unmapped. reactIDR uses the irreproducible discovery rate (IDR) with a hidden
Markov model to discriminate between the true and spurious signals obtained in the replicated HTS experiments
accurately, and it is able to incorporate an expectation-maximization algorithm and supervised learning for efficient
parameter optimization. The results of our analyses of the real-life HTS data showed that reactIDR had the highest
accuracy in the classification of ribosomal RNA stem/loop structures when using both individual and integrated HTS
datasets, and its results corresponded the best to the three-dimensional structures.

Conclusions: We have developed a novel software, reactIDR, for the prediction of stem/loop regions from the HTS
analysis datasets. For the rRNA structure analyses, reactlDR was shown to have robust accuracy across different
datasets by using the reproducibility criterion, suggesting its potential for increasing the value of existing HTS
datasets. reactIDR is publicly available at https://github.com/carushi/react/DR.

Keywords: RNA secondary structure, High-throughput structural analysis, Reproducibility

*Correspondence: kawaguchi-rs@aist.go.jp

! Artificial Intelligence Research Center, National Institute of Advanced
Industrial Science and Technology, Aomi, Koto-ku, Tokyo, Japan

?Department of Computational Biology and Medical Sciences, Graduate
School of Frontier Sciences, the University of Tokyo, Kashiwanoha, Kashiwa-shi,
Chiba, Japan

Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2645-4&domain=pdf
https://github.com/carushi/reactIDR
mailto: kawaguchi-rs@aist.go.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kawaguchi et al. BMC Bioinformatics 2019, 20(Suppl 3):130

Background

RNA secondary structures play diverse roles in the fun-
damental RNA functions, such as gene expression regula-
tion, translation, and localization, which are mediated by
certain structural motifs or regional accessibilities [1, 2].
Due to the difficulties in the experimental determina-
tion of the secondary structures of RNAs prior to the
development of the next-generation sequencing, a num-
ber of computational methods were developed to predict
the secondary structures from sequences or sequence
alignment data [3], but the time and computer mem-
ory requirements remain too high to be applicable at
the genome-wide level [4]. To analyze the comprehensive
landscape of RNA secondary structures, novel types of
high-throughput experimental methods, such as PARS [5]
and icSHAPE [6], have been developed using short-read
next-generation sequencers, and are referred to as high-
throughput RNA structural (HTS) analyses [7-9]. These
methods involve the use of certain types of chemical
reagents or enzymes that cause probing (e.g., modifica-
tion or cleavage) at each RNA nucleotide with a different
“reactivity” depending on the existence of base pairing.
Using these approaches, RNA secondary structures are
not directly predicted, instead, some structure-indicating
scores which provide information about the molecular
structures, such as reactivity scores, are obtained. The
reactivity scores provide in silico analyses with the infor-
mation necessary to guide secondary structure prediction
[10], as well as to indicate the propensity of structural
accessibility directly.

As summarized in Fig. 1a, each experimental method
can be used for the detection of different types of struc-
tural footprints, in order to determine the single- or
double-strandedness of each nucleotide, and finally obtain
the structure scores from the distribution of structural
footprints. For example, the PARS method involves the
activity of RNase V1 and S1, which perform structure-
specific cleavage at the stem (base-paired) and loop
(unpaired) regions, respectively, of the RNA molecules
with a complicated structural context [5]. Conversely,
using icSHAPE [6], base modifications are introduced
into the loop regions by 2-methylnicotinic acid imida-
zolide (NAI)-N3 treatment and then detected according
to a frequent drop-off at that location during reverse
transcription.

While these HTS methods rely on different approaches
and hold fundamental differences with regards to the
structure propensity to be detected [11], they suffer from
a common problem of experimental noise, such as the
spurious signals that are attributed to reasons other than
the experimental modifications. To reduce the misde-
tection of false positives, a naive, but statistically not
justified approach is the computing of the reactivity
scores using the (relative) differences or ratios of the read
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levels between different experimental conditions, such as
case/control (i.e., chemically treated samples vs. untreated
ones) or V1/S1 treated, setting a filtering threshold for
each dataset independently.

Another method for precise signal detection from
sequencing read distribution is the repeated performance
of experiments, since the consistency between indepen-
dent replicates generally indicates the quality of the
experiments beyond stochastic noise, particularly in the
sequencing-based experiments [12, 13]. However, most of
the existing HTS analytical approaches, including prob-
abilistic models, such as Spats [8], ProbRNA [14], and
PROBer [15], do not consider this information in order
to improve the robustness of reactivity scoring. Although
Mod-seeker [16] and BUMHMM [17] were developed to
include the information on the reproducibility of read
distribution, these and other existing probabilistic mod-
els still have issues with the high dependency on cer-
tain target experiments in their statistical or probabilistic
framework, such as the empirical distribution fitted to
icSHAPE-like analyses in BUMHMM. Due to the diversity
of HT'S methodologies, the distribution of structural foot-
prints is highly heterogeneous (Additional file 1: Table S2
and Figures S1 and S2), and therefore, the models may not
be applicable to other HTS methodologies.

The importance of comprehensive HTS data compar-
isons has been recently argued, in a study showing that
the results obtained using different HTS approaches are
less correlated than those obtained by using the same
approach, and potentially contain largely non-overlapping
conformational information [18]. To overcome HTS
dataset heterogeneity for fair multiple experiment com-
parisons, one promising approach is the combining of
a probabilistic model and supervised learning. Reliable
structural information has been gathered in previous
computational and experimental analyses [2] and many
previous studies have applied supervised learning to in
silico structure prediction to estimate the optimal model
parameters [19]. However, to the best of our knowledge,
there is no method that computes optimal structure scores
by handling HTS raw read counts in a supervised learning
manner to improve the reproducibility of HTS analy-
ses (Fig. 1b). Therefore, computational methods for HTS
analyses can be further improved, especially by developing
approaches for handling multiple HTS experiments simul-
taneously for comprehensive understanding of the RNA
secondary structure.

Here, we developed a novel method, reactIDR, to deter-
mine true reactivity signals using the replicated HTS data
by calculating a statistically valid reliability score. To eval-
uate the reliability in a way applicable to a general HTS
dataset, we extend a statistical method for chromatin
immunoprecipitation (ChIP)-Seq peak detection, named
irreproducible discovery rate (IDR) [13]. We applied a
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Fig. 1 Schematic illustration of the high-throughput structural (HTS) analytical process and reactIDR. a Major types of HTS-associated experimental
designs analyzed in this study. All experimental approaches can be classified into the listed groups, according to the number of sample conditions
and their detection targets. Red and blue stars represent a probing occurrence at the loop and stem regions, respectively. b Applicability of the
reactivity-scoring methods to three types of HTS experimental designs (i.e., whether the method is intended to analyze each type of experiment or
not), in which Score indicates each threshold-based scoring method used for studying the icSHAPE and PARS analyses. € Overview of reactIDR
procedures. reactIDR receives the input data consisting of 5’-end read-depths repeatedly measured in a single or two conditions. The input data,
after trimming of the very ends of the transcripts, is converted into the scaled ranking data to adapt the copula model. Afterward, a posterior loop
probability distribution at each site can be computed as an index of reactivity

hidden Markov model (HMM) with the emission proba-
bility of IDR, in which the loop and stem regions are auto-
matically segmented by a maximum posterior estimate.
reactIDR is the first framework for supervised learning
with known secondary structures obtained from repli-
cated HTS sequencing data as well as applying parame-
ter optimization based on the expectation-maximization
(EM) algorithm to avoid any arbitrary step of parameter

hand-tuning. According to our analyses, reactIDR has
statistically one of the best accuracies for classifying
loop and stem regions from HTS datasets contain-
ing multiple types of experiments. Therefore, reactIDR
is suggested to be applicable to various HTS com-
parisons, including emerging technologies, and has the
potential for increasing the value of existing HTS
datasets.
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Fig. 2 Comparison between the irreproducible discovery rate (IDR) and reactlDR model. a IDR is a method used for the classification of signals into
true (high-coverage and reproducible) and false (low-coverage and irreproducible) signals, based on the Gaussian mixture model, by associating the
observation with the cumulative joint probability distribution and pseudo-value x. b In reactIDR, IDR is combined with the hidden Markov model of
the three latent classes: loop, stem/bg, and unmapped. The start and end of transcripts should be assigned to the unmapped class. These three
classes are defined to handle case/control comparisons with the Gaussian mixture copulas for each condition simultaneously, in which each
parameter is optimized to the data and reference structure using the expectation-maximization algorithm
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Methods

reactlDR overview

A schematic workflow of reactIDR is presented in Fig. 1c
and Additional file 1: Figure S3. We aimed to develop reac-
tIDR so that it can be applied for solving HTS problems as
follows:

e Input — Assuming that K is the number of samples
in an HTS experiment, and the sequencing reads
were obtained from two K /2 samples, under two
different conditions (and an optional reference
structure), each read can be mapped against a
reference sequence, and the indicator of reactivity at
each base can be measured by counting the reads that
start at the subsequent (3') base.

® Output — The output represents the probability that
each nucleotide is the latent class Ioop.

e Objective function — To provide reliable structure
scores for accurate structure prediction, the outputs
should be optimized so that they satisfy the following
conditions: (1) the sequential loop regions of the
RNAs provide consistently enriched read counts
under the case conditions, in contrast to those under
the control conditions, while stem motifs should be
enriched in the control obtained from the PARS
dataset, and (2) the true signals of structural
footprints should be consistent among the replicates
with the higher expression.

Using the HTS approach, the positions in stem (base
paired) or loop (accessible) structures can be detected
by the enrichment of chemical or enzymatic footprints,
since their reactivity is highly affected by the existence
of base pairs. However, to remove many false positives
derived from the random occurrences of fragmentation or
endogenous modification, reactIDR further considers the
ratio of read count enrichment between two-conditional
samples. As shown in Fig. 1, case (control) samples were
specifically defined as the first (last) K/2 samples with
the sequencing reads stochastically truncated at one base
downstream from the loop (stem or non-specific back-
ground, represented as bg). In reactIDR, a latent class
loop, stem/bg, or unmapped, is expected to be assigned
to the region corresponding to the case-derived, control-
derived, and no sufficient reads obtained, respectively.
Here, icSHAPE case and control samples were regent-
treated and untreated, respectively, while PARS samples
were treated with S1 and V1, respectively, and the control
samples were not the untreated samples.

IDR

Our novel algorithm, reactIDR, extends the idea of the
IDR [13] criteria to obtain reproducible and irrepro-
ducible classification. We first introduce the model for
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the IDR estimation. Here, as an input of IDR and reac-
tIDR, we considered the read-count data obtained for a
single transcript or concatenated multiple transcripts with
the total length of L nucleotides. As these data were ini-
tially converted into the ranking data across all positions
in each experiment, these ranking data in an ascending
order were scaled to the range of [ 0, 1]. These normalized
data were hypothesized to correspond to the cumulative
probability distribution in the copula model, necessarily
within that range. After scaling, a vector of the ranks
of read counts at the ith position was defined as v; :=

Vily «+o» vi,K} for IDR, and v; := {vt,mse,viycom} =

Vils ««» Vi,j(/z} ’ {Vi,[(/2+1 N Vl‘,](}} for reactIDR. The
overall input data of the IDR and reactIDR were: V =
{vi, ..., vi}. IDR is based on the use of the mixture

copula model to discriminate between one reproducible
(represented by rep) distribution and the irreproducible
(irep) distributions, recognizing them as true and false
signals, respectively. Each copula can explain the distri-
bution of true, reproducible or false, poorly correlated,
signals. This is because true signals obtained from the pro-
tein binding sites in ChIP-Seq should exhibit reproducible
enrichment with an increase in the read-count depth and a
high correlation between the replicates. Based on this, the
signals categorized into rep are thought to contain many
more true signals compared with those in the irep group.
For simplicity, we considered an example of the mix-
ture of two Gaussian copulas in two dimensions hereafter,
showing that our approach can be used for the analy-
sis of two experimental replicates. When the ith signal
is produced by true (false) signals, represented as r; =
true(false), the distribution of a random variable x; =
(xi,1,%;2) corresponding to the ith signal is as follows:

. 2 2
Gl (G G 2) w
Xi,2 M POy 9y

where 1}, 0y, and py, represent mean, variance, and corre-
lation, respectively, with the indicator / for each state of r;
(h = 1whenr; = trueand h = O when r; = false). The dis-
tribution of true rep signals is assumed to contain a posi-
tive mean and correlation (1 > Oand 0 < p; < 1), while
spurious irep signals should be located around the low-
coverage regions and show increased variance (1o = 0,
002 = 1, and p9 = 0). These parameters can be fit-
ted not to the actual read counts, but to the normalized
ranks of read coverage for ChIP-Seq data v, such that those
ranks are derived from the cumulative marginal proba-
bility distribution function of x;x (k = 1,2), as shown
below:

Xk

Fe(w) == vig = f aN (¥ lp1,02) + (1 — QN (% |10, 03) Al
o0

where g represents the ratio of true and reproducible sig-
nals in the samples and k represents the k-th experiment.
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By considering the contribution of the second Gaussian
distribution representing irreproducible signals, a proba-
bility of each peak derived from the irreproducible signal
or IDR, can be estimated.

reactIDR: an algorithm based on the IDR and HMM

While IDR is a powerful method for the evaluation of
the reliability of various joint distributions of ChIP-Seq
peaks, HTS data used for RNA stem/loop detection must
additionally include the consideration of the dependency
between the consecutive nucleotides over multiple condi-
tions. The application of IDR to HTS analyses, therefore,
requires further specific extensions for the more compli-
cated situations. To this end, we developed reactIDR, a
novel method for the extraction of true reactivity signals
from the replicated HTS data, based on the determina-
tion of statistical reliability score according to the IDR and
HMM (Fig. 2).

For L as a total length of transcripts and a vector of
scaled rankings at the ith position, v; can be given. In reac-
tIDR, a latent variable at the ith position /4; can belong
to any element of {loop, stem/bg, and unmapped;}, cor-
responding to each status associated with the HTS data
and RNA secondary structures. The enrichment of v; is
thought to be most likely observed at the regions that
belong to the loop class in the case samples and stem/bg
class in the control samples, while we did not expect any
specific enrichment in the case of unmapped classes.

In reactIDR, the paths of all latent variables can be rep-
resented by h = {ho, ..., i}, and the likelihoods of V
and h can be obtained as the products of emission and
transition probabilities, as formulated below:

L L—1
P(V,h|0) =P (hy|0) HP(vi|hi,9) ]_[ P (his1hi, 0)
=1 =0

(2)

where 0 consists of the transition matrix between each
latent class pair R, and the set of all of parameters in the
copula model for case samples 6.4, and control samples
Bcont» respectively (i.e., i1, o2, and p, see Additional file 1:
Figures S4 and S5). Due to the difficulties in the map-
ping of reads into the edge of transcripts, /g and /; are
always assigned to the unmapped class (P(ho|0) = 1 and
P(hr|0) = 1). P(hjy1|h;, 0) represents the transition prob-
ability between /; and 4,41 in the HMM, represented by
R, which is further optimized by the expectation of the
transition between /; and /4;4; at each step of the EM
algorithm iteration. P(v;|h;, ) is an emission probability,
which we defined as follows:

P (vilh;,0) =P (Vi,case|rcase: ecase) -P (Vi,cont|rcont; Qcont)
Yeont = rep if hj = stem/bg and irep otherwise

Tease = rep if h; = loop and irep otherwise,
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where v ;5. and v, are expected to show the enrichment
of loop-like and stem-like (or background noise) regions,
respectively. These probabilities for rep and irep signals
can be obtained by the mixture Gaussian copula, as when
using the IDR.

Joint distribution f{2), cumulative marginal distribution
Fi(= vijk), and the function of the vectorized inverse of
Fi F71 can be defined as follows:

foy (11,0, p) =N (xln, 0%, p)
Xj k , , Xk , )
Fl) = [ A= [ g o)
o .
+ (1= ) N (% lo, 0§) doc
Fl(v) = {Ffl (vija), E5 ! (Vi,j,z)} :

where 7 = 1 (2) when j = case (cont), and g; represents
the ratio of true signals in j samples. Afterward, the emis-
sion probability based on the mixture Gaussian copula
consisting of rep and irep distributions with parameters
Ocase OF Ogonr can be formulated as follows:

F71 Vii)s ’0.2”0
P (vijl r7,0;) _fo (2 ( U)_l %> Ph)
Hk:lfk (Fk (Vi,j,k))

—1 » 2
_fe (™" (vi)) » 0, 99 p0) otherwise,

[Tiifx <Fk_ ! (Vi,j,k))

where ur > 0and 0 < pr < 1 while ug = 0, (702 =1,
and pp = 0, the same as those in Eq.1 (further details can
be found in Additional file 1). In this way, using reactIDR,
we can compute a posterior probability distribution for
each latent class at each site as an index of the reactivity
and evaluate its reliability. Using the EM algorithm, each
parameter can be iteratively optimized to maximize the
expectation of likelihood Eq. 2 in reactIDR. Furthermore,
reactIDR can incorporate supervised learning at this step,
by limiting H so that it is consistent with the reference
structure. Specifically, loop, stem/bg, and unmapped class
is associated with loop, stem, and regions, respectively, in
which stem/bg class is expected to play a role in remov-
ing false positives from true loop regions in the icSHAPE
datasets. Afterward, trained parameters were used as the
initial set of parameters in the re-fitting process for each
rRNA sequence of the test set. The details of the opti-
mization process, such as the derivative of Q for each
parameter, are described in Additional file 1.

ifrj =rep

Datasets used and the evaluation of classification based on
reactivity indicators

In this study, datasets generated by using two HTS meth-
ods, icSHAPE and PARS, were used to validate the accu-
racy of reactIDR. A whole-transcriptome PARS dataset of
the native deproteinized transcriptome of GM12878 cells
in vitro was obtained (GEO accession number, GSE50676)
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[20]. Here, we used the normalized read counts of two
replicates treated with nucleases S1 and V1 (hereafter
referred to as S1 and V1, respectively). Analyses were
also conducted using the icSHAPE dataset obtained for
the HEK293T cells (GEO accession number, GSE74353),
which contains sequencing reads obtained for three con-
ditions with two replicates: dimethyl sulfoxide (DMSO)-,
in vitro NAI-N3-, and in vivo NAI-N3-treated cells [21].
Computation of the original PARS and icSHAPE scores
and the characteristics of these datasets can be found in
Additional file 1: Section 2 and Figures S6 and S7.

To construct the reference set of the rRNA sequences,
a human ribosomal repeating unit (NT_167214.1) was
extracted from the NCBI database, and a 5S rRNA
sequence (ENST00000364451) was additionally included.
As a rRNA structure reference, cryo-EM-based riboso-
mal structure (PDB ID: 4v6x) was aligned to our reference
sequence [22]. To obtain base-to-base correspondence
between the reference sequences and the structure, 5S,
5.8S, 18S, and 28S rRNA reference sequences were aligned
to each sequence within the structure dataset, and all
bases successfully aligned to the reference were used for
the evaluation of classification. Of the four rRNAs in
the cryo-EM ribosomal structure, 185 rRNA reference
structure was used as the training set for the supervised
learning of reactIDR, with the negative alignment data
for the minus strand of each rRNA, representing the read
counts produced by misalignment. The accessible surface
area (ASA) of the ribosome structure was calculated for
each nucleotide using NACCESS with default parameter
settings [23].

To evaluate the accuracy of structure classification
based on reactivity indicators, we constructed a receiver
operating characteristic (ROC) curve. In the ROC curve,
the y-axis corresponds to the true positive rates, while
the x-axis corresponds to the false positive rate. P-values
were computed in order to compare the area under curve
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(AUROC) of reactIDR and other scoring methods by
using the pROC library in R with a bootstrap method
with 100 repetitions. We measured the accuracy of in
silico structure prediction with or without the structure
scores by positive predictive value (PPV) and sensitivity
(identical to the true positive rates) for each possible base
pair within the transcript except for pseudo-knots. The
accuracy of the structure predictions based on multiple
HTS datasets was investigated using the support vector
machine (SVM) as well, through the scikit-learn library
interface. For in silico structure prediction assisted by the
structure scores, RNAfold from the Vienna RNA package
v2.4.0 [3] was applied.

Results

Characteristics of the IDR-based structure classification
with or without HMM

We investigated the improvements that can be obtained
by combining HMM with IDR as criteria for stem/loop
classification in reactIDR. To compare the read cover-
age distribution of HTS analysis between the case/control
conditions and stem/loop positions, in vivo icSHAPE data
were aligned to the reference sequence of rRNAs and
read count (Count) was obtained for duplicated case and
control samples. The structure scores based on the Ratio
(normalized read count ratio versus the number of reads
passing through that position), IDR, and reactIDR were
also computed from the distribution of Count scores. In
Fig. 3a, the distributions of the rank orders from the
indices of chemical footprint enrichment for case and con-
trol samples, and stem and loop locus, individually, are
presented. The locations of loop and stem structures were
predicted for four human rRNAs using RNAview [24] for
the 3D structure of ribosome determined by cryo-EM
(details can be found in Additional file 1). The distri-
butions of averaged Count and Ratio rank scores of the
treated samples were shown to contain a larger number of
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high-ranking scores to a similar extent each other, com-
pared with those of the control samples. The distribution
of the IDR rank scores demonstrated two separate clusters
associated with the reproducibility due to the character-
istics of two Gaussian mixture copula models (Fig. 3b).
Using reactIDR, more distinguishable distributions of the
higher-ranked scores at the loop regions were obtained,
compared with those at the stem regions. This may be
because the structure scores obtained with reactIDR were
estimated based on the case/control ratios and 18S rRNA
reference structure, while other three indices were used
only for the evaluation of the read count enrichment of the
samples belonging to one condition.

Since the top rankings of reactIDR tended to contain
the nucleotides with not only high read coverage (Fig. 3b),
using reactIDR, we were able to fit more complicated
enrichment patterns considering the read coverage of
surrounding nucleotides. Moreover, even for the noisy
genome-wide analysis of the PARS data, IDR-based clas-
sification was successful as well in associating the repro-
ducibility of read enrichment and the strength of stem
probability obtained in silico (Additional file 1: Figure S8).
Taken together, using reactIDR case and control read
enrichment criteria and employing the data showing the
reproducibility and reference structure, we were able to
infer the accessibility of each nucleotide with higher pre-
cision than that possible when using the raw read count.

Comparison of reactIDR structure classification accuracy
for 2D accessibility

To evaluate the accuracy and robustness of reactIDR
for different HTS methodologies, stem/loop classifica-
tion based on the structure scores using multiple HTS
rRNAs datasets was performed. For a fair comparison,
only 18S rRNA data were subjected to parameter opti-
mization using reactIDR and other rRNAs were subjected
to comparison. In addition to the structure scores used
in the previous analyses, three more types of reactiv-
ity scoring methods were computed for each dataset:
Score used in the original HTS studies, BUMHMM
[17], and PROBer [15]. Afterward, the AUROCs were
computed for rRNA structure classification, while the
structure status expected to be enriched (i.e., stem or
loop) was set to positive. AUROCs for each classifi-
cation obtained using icSHAPE and PARS datasets are
shown in Table 1. reactIDR was observed to gener-
ate the highest AUROC for the icSHAPE datasets and
only the prediction accuracy of PROBer was statisti-
cally comparable to the reactIDR results obtained using
in vivo and in vitro icSHAPE datasets. This consistency
was also confirmed for different choices of the train-
ing set as well (Additional file 1: Tables S3 and S4).
In Fig. 3c, ROC curves of six structure score-based pre-
dictions for the in vivo icSHAPE dataset are presented

Page 21 of 118

Table 1 Area under the ROC curve (AUROC), showing stem/loop
classification of reactivity scoring methods

icSHAPE PARS
Method in vivo in vitro V1(cont) S1(case)
Count *0.555 *0.514 *0.702 *0.349
Score *0.600 *0.564 *0.574
BUMHMM *0.592 *0.526 *0.634t
PROBer 0.645 0.607 *0.639t
IDR *0.563 *0.518 *0.664 *0.375
reactiDR 0.665 0.626 0.715 0420

* AUROC is significantly lower than that of reactIDR with p-value < 0.05 for the
comparison after Bonferroni correction. + AUROCs obtained by methods not
originally designed for PARS experiments. Structure scores of Score, BUMHMM, and
PROBer are common for the case and control conditions of the PARS dataset. Their
AUROC significances were computed for that of reactIDR for the PARS V1 condition

(see also Additional file 1: Figures S9 and S10).
Using reactIDR, we achieved the highest accuracy for the
medium portions (0.1 — 0.6) among the overall range
of 1-specificity values, shown along the x-axis. For the
stem (V1) prediction from the PARS datasets, reactIDR
generated the highest AUROC among all reactivity scor-
ing methods as well. In contrast, the prediction accu-
racy of all available methods was shown to be lower
than that randomly obtained for the PARS S1 dataset,
unless the common structure scores were computed for
the stem/loop predictions using the S1 and V1 (Score,
BUMHMM, and PROBer). As the enrichment of the read
count was not observed at loop regions in the PARS S1
dataset (Additional file 1: Figure S11), the PARS S1 dataset
of rRNAs itself is suggested not to follow the experimental
hypothesis .

Moreover, we examined the accuracy of the structure
scores from multiple HTS datasets combined with SVM
and linear discriminant analysis, a representative machine
learning method. Using the same training and test set
of rRNAs, reactIDR showed the highest mean predic-
tion accuracy compared with that obtained for the other
methods by merging the features of structure scores for
all datasets (Fig. 4a and Additional file 1: Figures S12
and S13). These results suggest the robustness of reac-
tIDR when used in combination with different HTS
approaches, and the potential of its use for the integra-
tive analyses of various HTS datasets, regardless of the
classification method. The reactIDR reliability was further
examined for in silico structure prediction, particularly for
base pair prediction, using RNAfold [3]. We applied one
of the previously developed pseudo-free energy methods
[10] to perform a hybrid structure prediction of compu-
tational and experimental structural analyses, in which
the reactivity is accounted for in the log linear form as
AGsyape = mln(reactivity + 1) + b. In Fig. 4b, PPV
and sensitivity of the minimum free energy structure pre-
dicted by RNAfold with structure scores of reactIDR are
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Fig. 4 Application of structure scores for structure prediction using a machine learning approach and in silico pseudo-energy model [10] for the test
set of three rRNAs. a Stem/loop structure prediction accuracy based on the structure scores computed from individual or combined datasets
(icSHAPE in vivo and in vitro and PARS datasets) by the support vector machine, with the removal of indeterminable scores. Average and variance of
accuracy were computed after 10-fold cross-validation. The predictions based on a single dataset utilized the structure scores from either in vivo
icSHAPE dataset, in vitro icSHAPE dataset, or PARS V1 dataset, and the results of the maximum mean accuracy are presented. b Positive predictive
value (PPV) and sensitivity of in silico structure prediction using RNAfold with and without reactivity assisting. The best PPV and sensitivity pair was

selected to maximize their sum for each prediction condition

shown, with the progressive changes in the parameters of
the slope m and intercept b. The structure scores of reac-
tIDR with RNAfold were shown to perform better than in
silico prediction and that for PROBer based on the best
PPV and sensitivity pair selected to maximize the sum of
pair (Fig. 4b and Additional file 1: Figures S14 and S15).
Taken together, the reactIDR scores were able to
improve the prediction accuracy of integrative analyses
as well as in silico structure prediction as conformational
constraints. According to the assumptions used for reac-
tIDR, the output structure scores of reactIDR correspond
to the probability of the signals being true or false sig-
nals, which accounts for the reproducibility. Therefore, it
may be theoretically applicable to the cross-comparison of
exact reactivity scores between the datasets obtained by
different HTS methods to combine them for further struc-
ture prediction, such as pseudo-free energy methods [10]
and recently developed machine learning methods [19].

Correlation between RNA reactivity and 3D accessibility
The agreement between reactivity and 2D accessibility
was demonstrated for rRNAs, but the reactivity of RNA in

a chemical probing reaction appears to be affected by the
3D conformation, as observed in some previous studies
[25], in particular, the relationship between the presence
of the sugar puckers of RNA structures in C2'- or C3'-end
and the modification efficiency of SHAPE reagent [26, 27].
To assess the influence of 3D accessibility on reactivity, we
examined the correlation of the structure score with 2D
and 3D accessibility, using ASA. In Fig. 5a, the relationship
between ASA and structure score is presented, in which
ASA is averaged with the 500-nt sliding window estimates
for the test set of rRNAs from the in vivo icSHAPE dataset
(Additional file 1: Figure S16). All analyzed methods
showed a positive correlation between ASAs and struc-
ture score ranking (Fig. 5b), with the exception of a partial
region of ties that appeared when using the BUMHMM
or PROBer. Furthermore, using reactIDR, the highest cor-
relation was obtained across six scoring methods with a
statistically significant p-value (p < 107!0). This result
is consistent with the high accuracy of stem/loop classi-
fication because 2D accessibility and 3D accessibility are
highly correlated as well (Additional file 1: Figure S17). On
the other hand, the correlation between structure scores
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Fig. 5 Correlation between RNA reactivity and 3D accessibility for the te

st set of three rRNAs. a Relation between the accessible surface area (ASA)

and reactivity scores computed by six types of scoring methods. y-axis, averaged ASAs within each 500-nucleotide sliding window; x-axis, a ranking
of each nucleotide based on the structure scores, in which ties were randomly broken. The structure scores of reactlDR from the in vivo icSHAPE
dataset presented the highest correlation with ASAs across the six scoring methods. b Correlations between structure scores and 2D or 3D

accessibility indices. * p-value < 107 after Bonferroni correction. ¢ Ribo

somal 3D structures visualized by PyMOL [29]. Left, ribosome changes its

color from red to blue according to the ASAs of each nucleotide (high to low). Right, the highlighted regions indicate the top 7% reactive sites of

18S rRNA from the in vivo dataset (red), in vitro dataset (blue), and their i

ntersection (purple)
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and 3D accessibility was lower for the in vitro dataset,
except for the moderate decline obtained when using
reactIDR, with the subtle differences in the correlation
between structure scores and 2D accessibility obtained
when setting the loop and stem structures to 1 and 0.

The in vivo reactive sites (represented in red in Fig. 5¢)
were observed to be located at the outer side of ribo-
somes, unlike those obtained in vitro, and the regions
with the highly reactive nucleotides in vivo and in vitro
rarely overlapped, suggesting that the 3D conformation
affects the results obtained when using the in vivo dataset.
Since the aim of reactIDR is to allow comparisons between
different HTS datasets in a fair manner, the reactIDR
structure scores can potentially be used for the quan-
tification of conformational changes between different
conditions.

Discussion

In this study, reactIDR was shown to achieve an accuracy
statistically comparable to that of PROBer (Fig. 3c and
Additional file 1: Figure S10). Although reactIDR uses sev-
eral assumptions for the analysis of HTS datasets, such as
rank-based read count evaluation, localization of stem and
loop loci, and the arbitrary assignment of latent classes
during the supervised learning, our results suggest the
robustness and rationality of reactIDR application to the
HTS datasets (Additional file 1: Section 1.9).

To examine the robustness of reactIDR, we further
examined the structure prediction of reactIDR from the
SHAPE and mutational profiling (MaP) datasets obtained
in [30], in which the reactivity was measured by capillary
electrophoresis. In spite of the severe differences in exper-
imental techniques, reactIDR still showed high and stable
AUROC:s (> 0.8) for E. coli rRNAs with the lower vari-
ances compared to the case using the average of the
original reactivity scores (Additional file 1: Figure S18).

Importantly, although the increase of AUROCs was
not substantial for its computational time (Additional
file 1: Table S1), reactIDR is still considered to possess
the advantage of helping researchers to set a reasonable
threshold based on the probability being irreproducible.
For example, when the threshold of reactIDR is set to 0.05
for the SHAPE-MaP dataset, true and false positive rate
of the loop prediction is 0.81 and 0.39, respectively. More-
over, reactIDR is expected to be applicable to the hetero-
geneous HTS datasets which are known to have a specific
bias by using post-processed scores after removing the
biases. As such, further extensions can be considered to
increase the applicability and flexibility of reactIDR for
a variety of data, such as accounting for the base type
dependency that clearly appeared in DMS-Seq [28] as
well as further optimization for the HTS datasets without
any replicates or more complicated structural footprints
base-pair detection by RNA crosslink [21].
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Conclusions

We have developed a novel software, reactIDR, for the
prediction of stem/loop regions from the HTS analysis
datasets, based on the reproducibility criterion. For the
rRNA structure analyses, reactIDR was shown to have
robust accuracy across different datasets. Moreover, the
structure scores obtained with reactIDR enhanced the
prediction accuracy by integrating multiple datasets and
in silico structure analyses. Considering the 3D accessibil-
ity, reactIDR structure scores showed the significant and
highest correlation, suggesting the potential of structure
scores to reflect both 3D and 2D accessibility. Since reac-
tIDR is the first method for the comparison of the HTS
datasets obtained from multiple sources in a single unified
model, it may help increase the accuracy of the RNA sec-
ondary structure predictions at transcriptome-wide level,
allowing further studies.

Additional file

Additional file 1: The detail of mathematical background, experimental
design, and results of additional experiments. (PDF 1680 kb)
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