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Abstract

Recent high-dimensional single-cell technologies such as mass cytometry are enabling time

series experiments to monitor the temporal evolution of cell state distributions and to identify

dynamically important cell states, such as fate decision states in differentiation. However,

these technologies are destructive, and require analysis approaches that temporally map

between cell state distributions across time points. Current approaches to approximate the

single-cell time series as a dynamical system suffer from too restrictive assumptions about

the type of kinetics, or link together pairs of sequential measurements in a discontinuous

fashion. We propose Dynamic Distribution Decomposition (DDD), an operator approxima-

tion approach to infer a continuous distribution map between time points. On the basis of

single-cell snapshot time series data, DDD approximates the continuous time Perron-Frobe-

nius operator by means of a finite set of basis functions. This procedure can be interpreted

as a continuous time Markov chain over a continuum of states. By only assuming a memory-

less Markov (autonomous) process, the types of dynamics represented are more general

than those represented by other common models, e.g., chemical reaction networks, sto-

chastic differential equations. Furthermore, we can a posteriori check whether the autonomy

assumptions are valid by calculation of prediction error—which we show gives a measure of

autonomy within the studied system. The continuity and autonomy assumptions ensure that

the same dynamical system maps between all time points, not arbitrarily changing at each

time point. We demonstrate the ability of DDD to reconstruct dynamically important cell

states and their transitions both on synthetic data, as well as on mass cytometry time series

of iPSC reprogramming of a fibroblast system. We use DDD to find previously identified sub-

populations of cells and to visualise differentiation trajectories. Dynamic Distribution Decom-

position allows interpretation of high-dimensional snapshot time series data as a low-

dimensional Markov process, thereby enabling an interpretable dynamics analysis for a vari-

ety of biological processes by means of identifying their dynamically important cell states.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007491 January 10, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Taylor-King JP, Riseth AN, Macnair W,

Claassen M (2020) Dynamic distribution

decomposition for single-cell snapshot time series

identifies subpopulations and trajectories during

iPSC reprogramming. PLoS Comput Biol 16(1):

e1007491. https://doi.org/10.1371/journal.

pcbi.1007491

Editor: Qing Nie, University of California Irvine,

UNITED STATES

Received: July 12, 2018

Accepted: October 14, 2019

Published: January 10, 2020

Copyright: © 2020 Taylor-King et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Reusing data from

previous study (Zunder et. al.). This data is

available publicly here: https://community.

cytobank.org/cytobank/projects/688.

Funding: J.P.T-K was supported by the medical

research and development HDL-X grant from

SystemsX.ch [URL: SystemsX.ch]. A.N.R. was

partially supported by the EPSRC Centre For

Doctoral Training in Industrially Focused

Mathematical Modelling (EP/L015803/1) [URL:

http://orcid.org/0000-0002-1025-0041
http://orcid.org/0000-0002-5861-7885
https://doi.org/10.1371/journal.pcbi.1007491
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007491&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007491&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007491&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007491&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007491&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007491&domain=pdf&date_stamp=2020-01-10
https://doi.org/10.1371/journal.pcbi.1007491
https://doi.org/10.1371/journal.pcbi.1007491
http://creativecommons.org/licenses/by/4.0/
https://community.cytobank.org/cytobank/projects/688
https://community.cytobank.org/cytobank/projects/688


Author summary

High-dimensional single-cell snapshot measurements are now increasingly utilized to

study dynamic processes. Such measurements enable us to evaluate cell population distri-

butions and their evolution over time. However, it is not trivial to map these distribution

across time and to identify dynamically important cell states, i.e. bottleneck regions of state

space exhibiting a high degree of change. We present Dynamic Distribution Decomposi-

tion (DDD) achieving this task by encoding single-cell measurements as linear combina-

tion of basis function distributions and evolving these as a linear system. We demonstrate

reconstruction of dynamically important states for synthetic data of a bifurcated diffusion

process and mass cytometry data for iPSC reprogramming.

Introduction

Data-driven reconstruction of dynamic processes constitutes a central aim of systems biology.

High-dimensional single-cell molecularly resolved time series data is becoming a key data

source for this task [1, 2]. However, these technologies are destructive, and consequently result

in snapshot time series data originating from batches of cells collected at time points of interest.

A longstanding and still challenging problem is to reconstruct dynamic biological processes

from this data, to the end of identifying dynamically important states, i.e. regions of state space

that cells preferentially pass through, these include transitionary states (bottlenecks) when dif-

ferentiation decisions are made, and terminal states. With snapshot time series, it is challenging

to identify these states as we cannot track the state of an individual cell from one time point to

a new state at a later time point, one has to temporally map between distributions over the

state space.

Chemical reaction networks (CRNs) are a popular class of parametric models assuming

that the temporal state evolution is well described by chemical kinetics. Ordinary differential

equations (ODEs) are used to describe smooth deterministic dynamics, and stochastic differ-

ential equations (SDEs) for dynamics in the low copy number/concentration regimes affected

by stochastic fluctuations. Chemical reaction network models require explicit definition of the

model structure, i.e. set of reactions or interactions among the system components. This task

is manageable for small, well defined systems, such as small signalling systems [3]. However,

by means of high-dimensional measurements, we typically observe larger systems comprising

at least dozens of components with largely a priori undefined interactions. This situation

results in a combinatorial explosion of model variants that cannot be exhaustively evaluated

[4, 5]. Alternative approaches are agnostic with regards to parametric form and model struc-

ture and use a probabilistically-motivated rule to map between distributions, e.g., one optimal

transport method maps neighbours at one time point to the nearest neighbour at the next time

point [6]. However, such generic approaches are rather extreme in their agnosticism and aban-

don reasonable assumptions on the dynamics of cellular systems, e.g., that cells can be mod-

elled as an autonomous dynamical systems in continuous time, such as a Markov chain, where

the cell’s current state infers its likely future state independent of the current time within the

experiment. Such autonomy assumptions are also commonly used in many mechanistic CRN,

SDE and ODE biochemical models [7, 8].

Operator approximation methods constitute an alternative class of models that are agnostic

to model structure and yet allow for encoding of general system properties such as autonomy,

conservation of mass, and boundary conditions. These methods approximate both the Per-

ron–Frobenius operator [9] and the Koopman operator [10]. These operators describe the
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evolution of distributions and other functions of a dynamical system’s state. The early theory

on these operators was developed to describe systems in classical, statistical, and quantum

mechanics [11–15], and in probability theory [16, 17]. The operators fully describe a nonlinear

dynamical system as a linear system in higher, possibly infinite, dimensions. Hence, techniques

from linear analysis can be utilised to gain insight from the systems; in particular, calculation

of eigenvalues and eigenfunctions allow for timescale separation. Eigenfunctions of linear

operators show the fundamental building blocks of possible behaviours available to a dynam-

ical system, e.g., exponential growth/decay, oscillations, a steady state. Data-driven approxima-

tions to the operators have been investigated in past years, originating in the computational

fluid dynamics community [18–22]. Their focus is to approximate finite-dimensional projec-

tions of the Koopman operator with a family of algorithms known as Dynamic Mode Decom-

position (DMD). The algorithm has further been applied to other areas such as neuroscience,

infectious disease epidemiology, and control theory [23–25] and parameter estimation [26,

27]. When carrying out approximations of these operators, eigenvalues can be ordered in

terms of magnitude to extract slow behaviour (approximated well) to fast behaviour (represen-

tative of noise) [27]. Dynamic Mode Decomposition assumes that the data is recorded at

equally spaced time points, whilst our work extends the technique to support data recorded at

arbitrary time points.

We adapt Dynamic Mode Decomposition to identify dynamically important states from

single-cell snapshot time series. Our method is based on representing the distribution at each

time point via basis functions and calculating an approximation to the Perron–Frobenius

operator by minimising an error term—akin to least squares when fitting ODEs. The error

terms then indicate how well the data fits into the model assumptions a posteriori: primarily

that the data is generated by an autonomous dynamical system. Because the Perron–Frobenius

operator describes the evolution of distributions, we name our approach Dynamic Distribu-

tion Decomposition (DDD) in keeping with the DMD naming convention. DDD leads to the

calculation of a Markov transition rate matrix but over a continuum of states—as opposed to

discrete states. As previously mentioned, one can then use standard methods of analysis for

linear operators based on eigen-decompositions. As Markov processes can be represented as

directed weighted graphs, our graph can be evaluated in two dimensions and then the high-

dimensional operator and its corresponding eigenfunctions have a natural low dimensional

representation. Our approach also allows for visualisation of inferred state trajectories as a

branching structure when cell fates are stochastic, and approximation of fitting error when

matching model prediction to sample data. By using a Markov rate approach over distribu-

tions, we overcome the difficulties listed above. In particular: our approach generalises the pre-

viously listed mechanistic models (CRNs, SDEs, ODEs) and works similarly to optimal

transport methods—however, allowing for fitting error and not achieving having perfect fits

by interpolating between time points. We demonstrate DDD on a synthetic stochastic dynam-

ical system representing cells making a cell differentiation decision as well as for a mass cytom-

etry time series taken from an iPSC reprogramming of a fibroblast cell line taken from Zunder

et. al. [28] to re-identify subpopulations of cells as first elucidated in the original manuscript.

Results

Inference of state distribution dynamics by approximation of the Perron–

Frobenius operator

We developed a method herein referred to as Dynamic Distribution Decomposition to analyse

snapshot time series, consisting of the following stages (illustrated in Fig 1): (a.) data at each

recorded time point t1, . . ., tR are fitted to a set of basis functions and (b.) encoded into

Dynamic distribution decomposition
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coefficient vectors c1, . . ., cR; (c.) a fitting procedure is carried out to infer the most likely con-

tinuous linear map between the coefficients, generating fitting errors ε1, . . ., εR; (d.) eigenfunc-

tions are then analysed; and (e.) in high dimensions graph based visualisations can be used for

eigenfunctions, for full details see Methods section. In the case where probability density func-

tions are used as basis functions, the linear map denoted P can be interpreted as a transition

rate matrix; the structure of this matrix is often dense but its dominating structure can be elu-

cidated via Lasso regularisation, see Fig 1(f). We applied our method to two systems: first, sim-

ulated particles in a potential well; and second, experimental data of iPSC reprogramming of a

fibroblast system.

Particles in potential well with fluctuations

The first numerical example is for illustrative purposes whereby we know the stochastic process

generating the sample points. We consider simulated particles in a bistable potential well under-

going fluctuations. After initialisation around point (1, 1)⊺/2, particles stochastically switch

between one of two paths: y = 2x or y = x/2 to finally settle in one of the two final state (2, 4)⊺ or

(4, 2)⊺. We model this process by the two-dimensional SDE fXt ¼ ðX1t;X2tÞ
⊺
2 R2

þ
: t � 0g

dXt ¼ � rVðXtÞdt þ
ffiffiffiffiffiffi
2D
p

dW t ; ð1Þ

where Wt is a two-dimensional Wiener process. The potential well is of the form

VðxÞ ¼
1

2
½kxk2
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1

10
kxk2

� �2

�
1

2
e�

1
2
kx� 1

2
;1
2ð Þ

⊺
k2

� e� kx� ð4;2Þ
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As an initial condition at t = t1, the sample is placed with a multivariate normal distribution

with mean μ = (1, 1)⊺/2 and covariance matrix S = I2/2 where I2 is the identity matrix. The

diffusion constant is chosen to be D = 1/4. Along the lines x = 0 and y = 0, the system has

Fig 1. Illustration of Dynamic Distribution Decomposition workflow. (a.) Gaussian mixture models as basis functions: single-cell

profiles from each time point are fitted to a basis of Gaussian mixture model, two distributions shown in red and blue; (b.)

identification of the coefficients c(t) at each time point, t = t1, . . ., tR; (c.) the Perron–Frobenius matrix P enables us us to infer the

likely state for all time points and generate errors ε1, . . ., εR; (d.) examination of the eigenfunctions in low dimensions; or in high

dimensions (e.) using graphical visualisations; and (f.) a Lasso regularisation can reveal sparse structure.

https://doi.org/10.1371/journal.pcbi.1007491.g001
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reflecting boundaries imposed. For simulations, the Euler–Maruyama (EM) numerical scheme

is used with time step δt = 2−9; for this system the EM scheme is identical to the Milstein

scheme and is therefore of order 1. Three sample trajectories are visualised, see Fig 2(a); and

the potential well is plotted, see Fig 2(b).

The system is observed at time points t = 0, 1, 2, 3, 5, 8, 13, 21, 34, 55 and for each time

point 2000 trajectories are initiated at t = 0 and simulated until the observation time (replicat-

ing the destructive sampling process). Using Gaussian mixture models, we use 3 components

for each time point totalling N = 30 basis functions. For an illustration showing the entries of

the coefficient vectors fcrg
R
r¼1

, see the S2 Appendix.

Extrema of eigenfunctions identify steady state and bistable paths. The eigenfunctions

of the approximated Perron–Frobenius operator allow us to identify the steady state and bis-

table paths in the above system. In low dimensions we visualise eigenfunctions of P as a contin-

uous function, see Fig 3(a), 3(b) and 3(c); or a graph, see Fig 3(d), 3(e) and 3(f) and Methods

section. Eigenfunctions corresponding to eigenvalues with large absolute value are approxi-

mated with larger error than in cases with small eigenvalues, a point also noted in Ref. [27];

notice in Fig 3 that the eigenfunctions become less (anti-)symmetric along y = x as the size of

|λ| increases. Also, eigenvalues and eigenfunctions are basis function dependent, so changes in

basis functions change the eigen-decomposition. However, regardless of changes to the basis

functions, the key dynamic states (as visible in the eigenfunctions) remain the same provided

the changes to the basis functions are not drastic. Since we use 30 basis functions, hypotheti-

cally we can find 30 eigenfunctions. However, we just plot the first three eigenfunctions; these

are real with no imaginary component. From these figures, it is clear that three basins around

(2, 4)⊺ and (4, 2)⊺ and at the initial condition (1, 1)⊺/2 are dynamically important. Therefore,

examination of the first few eigenfunctions allows for detection of dynamically important

states.

Dynamic distribution decomposition is robust to noisy observations. We evaluated the

robustness of our inference procedure to measurement noise. Specifically, three further modi-

fied data sets are also considered: (i.) considering a single time point perturbed by additive ran-

dom noise; (ii.) removing this perturbed time point and fitting the model; and (iii.) randomly

perturbing all time points by additive random noise. For all perturbations, sample points are

modified by an additive error term drawn from a zero-mean multivariate Gaussian with

covariance matrix S = I2/4.

Fig 2. Illustration of stochastic dynamical system described by Eqs (1) and (2) and fitting error of Dynamic Distribution

Decomposition process. (a.) Three simulated trajectories are shown from the stochastic dynamical system described by Eqs (1) and

(2). (b.) The potential well as described in Eq (2) is shown. (c.) Log-log error plot showing recorded time points against log10 of the

percentage error (of the DDD fit); the original data set (black solid line) has a mean error of 0.9%; the perturbed data set (dashed red

line) has a mean error of 3.1%; the perturbed data set with the erroneous data point removed (dotted red line) has an error of 0.8%;

and the data set with systematic error (dashed blue line) has a mean error of 0.5%.

https://doi.org/10.1371/journal.pcbi.1007491.g002
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We plot the time points transformed by log10(x + 1) against the log-percentage error, i.e., 2

+ log10(εr) for r = 1, . . ., R, see Fig 2(c). We find that all data sets have consistently low error,

but with a small increase in error at the beginning of the realisation; this is due to the boundary

conditions which were not incorporated into the choice in basis functions, which one would

typically do when solving PDEs via a Galerkin approximation. The data set perturbed at time

t = 8 (dashed red line) leads to increased error immediately before and after this time point

(circled in black); after removing this erroneous data (fitting without t = 8) one obtains

reduced errors comparable to the original data set (dotted red line). When adding systematic

error to all time points (dashed blue line), one observes similar (slightly smaller) errors to the

original data set; the reason for this is that the Gaussian basis functions now have a covariance

matrix with larger entries (whilst the means remain similar) leading to smaller L2 errors, see

Eq (19). The eigenfunction plots are also similar to those generated by the original data set

but more spread out (not plotted). In summary: adding noise to a single time point allows for

detection of non-autonomous behaviour; adding noise to all time points makes the process

appear more random (and hence autonomous); and therefore DDD is robust with regards to

noisy observations.

Lasso regularisation reveals sparse topology. We utilize Lasso regularization to identify

key transition states, see Methods section. Specifically, P as a transition rate matrix with the

nodes located at the mean of the components of the Gaussian mixture model. The resulting

network is cluttered and is hard to identify meaningful states or transition, see Fig 4(a). Lasso

regularisation encourages sparsity and reveals the simple underlying structure, see Fig 4(b).

The skeletal structure shows that around the initial condition the particle becomes strongly

committed to one branch over the other—an accurate reflection of the dynamical system.

Fig 3. Dynamic distribution decomposition applied to data generated by stochastic dynamical system described by Eqs (1) and

(2). Plots (a)–(c) show a plot of the two dimensional eigenfunction, and plots (d)–(f) shows a corresponding graph representation of

the eigenfunctions, for full details see Methods section.

https://doi.org/10.1371/journal.pcbi.1007491.g003
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Mass cytometry data: iPSC fibroblast reprogramming

We studied the process of iPSC reprogramming using Dynamic Distribution Decomposition.

We considered data from a study established by Zunder et. al. [28]. Specifically, the repro-

gramming of a fibroblast cell line differentiating into an induced pluripotent stem cell state

was studied using mass cytometry. This in vitro experimental system is often perceived to be

representative of an autonomous system [8]. However, we can use DDD to suggest when this

may or may not be true.

Cells are labelled using mass-tag cell barcoding, stained with antibodies before being mea-

sured via CyTOF. We focus our study to the cell line with the largest amount of cell events, i.e.

on a Nanog-Neo secondary mouse embroyic fibroblasts (MEF) that expresses neomycin resis-

tance gene from the endogenous Nanog locus. Reprogramming was monitored by Dox induc-

tion for 16 days followed by subsequent addition of LIF; the experiment was carried out over

30 days. Experiments were initialised together and cells harvested every 2 days until 24 days

with a final measurement taken at the final time point; 18 protein markers were used as proxies

to measure pluripotency, differentiation, cell cycle status, and cellular signalling.

We now briefly state our method for choosing basis functions. In the synthetic data exam-

ple, we used prior information that there were 3 clusters, so used a 3 component Gaussian mix-

ture model for each time (therefore N = 30 for 10 time points). For non-synthetic data we do

not necessarily have this information, therefore we developed an approach to choose an

expressive set of basis functions without letting their number grow too large and thereby

ensure efficient solving of the minimisation problem later presented in Eq (23). We fit multiple

Gaussian mixture models to each time point, varying the number of components until the AIC

curve flattened out [29]; in our case this happens at approximately 8 basis functions per time

point. To avoid overfitting, we use regularisation to specify minimum diagonal entries of the

covariance matrix and encourage separation of basis functions. As our data has been scaled via

the commonly used transformation function f(x) = arcsinh(x/5) [30, 31] and then standardised

by z-scoring, we choose a regularisation value of 1/2; smaller values can be used should one

wish to capture sharp peaks, but at the cost of additional basis functions. Finally, for each time

point we cluster the data into these Gaussian mixture models and remove poorly populated

Fig 4. Dynamic distribution decomposition applied to data generated by stochastic dynamical system described

by Eqs (1) and (2). The plots show graph representations of P (interpreted as a Markov transition rate matrix), colours

of edges denote magnitude of rate change from one node to another, and node colours denote rate at which node

decays. Colours scaled to unit interval. (a.) Matrix P plotted without Lasso regularisation; and (b.) matrix P plotted

with Lasso regularisation, β = 1/[100 × mean(M)], see Methods section.

https://doi.org/10.1371/journal.pcbi.1007491.g004
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components. Here, after clustering, we remove any basis functions which represent less than

α × 100% of the data. Therefore, it should be noted that obtaining a good fit to the matrix P is a

payoff between: (i.) number of basis functions per time point (i.e., what is the maximum num-

ber of clusters per time point?); (ii.) the regularisation value (i.e., how sharp peaks can one

fit?); and (iii.) the drop rate α (i.e., what fraction of data points does each basis function have

to represent?).

We now decrease α and evaluate whether we have sufficient basis functions. We plot the

percentage fitting error at each time point and the mean percentage error as a function of

α, see Fig 5(a) and 5(b). These figures show that as α decreases, the error only minimally

decreases for large increases in the total number of basis functions N. We can also view the

eigenvalues plotted in the complex plane for various values of α, see Fig 5(c). We rescaled time

to the unit interval, therefore one will not be able observe eigenfunctions with a corresponding

non-zero eigenvalue <(λ)> − 1, i.e., we cannot observe timescales slower than the observation

window. We notice for α = 0.005 that <(λ1) = −1.06 so we are confident decreasing α will not

Fig 5. Dynamic distribution decomposition applied to Nanog-Neo cell line data taken from Zunder et. al. [28].

(a.) Fitting error plot showing log10 transformed percentage error plotted against time for different values of α
(described in main text); (b.) log-log plot of mean fitting error plotted against −log10(α), mean error decreases as alpha

decreases; (c.) complex plot of eigenvalues λ of Perron–Frobenius matrix P for different values of α; (d.) Fitting error

plot showing log10 transformed percentage error plotted against time for α = 0.05 (mean error 14.1%), two further

Perron–Frobenius matrices are fitted using only the: first 8 time points (mean error 8.4%); and last 6 time points

(mean error 14.0%).

https://doi.org/10.1371/journal.pcbi.1007491.g005
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offer much benefit. Additionally in the cases where α = 0.01 and α = 0.005, the extrema of the

first few eigenfunctions correspond to the same basis functions (not plotted). For an illustra-

tion showing the entries of the coefficient vectors fcrg
R
r¼1

for the instance when α = 0.005, see

the S2 Appendix.

Loss of dynamic autonomy after stimulus removal. When a stochastic dynamical system

is autonomous, the current state of the system determines the likely future states; here we

show that after and including t = 16 days the system becomes less autonomous, once the Dox

induction had ended. We plot the error again at each time point for α = 0.005 (mean error

14.1%), see Fig 5(d). We notice that time points after and including t = 16 days contain the

vast majority of fitting error. To rule out the possibility that the dynamical system instan-

taneously changed at t = 16 days, we fit two Perron–Frobenius matrices, one using the first 8

time points (mean error 8.4%) and a second using the last 6 time points with all fits using the

same basis functions (mean error 14.0%). We find that there is still much more error contained

in the final 6 time points compared to the first 8.

The autonomous dynamical system assumption means that using the data presented, the

future states of the system depend on the current state. While this is likely true within a cell

culture system, we only observe a tiny fraction of the state space of the dynamical system as we

do not measure the transcriptome and the vast majority of the proteome. Therefore, it seems

reasonable to assume that from t = 16 days, we are not observing enough of the dynamical sys-

tem to obtain a linear map between distributions. This insight suggests further single-cell

experiments at these later time points using technologies allowing greater ‘omic’ profiling, e.g.,

single-cell RNA-Seq.

Inferred dynamically important states agree with previously described cell subpopula-

tions. We evaluated the extreme of the eigenfunctions of the approximated Perron–Frobe-

nius operator to re-identify cell subpopulations found in Zunder et. al. [28]. We first plot the

first 6 eigenfunctions, see Fig 6. Nodes that are close together to each other in 18 dimensions

(using Euclidean distance) as plotted as close to each other in 2 dimensions. Protein expression

of the basis functions are also plotted using the same coordinates as the graph, see extra figure

in S2 Appendix.

When examining the extrema of the eigenfunctions, basis functions seem to cluster in 3

groups: group A centred around basis function 32; group B with members 56, 61, and 65; and

group C with one member, basis function 66. Our algorithm recovers the same populations

as stated in Zunder et. al. [28]: cells with low Ki-67 expression do not successfully reprogram

and remain MEF-like (group A); cells with high Ki-67 expression then subdivide into two

populations, an embryonic stem cell-like (ESC-like) population with Nanog+, Sox2+, and

CD54+(group C) and a mesendoderm like population with Nanog−, Sox2−, Lin-28+, CD24+ex-

pression (group B). As our basis functions were added sequentially per time point, the MEF-

like population appeared first.

DDD suggests a few new insights previously not elucidated in Zunder et. al. [28]. We find

according to the fitted Perron–Frobenius operator, MEF-like cells form the steady state (when

λ = 0). Therefore, the model predicts all cells would revert to fibroblasts if enough time passes

—although one has to be careful over interpreting predictions due to the higher error after

t = 16 days.

Lasso regularisation reveals sparse topology of iPSC dynamics. Reminiscent of the SDE

example, the graph as induced by the transition rate matrix P is cluttered due to an abundance

of low weighted edges, see Fig 7(a); we apply the Lasso modification to reveal a two branching

points, see Fig 7(b) and Methods section. Finally, to focus on the 3 groups previously identi-

fied, we prune edges leading to unannotated nodes to obtain an easily interpretable branching
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structure, see Fig 7(c). This figure suggests that at basis function 53 (close to basis function 1,

i.e., the initial state), a cell moves to towards branching basis function 16 (CD73−, CD140a+,

CD54+, Oct-4+), and then has a decision to move towards basis function 32 (group A, MEF-

like) or to reach a second branching point at basis function 29 (CD73+, CD140a+, CD54−, Oct-

4+, KLF4+). At basis function 29, the cell will then choose between basis functions 56, 61 and

65 (group B, mesendoderm population), or towards basis function 66 (group C, ESC-like);

there is also a weakly weighted edge back to basis function 32 (group A, MEF-like). The state

described by basis function 29 was previously described in Zunder et. al. [28], but we are able

to include an additional transitionary state by means of basis function 16. We can conclude

that the cell decision towards becoming remaining MEF-like is made early during the course

of the experiment: basis function 16 was placed with the data recorded at 6days; basis function

29 was placed with the data recorded at 12days. As a negative control, the method has also

been applied a dataset from Ref. [32] in S4 Appendix.

Methods

We now give the mathematical set-up to our problem, additional technical details are given in

the S1 Appendix, see also [33, 34]. The method follows the following steps: (i.) the statement is

posed that the temporal evolution of cell states follows a linear partial differential equation;

(ii.) the distribution of the sample points at each time point can be encoded into a sequence of

basis functions; (iii.) the weights of these basis functions can change dynamically interpolating

between sample points; and (iv.) we fit the form of the matrix approximation of differential

operator around these changing basis functions; and (v.) study the eigenfunctions. The work-

flow of the method is also as an illustration in Fig 1.

Fig 6. Dynamic distribution decomposition applied to Nanog-Neo cell line data taken from Zunder et. al. [28]. Plots (a)–(f)

show a graph representation of the eigenfunctions, for full details see Methods section. Groups as defined in the text are circled and

coloured in: red (group A, MEF-like); blue (group B, mesendoderm); and green (group C, ESC-like).

https://doi.org/10.1371/journal.pcbi.1007491.g006
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Mathematical set-up

Assume we have a sequence of R experimental readings at time points t1 < . . .< tR; without

loss of generality we choose t1 = 0. At each time point, nr cells are harvested with states Xr ¼

fxr;1; . . . ; xr;nr
g for r = 1, . . ., R. The state of each cell is located in a (measurable) space,

x 2M. We note that this space may not be the full dimension of the data set, but after a

dimensionality reduction technique has been applied, e.g., PCA, diffusion maps etc. For exam-

ple, in the case of RNA-Seq data, the state of a cell would consist of thousands of genes which

would be too high to apply kernels to. We wish to find a probability distribution % = %(t, x)

such that when t = tr, the probability of observing cells in states Xr would be highly probable

for r = 1, . . ., R.

Immediately necessary to ensure conservation of mass, we require

Z

M
%ðt; xÞdx ¼ 1; and %ðt; xÞ � 0; ð3Þ

for all t 2 (t1, tR), i.e., % is a probability density function (PDF). We now make the crucial

assumption that our method relies on: each cell follows a (well behaved) autonomous dynam-

ical system—implicit in this assumption is that cells do not interact, alternatively cell interac-

tions can be accounted for via stochastic noise terms. Under these assumptions, we can

interpret %(t, x)Δx as the probability a randomly selected cell has state in the interval [x, x + Δ x)

Fig 7. Dynamic distribution decomposition applied to Nanog-Neo cell line data taken from Zunder et. al. [28].

The plots show graph representations of P (interpreted as a Markov transition rate matrix), colours of edges denote

magnitude of rate change from one node to another, and node colours denote rate at which node decays. Colours

scaled to unit interval. (a.) matrix P plotted without Lasso regularisation; and (b.) matrix P plotted with Lasso

regularisation, β = 1/[800 × mean(M)], see Methods section. In (c.) the graph structure from (b.) has unannotated end

nodes removed and is rearranged into a simple branching structure. Groups as defined in the text are circled and

coloured in: red (group A, MEF-like); blue (group B, mesendoderm); and green (group C, ESC-like).

https://doi.org/10.1371/journal.pcbi.1007491.g007
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at time t. We write down the (continuous-time) Perron–Frobenius equation for the dynamics

of the density profile as

@

@t
%ðt; xÞ ¼ P%ðt; xÞ ; ð4Þ

for initial condition %(t = 0, x) = %0(x). The P term is the continuous-time Perron–Frobenius

operator [21, 22]. The Perron–Frobenius operator associated with a dynamical system maps a

density on the state space to another density on the state space. To build intuition for P, consider

a discrete-time Markov chain over a countable number of discrete states xr with recursive relation

%ððmþ 1ÞDt; xrÞ ¼
X

s

kDtðxrjxsÞ%ðmDt; xsÞ ; m ¼ 0; 1; 2; . . . ; ð5Þ

where kΔt(xr|xs) is a kernel that specifies the probability that state xs is mapped to state xr and

therefore ∑r kΔt(xr|xs) = 1. Moving from a discrete space to our continuous state space M (by

defining and taking limits appropriately), the summation in Eq (5) becomes the integral

%ððmþ 1ÞDt; xÞ ¼
Z

M
kDtðxjyÞ%ðmDt; yÞdy ; m ¼ 0; 1; 2; . . . : ð6Þ

Returning to Eq (4), one can exponentiate the operator P and we can thus relate the transi-

tion density function kΔt in Eq (6) to the operator P via the relation

eDtP%ðmDt; xÞ ¼
Z

M
kDtðx; yÞ%ðmDt; yÞdy : ð7Þ

Therefore, the operator eDtP maps the distribution of states at one time point to a new distri-

bution Δt> 0 units of time later. The operator P is known by many names depending on the

underlying dynamical system for the state evolution xðtÞ 2M for t 2 (t1, tR). For example,

within SDEs Eq (4) is a second order parabolic PDE known as the Fokker–Planck equation

[35]; and for chemical reaction networks Eq (4) is a system of coupled ODEs known as the

chemical master equation [36].

Finite dimensional approximation

We would like to find a finite dimensional approximation of of P; we can do this with non-

negative basis functions ψ(x) = [ψ1(x), . . ., ψN(x)]⊺. We take the ansatz that for all t 2 (t1, tR),

we can expand % as the linear combination

~%ðt; xÞ ¼ c⊺ðtÞcðxÞ ¼
XN

j¼1

cjðtÞcjðxÞ ; ð8Þ

where c(t) = [c1(t), . . ., cN(t)]⊺ and we use a tilde (�) over % to denote this approximation. Eq

(8) is sometimes known as a Galerkin approximation and is one of the key steps in deriving

finite element method numerical schemes to solve partial differential equations. To ensure the

probability density integrates to one, we require c 2 Λ where

L ¼ fc 2 RN : c⊺o ¼ 1 and c⊺cðxÞ � 0g for ω ¼ ½o1; . . . ;oN �
⊺ and oj ¼

Z

M
cjðxÞdx : ð9Þ

If the basis functions are themselves probability density functions, then Λ is the probability

simplex. In Fig 1(a), we show how a distribution can be represented as a sum of normal distri-

butions, that is, the density is given by a Gaussian mixture model.
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We can derive a linear system of ODEs for the coefficients c(t). We do this by noting in

weak form [37, 38] Eq (4) is

hg; _%iM ¼ hg;P%iM for hg; %iM ¼
Z

M
g% dx : ð10Þ

Choosing g = ψi and expanding % as in Eq (8), then

M _cðtÞ ¼ QcðtÞ ; ð11Þ

where Mij = hψi, ψji and Qij ¼ hci;Pcji. Assuming M is invertible, define

P≔M� 1Q ; ð12Þ

which is the projection of P onto the basis functions {ψ1, . . ., ψN}. That is, for g(x) = c⊺ψ(x), we

have the equality PgðxÞ ¼ ðPcÞ⊺cðxÞ. In order to preserve probability density and positivity,

we require P 2P for

P ¼ P 2 RN�N :
XN

k¼1

okPkj ¼ 0 and Pij � 0 for i; j ¼ 1; . . . ;N and i 6¼ j

( )

: ð13Þ

The explanation behind Eq (13) is contained in the S1 Appendix.

We can solve the dynamics for Eq (4) using the approximation in Eq (8) by using the matrix

exponential operation, specifically

cðtÞ ¼ etPc� ; ð14Þ

where c� are the coefficients at corresponding to the chosen initial condition ~%0 ¼ c⊺
�
cðxÞ. To

prevent numerical instability for large times, we rescale the experimental time course (t1, tR) to

the unit interval.

Calculation of Galerkin approximation coefficients for PDFs

There are many option for selecting basis functions, later discussed in the Conclusion. One

option is to use probability density functions, so
Z

M
cjðxÞdx ¼ 1 ; ð15Þ

for j = 1, . . ., N. We can find the values of cr at the observed time points by noting that the

value of the coefficient at time t = tr must be proportional to the probability that basis function

j created the data at that time point, so

cjðtrÞ /
Xnr

i¼1

cjðxr;iÞ : ð16Þ

One can then normalise
PN

j¼1
cj ¼ 1 for j = 1, . . ., N to find the coeffient vector cr.

It is worth remarking here that entries in the coefficient vectors fcrg
R
r¼1

may change should

the data be perturbed. Additionally, depending on the choice in basis functions, the basis func-

tions fcjg
N
j¼1

may depend on the data, e.g., when the placement of the Gaussians basis func-

tions is done via the expectation maximisation algorithm for Gaussian mixture models. In the

event that one uses global basis functions, e.g., orthogonal polynomials, the basis are chosen

independent of the data, and therefore perturbations to the data would only affect fcrg
R
r¼1

but

not the form of the basis functions themselves.
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Selection of P matrix

We now need to address the issue of how to determine P from data. We now motivate a choice

in error to minimise, generally analogous to least squares fitting error for ODEs.

We are interested in how an initial state goes on to predict later recorded states. We do not

use the first calculated coefficient, c1, as the initial condition, but allow for mis-specification of

the initial condition by specifying that it is a free parameter to the model. The initial condition

is given as density %0 ¼ %0ðxÞ with Galerkin approximation

~%0 ¼ c⊺
�
cðxÞ : ð17Þ

Consider a linear operator P with matrix representation P on the space spanned by ψ. The

L2 norm gives a measure of how well P represents the evolution of the densities. The squared

relative prediction error at time t = tr for r = 1, . . ., R is

�2
r ðP; %0Þ ≔

ketrP%0ð�Þ � %ðtr; �Þk
2

L2

k%ðtr; �Þk
2

L2

¼

R

M ½e
trP%0ðxÞ � %ðtr; xÞ�

2dx
R

M ½%ðtr; xÞ�
2dx

: ð18Þ

Notice in Eq (18) that the error is a function of both the Perron–Frobenius operator and

the initial condition. We then define the mean squared relative prediction error as

�2ðP; %0Þ ¼
1

R

XR

r¼1

�2

r ðP; %0Þ : ð19Þ

It would be ideal now to find

fP; %0g≔ arg min
P; %0�0;%02L1

�2ðP; %0Þ ¼ arg min
P; %0�0;%02L1

1

R

XR

r¼1

�2

r ðP; %0Þ : ð20Þ

Of course, we do not know what this error is without using our finite dimensional Galerkin

approximation; therefore we approximate

�2
r ðP; %0Þ �

Eqs: ð8; 17Þ

ε2

r ðP; c�Þ : ð21Þ

and we calculate the time t = tr error as

ε2
r ðP; c�Þ≔

kðetrPc� � crÞ
⊺
cð�Þk

2

L2

kc⊺rcðxÞk
2

L2

¼
ketrPc� � crk

2

M

kcrk
2

M

¼
½etrPc� � cr�

⊺M½etrPc� � cr�
c⊺rMcr

; ð22Þ

where we introduced the norm weighted by the mass matrix kckM ≔
ffiffiffiffiffiffiffiffiffiffi
c⊺Mc
p

. Our objective

function is modified by using this finite dimensional approximation to

fP; c�g≔ arg min
P2P; c�2L

ε2ðP; c�Þ ¼ arg min
P2P; c�2L

1

R

XR

r¼1

ε2

r ðP; c�Þ : ð23Þ

Algorithm 1 Algorithm to Determine Perron-Frobenius Matrix

Require: Data X ¼ fXrg
R
r¼1

and observation times t1 < � � � < tR.
Require: Choose basis functions ψðxÞ ¼ ½c1ðxÞ; . . . ;cNðxÞ�

⊺.
1: Solve

fP; c�g≔ arg min
P2P;c�2L

1

R

XR

r¼1

ε2

r ðP; c�Þ:
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2: return P
Unmentioned at this point is that: for a large quantity of basis functions the size over which

this optimisation problem occurs is challenging. That is: one has N2 free elements in the matrix

P, with zero column sums one has N(N − 1) degrees of freedom; but one also has the initial

condition to choose adding N parameters, or N − 1 degrees of freedom (with unit column

sum)—in total (N − 1)(N + 1) degrees of freedom. Therefore, the problem is unapproachable

without gradient calculations to speed up the optimization algorithm. Using the exponential

matrix derivative (see S1 Appendix), one can calculate the t = tr relative error with respect to

P as

@ε2
r

@P
¼

2

c⊺rMcr

X1

k¼0

tkþ1

ðkþ 1Þ!

Xk

j¼0

ðPk� jÞ
⊺MðetrPc� � crÞc

⊺
�
ðPjÞ

⊺
ð24Þ

¼
2

c⊺rMcr

X1

k¼0

tkþ1

ðkþ 1Þ!
Sk ; ð25Þ

and the derivative with respect to c� as

@ε2
r

@c�
¼

2

c⊺rMcr
½etrP�⊺M½etrPc� � cr� : ð26Þ

The terms

Sk ¼
Xk

j¼0

ðPk� jÞ
⊺MðetrPc� � crÞc

⊺
�
ðPjÞ

⊺
ð27Þ

can be calculated using the recursion relation

Sk ¼ P⊺Sk� 1 þ Sk� 1P⊺ � P⊺Sk� 2P⊺ where S� 1 ¼ 0 and S0 ¼ MðetrPc� � crÞc⊺� : ð28Þ

Lasso regularisation. For display purposes, we can promote sparsity in P by using a Lasso

regularisation. We choose the regularisation parameter such that there is at least a single edge

connected to the extrema of the first few eigenfunctions. We modify the error term in Eq (23)

to

ε2
y
ðP; c�Þ ¼

1

R

XR

r¼1

ε2

r ðP; c�Þ þ bkvecðM � PÞk1 ¼
1

R

XR

r¼1

ε2

r ðP; c�Þ þ b
XN

i¼1

XN

j¼1

jMi;jPi;jj ; ð29Þ

where � denotes the Hadamard product (or entrywise product) and vec(�) denotes the vectori-

sation of a matrix. In the case where the basis functions are probability density functions, we

can calculate the derivative of this expression as

@

@P
kvecðM � PÞk1ð Þ ¼

� M1;1 M1;2 � � � M1;N

M2;1 � M2;2
..
.

..

. . .
.

MN;1 � � � � MN;N

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð30Þ

By using the mass matrix M as a weighting in front of the Perron–Frobenius matrix P, we

are promoting edges between basis functions located apart from each other.
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Graph visualisations

P matrix visualisations. One can interpret the matrix P as a Markov transition rate

matrix, in which case the entry Pi,j shows the rate at which state j transitions into state i. There-

fore, a cell in cluster i will switch to cluster j in time interval [t, t + Δt) for Δt> 0 with probabil-

ity Pi;jDt þOðDt2Þ. To reiterate, cells exist in states between the basis functions so instead of

being at a single state, they are in a state which is a weighted combination of the basis func-

tions. However, this interpretation allows us to plot a directed network with weighted adja-

cency matrix Pi,j. Nodes can then be placed using one of a multitude of algorithms, in our case

we use force-directed node placement with weights inversely proportional to the mass matrix

M. Visualisations of the mass matrices associated to the problems in this manuscript are con-

tained in the S2 Appendix. We also plot the size of node i proportional to Pi,i (as this is the rate

at which state i remains in state i).
Eigenfunction visualisation. To investigate key dynamical behaviours of a linear

operator, a common theme is the study of the corresponding eigenproblem. By solving the

eigenproblem, one can decompose the solution of the operator into components (known as

eigenfunctions or eigenvectors) that will dynamically change with respect to the eigenvalue.

By studying the eigenproblem, one can break down the solution into key behaviours and find

important transitionary states.

For an eigenfunction satisfying

P%lðxÞ ¼ l%lðxÞ ; ð31Þ

using the finite dimensional Galerkin approximation in Eq (8), there is the corresponding

eigenvector

Pvl ¼ lvl : ð32Þ

In low dimensions, one can simply plot the original function %λ as the linear combination

of basis functions

~%lðxÞ ¼ v⊺
l
cðxÞ ¼

XN

j¼1

vl;jcjðxÞ ; ð33Þ

To ensure consistent scales when plotting, we demand

k%lkL2 ¼ h%l; %liM ¼ 1 ; ð34Þ

or when considering the finite dimensional Galerkin approximation

k~%lkL2 ¼ kv⊺lcð�ÞkL2 ¼ kvlkM ¼ hvl; vliM ¼ v⊺
l
Mvl ¼ hM

1
2vl;M

1
2vli2 ¼ 1 : ð35Þ

In high dimensions, our ability to visualise functions is limited. However, we have repre-

sented the function as a linear combination of basis functions; one option for visualisation

purposes is to present the coefficients in the eigenvector. To visualise if the eigenvector values

have similar or dissimilar values, we can consider representing the eigenfunction as a graph.

We specify the adjacency matrix for an undirected weighted graph as the outer product

Gl ¼ M1
2vl

� �
� M1

2vl
� �

¼ M1
2vlv⊺lM

1
2 : ð36Þ

For Perron–Frobenius eigenfunctions with eigenvalue λ 6¼ 0, the function will obtain both

a positive and negative values (indicating where probability mass is flowing from and to).

Therefore, by examining Gλ, a positive value in entry (i, j) in Gλ indicates basis functions i and
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j both have the same sign (positive or negative) and a negative value indicates they have oppo-

site signs. By plotting edges as straight lines with thickness proportional to the values in Gλ, we

can visualise pairs of nodes (positioned in high dimensional space) and show an approximate

gradients in between these nodes. When entries of Gλ are small, then only very thin lines will

be plotted between nodes, indicating the lack of connection between these areas in state space.

By using the weighting of M1
2 in front of the eigenvector vλ we ensure that the sizes of the

eigenvectors are bounded. Occasionally it is the case that we get complex eigenvalues, in which

case they appear as complex conjugates and one can plot the real and imaginary parts separately.

Conclusion

We presented Dynamic Distribution Decomposition for identification of dynamically impor-

tant states of biological processes. This method operates on snapshot time series data and

infers dynamically important states by mapping between distributions. By fitting a very general

autonomous dynamical system over basis functions encoding the observed raw dataset, one is

able to obtain fitting error estimates indicating said level of autonomy within the dataset. We

applied our approach to synthetic data generated for a simple test system, and then further to a

mass cytometry time series data set for iPSC reprogramming. Our approach performed well

for both systems showing key dynamical states. For the experimental system of iPSC repro-

gramming of fibroblasts, we could also identify key time points (with large fitting error) where

the current experimental (or computational) set-up is insufficient to elucidate the reprogram-

ming process. This suggests one of several reasons, either 1.) limitations of the model: non-

autonomy (e.g., delayed models more appropriate, cell interactions important), poor selection

of basis functions; or 2.) limitations of the data: selection of uninformative measured genes/

proteins, or measurement error. Due to our careful approach in selecting basis functions, we

believe further experimental investigation is warranted.

DDD can be computed efficiently, e.g., via the recursion relation given by Eq (28), but we

have not optimised the implementation. In the case where there is more than 100 basis func-

tions, our minimisation procedure using the inbuilt MATLAB multivariate minimisation algo-

rithm can be unreasonably slow; therefore, we will investigate more efficient implementations.

DDD depends on a few design decisions, such as the choice of basis functions. In this man-

uscript, we used basis functions as components of a Gaussian mixture model and gave parame-

ters that needed tuning to alter the fit. Our method for choosing basis functions does not have

an optimal configuration with regards to minimising error. This is because by sending the reg-

ularisation value to infinity one obtains perfect fits, and sending the regularisation value to

zero can lead to ill fitting solution (basis functions with same mean etc). However, one can use

the α parameter as a rule of thumb to ensure enough basis functions are included. For other

applications other choices in basis functions are conceivable, for example, radial basis func-

tions [39]; piecewise linear basis functions [40]; and global basis functions [21, 27] to name a

few. When the basis functions have finite support, the mass matrix M will be sparse, in which

case the Lasso step will not be necessary. It is worth noting that calculation of the mass matrix

analytically is only possible in a few cases and Monte–Carlo integration may be necessary—

which would add an additional source of error to the methodology. Practically, it would also

make sense to use basis functions built around the data type, for example negative binomial

distributions are often used to model UMI counts from single-cell RNA-Seq data. When one

uses a single basis function centred around each data point, one refers to this as kernel density

estimation, of which there are optimal methods to choose the basis function [41]; when using a

small number of basis functions for a large number of sample points, there are likely optimal

ways of choosing them which we will investigate in future work.
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DDD could be applied to investigate pseudotime ordered single-cell data of single time

point experiments, see [42, 43] and S3 Appendix. Here, one uses single-cell data measured at

only a single time point to carry out trajectory inference and subpopulation identification to

infer biological processes, e.g., the cell cycle; reviews of such methods can be found in Ref. [44,

45]. It may be possible to improve our fits by combining approaches: while cells are monitored

with regards to experimental time, individual cell time coordinates might deviate due to asy-

chronity of process initiation; this could be incorporated to get smoother Perron–Frobenius

operators between time points, see Ref. [46]. This would then be a biologically motivated

method to account for delays in the system.

DDD is applicable to evaluate the outcome of reconstruction approaches yielding potential

functions. An example of such an approach is reported by Hashimoto et. al. [47], where

hypothesised potential function is reconstructed under the following assumptions: i.) the data

was generated by SDEs in the potential well; and ii.) the gradient of the potential is a single

layer of a sigmoid neural network. Our reported eigen-decompositions is applicable to identify

dynamically important states for the inferred potential function.

The work presents Dynamic Distribution Decomposition, linking advances in operator the-

ory to applied practice in high-dimensional data analysis. While we focus on application of

DDD to mass cytometry measurements, it is conceivable to expand to applications to single-

cell RNA sequencing time series as well as biological processes other than an iPSC reprogram-

ming. We expect DDD and method variations will be instrumental in providing intuitive

understanding of such biological processes.
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(PDF)
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S3 Appendix. Comparison with other established methods. A document detailing a brief

comparison between our method and 3 other published methods: WISHBONE [42], MONOCLE2
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S4 Appendix. Reconstruction of EGFR signalling from mass cytometry time series data. A

document detailing DDD applied to an additional control dataset with known underlying cel-

lular behaviour, see Lun et. al. [32].

(PDF)
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17. Kolmogoroff A. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Mathematische

Annalen. 1931; 104(1):415–458. https://doi.org/10.1007/BF01457949

18. Schmid PJ. Dynamic mode decomposition of numerical and experimental data. Journal of fluid mechan-

ics. 2010; 656:5–28. https://doi.org/10.1017/S0022112010001217

19. Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN. On Dynamic Mode Decomposition: Theory

and applications. Journal of Computational Dynamics. 2014; 1(2):391–421. https://doi.org/10.3934/jcd.

2014.1.391

20. Williams MO, Kevrekidis IG, Rowley CW. A data–driven approximation of the Koopman operator:

Extending dynamic mode decomposition. Journal of Nonlinear Science. 2015; 25(6):1307–1346.

https://doi.org/10.1007/s00332-015-9258-5
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