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1. Introduction
During the aging process, the cell's ability to cope with 
external and internal stress and its functional capacity is 
diminished by time. Increased morbidity and mortality 
rates for several diseases accompany this process. Since 
aging is an extremely complex and multifactorial process 
[1], it is impossible to describe it using a single mechanism. 
Many theories have been proposed to explain the process 
of aging. However, none of them appear to be entirely 
convincing. Modern biologic theories of aging in humans 
can be considered under two main categories: programmed 
and damage or error theories [2]. The programmed theory 
has three subcategories: programmed longevity, endocrine 
theory, and immunological theory. The damage or error 
theory has several subcategories such as wear and tear 
theory, rate of living theory, cross-linking theory, free 
radicals theory, and somatic DNA damage theory [2].

Melatonin [N- acetyl-5-methoxytryptamine] is associated 
with almost all aging theories and it is primarily released 
from the pineal gland with a circadian rhythm. Therefore, 
the pineal gland is prominent in aging theories. In addition 
retina, lachrymal glands, Harderian gland, gastrointestinal 
tract, thrombocytes, and bone marrow are other sources of 

melatonin release [3]. Thus, melatonin is considered to be a 
wide-spread physiological mediator [4]. Melatonin is also a 
potent free radical scavenger and affects the immune system 
[5,6].

2. Melatonin, aging, and oxidative stress
Melatonin synthesis decreases during the aging process; a 
decrease seen in both pineal and plasma levels of melatonin. 
In rodents, the rate of aging process and onset of age-related 
diseases can be delayed by exogenous melatonin treatment 
[5]. The lifespan enhancing effect of melatonin is linked with 
its antiproliferative feature. Melatonin effects both normal 
and tumoral proliferation of gastrointestinal cells [7,8].

In terms of the biology of aging, attenuated basal 
metabolic rate and physiologic performance in elderly 
mammalians relies largely on mitochondria. Mitochondria 
are the main source of adenosine triphosphate (ATP) and 
also play a prominent role in several cellular processes, such 
as beta oxidation of fatty acids, synthesis of phospholipids, 
calcium signaling, production of reactive oxygen species 
(ROS), and apoptosis [9].

Free radical theory of aging explains the aging process 
based on the functional dysfunction of mitochondria. 
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As is already known, mitochondria are the main site for 
oxygen consumption, and ROS production; thus, they 
are also a main target for oxy-radical dependent cellular 
damage. Attenuated mitochondrial respiration affects 
lifespan by changing intracellular ROS balance [10,11]. 
There are some studies which have shown that electron 
transfer was reduced in mitochondria isolated from 
elderly animals [12]. Moreover, it has been shown that 
there is a positive correlation between reduced fluidity of 
cellular membranes, including mitochondrial membranes, 
and increased lipid peroxidation during aging [13]. An 
age-dependent decrease in the activity of manganese 
superoxide dismutase (Mn-SOD), and increase in the 
levels of thiobarbituric acid reactive products (TBARS), 
and carbonyl compounds have been found in brain tissue 
[14]. Higher oxidation levels indirectly change cellular 
redox potential, and decreases glutathione (GSH), ATP 
levels, and reduced NADH/NADPH balance. Due to these 
alterations, permeability of mitochondrial transition pores 
(MPTP) increases, and apoptosis is stimulated. It has 
been reported that protein carbonyl products, TBARS, 
hydroperoxide, and 8-hydroxydeoxyguanosine levels in 
brain mitochondria were increased with aging [15].

Due to its lipophilic and hydrophilic properties, 
melatonin can easily diffuse into all cellular and 
intracellular compartments, and can pass through the 
blood-brain barrier. Moreover, no specific binding site 
or receptor is required for its free radical scavenger effect 
[16,17]. The pyrrole ring structure of melatonin provides 
higher capacity to entrap O2

•- and •OH radicals. It has been 
shown that melatonin is five times more effective than 
endogenous free radical scavenger glutathione, and fifteen 
times more effective than mannitol, which is an exogenous 
free radical scavenger. This evidence actually emphasizes 
that melatonin is a much more powerful antioxidant 
against •OH radical, compared with the aforementioned 
antioxidants. The antioxidant effect of melatonin occurs 
by trapping the O2

•-
 radical via the indolyl cation radical, 

which is formed by the reaction of melatonin and the •OH 
radical [5]. Melatonin is found intensively in subcellular 
compartments, such as the nucleus and mitochondria [18–
20]. Mitochondria and mitochondrial dysfunction play a 
role in the cellular self-destruction processes, including 
apoptosis, autophagy, and necrosis [21]. The mitochondrial 
DNA (mtDNA) is more vulnerable than nuclear DNA as it 
is not enclosed within basic histones. The mtDNA damage 
in aging humans is 10-fold higher compared with nuclear 
DNA [21].

Although mitochondria are the main source of ROS 
formation, mitochondria are also the primary targets of 
ROS attacks [22]. 

Acuña-Castroviejo et al. reported that age-dependent 
mitochondrial oxidative stress was prevented by melatonin 

treatment [23]. Melatonin reduces free radical formation, 
and protects the cell membrane from free radical attacks. It 
also plays a pivotal role for mitochondrial homeostasis by 
optimizing the transfer of electrons through the electron 
transport chain in the inner mitochondrial membrane 
[6,19,24,25]. Rodríguez et al. reported that melatonin 
treatment restored mitochondrial ATP production in 
heart cells. They also showed that long term melatonin 
treatment prevents mitochondrial function deficiency 
and oxidative stress without any side effects caused by the 
melatonin [26].

It is already known that oxidative stress and 
the ischemia-reperfusion process take part in the 
pathogenesis of several diseases, like Alzheimer’s disease, 
Parkinson’s disease, and Diabetes mellitus [12]. Likewise 
there is a linear relationship between oxidative stress 
and aging; aging is a major risk factor for a variety of 
neurodegenerative diseases [27]. Increased free radical 
levels in tissues during aging processes have been reported 
by several studies [28–30].

Gastrointestinal tract derived melatonin is estimated 
to be approximately 400 times higher than the amount 
produced by the pineal gland [31]. Studies in mice and rats 
have shown that melatonin and its specific binding sites 
are found especially in the colon mucosa [32]. As a broad 
spectrum antioxidant, and with its free radical scavenging 
feature, melatonin ameliorates mucosal defense against 
various irritants and improves gastrointestinal system 
(GIS) lesions such as esophagitis, gastritis, peptic ulcer, 
and stomatitis [33]. Callagan et al. showed that hyperplasia 
developed in the small intestine and colon crypts after 
pinealectomy [7]. Melatonin has been shown to improve 
immune functions of the intestine, reduce peristalsis, and 
regulate fecal water content [31].

Melatonin is known to suppress tumor development. 
Deterioration of melatonin release has been closely 
associated with an increased incidence of colorectal 
cancer. In addition to colorectal cancer, melatonin is also 
related to the tumor onset, prognosis, and prevention 
of various cancers of the gastrointestinal tract, such as 
cholangiocarcinoma, hepatocarcinoma and pancreatic 
carcinoma. Melatonin exerts its antitumoral effect by 
decreasing cellular proliferation, autophagy, metastasis, 
and angiogenesis while activating apoptosis and colon 
cancer immunity [34].

As aforementioned, melatonin is a rather powerful 
and effective endogenous radical scavenger [35], and 
attenuates increased oxidative stress caused by several toxic 
substances like safrole and paraquat in tissues [36,37].

Besides this, exogenous administration of melatonin 
also has beneficial effects in terms of oxidative stress. 
Akbulut et al. previously showed that melatonin 
treatment prevents age-related oxidative stress, while it 
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increases antioxidant defense in the cerebral cortex and 
hippocampus [29]. Güney et al. showed that melatonin 
treatment attenuates H2O2 production and age-related 
increased lipid hydroperoxide formation in the liver and 
heart [30].

Nitric oxide (NO), synthesized by nitric oxide synthase 
(NOS), behaves as either a prooxidant or neuroprotective 
agent. [38,39]. Since the breakdown of nitric oxide occurs 
in a very short time, its demolition products nitrate and 
nitrite are used for measuring the nitric oxide levels [40]. 
NOx refers to nitric oxide and is obtained by subtracting 
nitrite from nitrate. Depending on its local concentration 
or existing cell type, NO can stimulate apoptosis, as well as 
maintaining cellular survival [41]. NOS activity has been 
shown in several brain areas, such as the cerebral cortex, 
cerebellum, hippocampus, and hypothalamus [42]. 

The aging process occurs along with inflammation, 
oxidative stress, and increased expression of inducible 
NOS (iNOS) in several tissues [43,44]. The relationship 
between aging and NO is still contradictory, and needs to 
be clarified [45]. Akbulut et al. showed that NOx levels in 
temporal cortex increased parallel with age. In the same 
study they also showed that short term melatonin treatment 
led to increased NO levels in the cortex; however, it was 
not effective for the hippocampus [46]. 

Organisms have powerful defense mechanisms against 
oxidative stress including antioxidant enzymes. Efficacy 
of antioxidant enzymes, however, diminishes with aging 
[28,47]. Glutathione is the most important nonprotein thiol 
compound which balances ROS in brain tissue. GSH redox 
cycle is essential for the scavenging of cellular free radicals. 
It maintains homeostasis via de novo glutathione synthesis 
and redox cycle. It has been reported that age-dependent 
increased oxidative stress diminished glutathione pools of 
brain mitochondria by half, and increased oxidized GSH 
levels [48]. Zhu et al. found that GSH levels were decreased; 
however, oxidized glutathione (GSSG) and GSSG/GSH 
levels were increased in several sites in the brain, such as 
the cortex, hippocampus, striatum, and cerebellum [49]. 
In several brain areas of rats at different ages, Sandhu et al. 
reported a decrease in the levels of SOD, GSH, glutathione 
reductase (GRd), and glutathione peroxidase (GPx) 
[50]. Even though mitochondrial antioxidant defense 
mechanisms depend on GSH, mitochondria itself cannot 
synthesize GSH [51–53]. GSH is taken into mitochondria 
from cytosol via a multicomponent transporter system 
[53,54]. Melatonin increases GPx, GRd, SOD, and catalase 
(CAT) gene expressions and enzyme activities in both 
pharmacological and physiological doses [55]. During 
the aging process, mitochondrial GPx levels increase 
in the brain, while melatonin treatment diminishes 
mitochondrial GPx levels in both young and elderly rats 
[56]. Melatonin treatment also enhances mitochondrial 

SOD levels in elderly rats, and prevents the reduction of 
SOD/GPx and GR/GPX ratios [56]. Indeed melatonin 
treatment has been found to increase renal SOD activity 
and GSH levels and decrease NOx levels in renal ischemia/
reperfusion injury in rats [57].

3. Melatonin and apoptosis
Oxidative stress is known to stimulate apoptosis, and 
depending on the tissue type, apoptosis increases by 
age [58]. Apoptosis is a complicated process involving 
a cascade mechanism that employs many proteins 
[59]. The key enzymes in this process are the caspases. 
Caspases are a family of cysteine proteases widely known 
as the principal mediators of the apoptotic cell death 
response [59]. Exogenous melatonin administration has 
been shown to attenuate age-related increased caspase 
3 activity in frontal and temporal cortices, and gastric 
mucosa of elderly rats [46,60]. Melatonin is known to be 
effective on antiapoptotic Bcl2 and apoptotic Bax proteins 
[61].  An excessive amount of ROS can be produced 
during aging, or formed by increased metabolic rate or 
environmental stress. In the presence of excessive ROS, 
melatonin stimulates ERK1/2 signaling pathway by 
receptor-dependent or -independent mechanisms, and 
increases expressions of antioxidants and detoxification 
genes, like glutathione and its enzymes via stimulation of 
transcription factors such as Nf-, AP-1, and Nrf2 [62].  As 
a result levels and activity of antioxidant enzymes such 
as GSH-Px, GSH-Rd, CAT, and GSH/GSSG ratio were 
enhanced as well as redox-sensitive Bcl2 or Bcl2/Bax ratio. 
Several studies reported that melatonin, decreased ROS 
production via controlling the mitochondrial damage and 
signaling functions of mitochondria, and augmented the 
activity of antiapoptotic Bcl2 [63–65]. 

P53 protein is an important transcription factor, related 
to the maintenance of genomic integrity by controlling the 
cell cycle progress and cellular survival [66]. It either ceases 
the progression of the cell cycle or stimulates apoptosis 
circumstantial with the conditions which cause genomic 
stress (DNA damage, hypoxia, etc.) [67]. DNA double 
strand breaks, base modifications, and point mutations 
may occur because of ROS attacks [68]. In the case of 
DNA damage, P53 gene expression is increased. Melatonin 
has different effects on apoptotic processes depending on 
the cell type. It increases p53 activity in tumor cells while 
protects other cells such as immune cells or neurons 
[59,69]. There are some studies about the antiproliferative 
effect of melatonin on tumor cells. For example Mediavilla 
et al. showed that melatonin displays an antiproliferative 
effect on MCF-7 human breast cancer cells by retaining 
cell cycle and increasing p53 activity [69]. Apoptotic 
cell death in LNCaP androgen sensitive prostate cancer 
cells depend on p53. Melatonin increases apoptosis and 
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stimulates p53 and p21 in these cells in a dose dependent 
manner [70]. However, in some other studies on the effect 
of melatonin on apoptosis in gastric mucosa during aging, 
the exogenous melatonin administration on p53 levels was 
not significant [60].

In an experimental diabetes model, an increase in 
apoptotic cell number is observed, and downregulation 
of Bcl-2, attenuation of activities of p53, and caspases 
3,8, and 9 have been reported. Melatonin administration 
throughout 21 days reduced apoptotic cell number and 
activities of p53, and caspases 3,8,and 9, while it enhanced 
Bcl2 levels [71]. Sinanoglu et al. also showed that melatonin 
pretreatment against renal ischemia/reperfusion injury 
in rats prevented caspase3-dependent cell apoptosis. The 
antioxidant effect of melatonin may partly depend on its 
antiapoptotic effect [72]

4. Melatonin and inflammation
The anti-inflamatory feature of melatonin is explained 
with several molecular mechanisms, and is related to the 
modulation of several transcription factors like NFκB, 
hypoxia inducible factor, nuclear factor erythroid 2-related 
factor 2, and with modulation of iNOS expression. NO 
is the key molecule for the inflammation. Its reaction 
with superoxide leads to peroxynitrite formation, which 
triggers nitration of tyrosine residues in cellular proteins, 
and hence increases cytotoxicity [73]. As it is shown in 
several studies, melatonin inhibits the expressions of 
iNOS and cyclooxygenase. It also reduces the levels of 
several mediators like leucotriens, cytokines, chemokins, 
adhesion molecules and reduces production of excessive 
amount of NO [74–78]. NOS subtypes have different 
effects in neuropathologic conditions, nNOS and iNOS 
act together in neurogenerative processes, while eNOS 
diminishes neuronal injury. Melatonin reduces levels of 
iNOS and eNOS; however, it increases eNOS levels in a 
variety of clinical manifestations such as brain ischemia, 
spinal cord injury, and diabetic neuropathy [79–82]

5. Melatonin and the immune system
Both cellular and humoral immune responses decrease 
with age. As a result of decreased immune system activity 
people can face increased risk factors, such as cancer, 
infections, and autoimmune diseases. Due to its anti-
inflammatory feature and effects on the immune system, 
melatonin is one of the most prominent candidates used 
to explain aging physiopathology [28,83]. Melatonin has 
been shown to restore age-related decline in immune 
responses [84]. Notably, the main target of melatonin 
is the thymus which is the central organ of the immune 
system [85]. The effects of melatonin on thymus endocrine 
activity and immune functions are partly dependent on its 
relation to zinc, which is an essential component of more 

than 200 enzymes [84,86,87]. Zinc contributes to the age 
related changes in the immune system, and the zinc pool 
is altered with aging. Melatonin is reported to regulate 
zinc turnover. Öztürk et al. showed that liver zinc levels 
were reduced by age and melatonin recovered age-related 
decrement in zinc levels of the thymus tissue in elderly rats 
[87]. Moreover, in another study, melatonin treatment has 
been shown to increase zinc level in the small intestines of 
young rats during night time, while it increased zinc levels 
in salivary glands during day and night time via the zinc 
absorption from small intestines [88].

With age, functional activity of natural killer (NK) 
cells, lymphokine secretion, in particular IL-2 synthesis 
and IL-2 receptor expression, diminish together with T 
cell response [89,90]. Aging decreases humoral immunity; 
however, decrement in cellular immunity is more specific. 
Melatonin treatment enhances Ig and IL-2 responses.  
Akbulut et al. reported that melatonin administration 
to elderly rats increased IgG and IgM levels significantly 
[91]. Inhibition of melatonin synthesis in mice, attenuates 
primary antibody response, and decreases cell numbers in 
the spleen and thymus [85].

6. Melatonin and coronavirus disease 2019
In December 2019, the third pathogenic human coronavirus 
(HCoV) was identified as the cause of coronavirus disease 
2019 in Wuhan, China. Coronaviruses (CoVs) are RNA 
viruses infecting both human and animals. They typically 
affect the respiratory tract of mammals, including humans, 
and lead to mild to severe respiratory tract infections [92]. 
The world is in the grip of the coronavirus disease 2019 
(COVID-19) pandemic and COVID-19 continues to 
spread to all countries. No specific treatment has yet been 
found for COVID-19. Vaccination and drug studies are in 
progress.

Viral infections are often associated with immune-
inflammatory injury, in which the level of oxidative stress 
increases significantly and has negative effects on the 
function of multiple organs [92]. Melatonin plays a key role 
in several biological processes, and offers an alternative 
point of view in the management of viral infections. Even 
though melatonin cannot eradicate or even curb the viral 
replication or transcription, due to its anti-inflammatory 
and antioxidant effects, melatonin has been suggested as 
a candidate drug to relieve patients’ clinical symptoms 
in antiviral treatment [92,93]. In addition, it has been 
suggested that melatonin treatment may prolong patients' 
survival time, which may provide a chance for recovery 
of the immune system and eventually eradication of the 
virus.  Melatonin indirectly targets several HCoV cellular 
targets, including ACE2, BCL2L1, JUN, and IKBKB [92]. 
Therefore, its usage in COVID-19 treatment might be 
beneficial. COVID-19 fatality rates increase with chronic 
diseases and age, where melatonin levels are  low.
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Melatonin supplementation can reduce the risk of 
influenza and COVID-19 incidence. Several studies have 
proved the positive effects of melatonin in attenuating acute 
respiratory stress induced by virus, bacteria, and radiation 
[93]. It has been suggested that melatonin may have 
supportive adjuvant utility in treating COVID-19 induced 
pneumonia, acute lung injury (ALI), and acute respiratory 
distress syndrome (ARDS). In fact melatonin has been 
found to reduce the proinflammatory cytokines that trigger 
inflammation and pneumonia in lungs [93].

A cytokine storm also prevails in patients with 
COVID-19. When compared to that of SARS patients, 
interleukin 1β (IL-1β), interferon γ (IFNγ), interferon-
inducible (IP-10), and monocyte chemoattractant protein 
1 (MCP1), IL-4 and IL-10 levels increased significantly in 
the blood of patients with COVID-19. A potential repressed 
immune function is seen in COVID-19 patients with the 
hypoalbuminemia, lymphopenia, and neutropenia, and also 
there is a decreased percentage of CD8+ T cell. A T-helper-2 
(Th2) product IL-10 is an antiviral and coronaviruses 
lead to a significant decrease in this agent. As a result, 
inflammation is a major feature in COVID-19 patients. 
Activated cytokine storm, depressed immune system, and 
excessive inflammation may contribute to the pathogenesis 
of COVID-19. Thus, overproduction of these cytokines and 
chemokines contributes to the prognosis of  the disease [93]. 

Experimental SARS-CoV models support this cytokine 
storm hypothesis related to coronaviruses. One of those 
experimental models revealed that the severity of ALI was 
accompanied by an elevated expression of inflammation-
related genes rather than increased viral titers. Therefore, 
Zhang et al. suggested that attenuation of the cytokine storm 
may provide better results in treatment. [93]. 

Because of its anti-inflammatory, antioxidative, 
and immune enhancing features, melatonin may have 
indirect antiviral actions. [94]. The decrease in pineal and 
mitochondrial melatonin contributes to an increase in 
the replication and severity of many viral infections [95]. 
Indeed, melatonin treatment has been shown to alleviate 
the symptoms of infection and decrease virus load in mice 
infected with encephalitis viruses. 

SARS-CoV2 is believed to cause severe lung pathology 
by triggering pyroptosis, a highly inflammatory form 
of programmed cell death. [96]. Pyroptosis in immune 
system cells can lead to symptoms like lymphopenia 
that blocks an effective immune response to the virus. It 
has been proposed that programmed cell death caused 
by coronaviruses can be inhibited by melatonin. Thus, 
melatonin intake can improve the protective mechanisms 
of the body against infections. [96]. 

Ventilation has been reported to increase pulmonary 
inflammation in acute lung injury and increased 
oxidative stress in alveoli. As mentioned above, because 
of the highly effective role of melatonin against oxidative 
stress, it is reported that melatonin can help to resolve 
the contradiction between the urgent clinical necessity 
to deliver mechanical ventilation to a patient and the 
threat that ventilation may have [96]. As a result, the 
antiinflammation, antioxidation, and immune enhancing 
effects of melatonin might be useful in reducing the risk 
of COVID-19. 

Moreover, melatonin has been shown to be a vasodilator 
in the pulmonary arteries, and this effect of melatonin has 
been reported to be very fast [96]. Due to its vasodilating 
effect on pulmonary vascular vessels, the role of melatonin 
in the treatment of COVID-19 should be investigated and 
supported by scientific data [97].

7. Conclusion
The pineal gland is considered to be the body’s "biological 
clock", and melatonin is the chief secretory product of 
this gland. Melatonin plays an important role in many 
processes in the body, especially in healthy aging and 
prevention of free-radical-related diseases. Melatonin, 
as an endogenous synchronizer, affects the regulation of 
the other hormonal rhythms. The decrease in melatonin 
production and altered melatonin rhythms with aging can 
lead to an inhibited immune system. These changes can 
cause an increase in risk of disease in elderly. Melatonin 
could reduce the risk of COVID-19   in the elderly with a 
weak immune system. The use of melatonin as an antiviral 
immunostimulant should be supported by studies.
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