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Immunotherapy is gradually emerging in the field of tumor treatment. However, because
of the complexity of the tumor microenvironment (TME), some patients cannot benefit
from immunotherapy. Therefore, we comprehensively analyzed the TME and gene
mutations of ccRCC to identify a comprehensive index that could more accurately
guide the immunotherapy of patients with ccRCC. We divided ccRCC patients into
two groups based on immune infiltration activity. Next, we investigated the differentially
expressed genes (DEGs) and constructed a prognostic immune score using univariate
Cox regression analysis, unsupervised cluster analysis, and principal component
analysis (PCA) and validated its predictive power in both internal and total sets.
Subsequently, the gene mutations in the groups were investigated, and patients suitable
for immunotherapy were selected in combination with the immune score. The prognosis
of the immune score-low group was significantly worse than that of the immune
score-high group. The patients with BRCA1-associated protein 1 (BAP1) mutation
had a poor prognosis. Thus, this study indicated that establishing an immune score
model combined with BAP1 mutation can better predict the prognosis of patients,
screen suitable ccRCC patients for immunotherapy, and select more appropriate
drug combinations.

Keywords: immunotherapy efficacy, clear cell renal cell carcinoma, prognosis carcinoma, immune signature,
BAP1 mutation

INTRODUCTION

Kidney cancer was the 16th most common cancer in 2018, with 403,262 new cases and 175,098
deaths worldwide (Bray et al., 2018). Renal cell carcinoma comprises many histological subtypes,
the most common of which is clear cell renal cell carcinoma (ccRCC), which accounts for 75% of
all cases (Turajlic et al., 2018). Currently, the treatment of renal cancer is mainly surgical resection.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 October 2021 | Volume 9 | Article 747985

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.747985
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.747985
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.747985&domain=pdf&date_stamp=2021-10-18
https://www.frontiersin.org/articles/10.3389/fcell.2021.747985/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-747985 October 12, 2021 Time: 14:29 # 2

Gao et al. Model Predicts ccRCC Immunotherapy Efficacy

However, approximately one-third of patients will relapse
after surgery, and metastases are found in approximately 30%
of patients at the time of initial diagnosis (Janzen et al.,
2003). The advent of cytokine therapy, such as interleukin-2
(IL-2) and interferon alpha-2B (IFN-α), brought the earliest
immunotherapy regimens (Margolin et al., 1989; Fisher et al.,
2000). With the rise of targeted therapies for renal cancer, the
effectiveness of vascular endothelial group factor (VEGF) and
molecular target of rapamycin (mTOR) pathway inhibitors for
metastatic renal cell carcinoma appears to limit the development
of immunotherapy (Posadas et al., 2013). In recent years,
the emergence of immune checkpoint blockade (ICB) therapy,
which blocks programmed cell death protein 1 (PD-1) and
programmed death-ligand 1 (PD-L1), has further advanced
immunotherapy. Patients have benefited from treatment for lung
cancer, Hodgkin’s lymphoma, and glioblastoma (Ansell et al.,
2015; Forde et al., 2018; Cloughesy et al., 2019). Therefore,
exploring the relevant indicators of immunotherapy effectiveness
in ccRCC is necessary.

Immune cell infiltration and the tumor mutation burden
(TMB) play key roles in the efficacy of tumor immunotherapy.
Neoantigens are produced by a few somatic mutations in tumors
and can be recognized by the immune system (Snyder et al.,
2014). These mutations can be transcribed and translated and
present in the MHC complex on the surface of tumor cells (Coulie
et al., 2014). However, not all mutations can produce neoantigens,
and not all neopeptides present on the cell surface can be
recognized by T cells (Carreno et al., 2015; Snyder and Chan,
2015). Therefore, the search for effective mutations can further
enhance the efficacy of immunotherapy. Tumors are complex
new organisms that contain not only malignant tumor cells but
also other types of cells. Among these cells, immune infiltrating
cells play a central role in the immunotherapy response (Chen
and Mellman, 2017). The levels of tumor-infiltrating CD8+
and CD4+ T cells are correlated with the immunotherapy
response (Topalian et al., 2016). Cytotoxic CD8+ T cells are
the main effectors of antitumor immunity and can specifically
recognize and kill tumor cells carrying neoantigens (Chen and
Mellman, 2013). However, not all immune cells can produce a
positive immune response against tumors. In many cases, some
immune cells are dysfunctional, leading to immunosuppression,
supporting tumorigenesis and immune evasion, such as Treg
cells (Finotello and Trajanoski, 2017). The molecules involved
in Treg-mediated inhibition include IL-2, IL-10, TGF-β, IL-
35, cytotoxic T lymphocyte-associated protein 4 (CTLA-
4), glucocorticoid-induced TNF receptor (GITR), and cAMP
(Tanaka and Sakaguchi, 2017). Therefore, quantifying the degree
of immune cell infiltration in tumors, as well as the expression
of immunosuppressive receptors and ligands, will help to select
appropriate immunotherapeutic drugs.

In this study, to screen patients with ccRCC suitable for
immune checkpoint inhibitor therapy, we assessed and quantified
the level of immune infiltrating cells and screened differential
genes to construct immune scores. We also explored the
changes in tumor mutation burden in patients with different
immune scores and combined tumor mutation burden to more
accurately select immune checkpoint inhibitors (ICI) treatment
patients in ccRCC.

MATERIALS AND METHODS

Samples and Data Process
The RNA-seq data (level 3) of 530 ccRCC patients were
obtained from The Cancer Genome Atlas (TCGA) database1.
The masked somatic mutation data of 336 ccRCC patients were
downloaded from the TCGA database. The R packages “limma”
and “maftools” were used to process the RNA-seq and calculate
the total number of somatic non-synonymous point mutations
within each sample, respectively.

Estimation of Immune Cell Type
Fractions
To determine the cell composition in the tumor
microenvironment, we used xCell and CIBERSORT to estimate
immune cell types. CIBERSORT estimates immune cell
subpopulations using RNA-Seq (Newman et al., 2015). It obtains
aggregated high-dimensional data from tumor cell mixtures and
infers cell composition based on the expression profile of purified
white blood cell subpopulations. xCell uses a set of 10,808 genes
to score and estimate the degree of infiltration of 64 cell types
(Aran et al., 2017). It can further accurately distinguish the
activation state of CD8+ T cells, a function that is impossible for
CIBERSORT. To ensure the accuracy of the results, a p-value less
than 0.05 was used as the criterion.

Gene Set Enrichment
We used single sample gene set enrichment analysis (ssGSEA)
to quantify the enrichment level of 29 immune features of each
sample, including immune cell types, functions, and pathways
(Barbie et al., 2009). According to the results, hierarchical
cluster analysis was performed on all patients, who were divided
into two groups. To identify the regulatory pathways with the
largest differences between the two groups, the R package Pi
containing 205,000 genes was used for gene set enrichment
analysis, and 20,000 permutations were used (Fang et al., 2019).
Additionally, we performed gene set variation analysis (GSVA)
between the ISL group and ISH group using the GSVA package in
R language.

Constructed the Immune Score
To better measure the immune infiltration pattern and immune
pathways of ccRCC, we constructed an immune score model
using different immune infiltration and immune function groups.
The construction process of the immune score was as follows:

First, all the samples were divided into two groups according
to the activity, enrichment level, and function of immune
infiltration cells. The differentially expressed genes (DEGs) were
identified from the immune high group and immune low group
with | log2FoldChange| > 1 and false discovery rate (FDR) < 0.05
using the limma package. Next, we used the univariate Cox
regression model to analyze the prognosis of DEGs, with p< 0.01
as the standard. We then extracted the genes with significant
prognostic significance for principal component analysis (PCA)
and extracted principal component 1 as the signature score.

1https://portal.gdc.cancer.gov/
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Subsequently, all the patients were randomly assigned to a
training set (1/2 for all patients) and a test set (1/2 for all patients).
We used a similar method to define the immune score (IS)
(Sotiriou et al., 2006; Zeng et al., 2019; Zhang et al., 2020).

Immune Score = 6PC1i −6PC1j

where i is the expression of DEGs whose Cox coefficient
is positive, and j is the expression of DEGs whose Cox
coefficient is negative.

Predicting the Response to
Immunotherapy
The immunophenoscore (IPS) is a quantitative score for tumor
immunogenicity and is divided into 0–10 points. The IPS predicts
the patient’s response to ICI treatment, and the IPS value is
positively correlated with tumor immunogenicity (Charoentong
et al., 2017). The IPS data were downloaded from The Cancer
Immunome Atlas2.

Statistical Analysis
R language software (Version 4.0.1) was used for statistical
analysis. The Wilcox T-test was used to compare variables
between groups. Univariate Cox regression analysis was used
to assess the relationship between the total survival time and
expression value of DEGs from the ccRCC cohort. With a
p-value < 0.01 as the screening criteria, the prognostic value of
this gene was considered statistically significant. The predictive
accuracy of the immune score model was assessed by time-
dependent receiver operating characteristic (ROC) curves using
the survival ROC package. A p-value < 0.05 was considered
statistically significant if no specific explanation was available.

RESULTS

Landscape of Immune Cell Infiltration in
Clear Cell Renal Cell Carcinoma
The 530 ccRCC samples in the TCGA database were scored by
ssGSEA to quantify the activity, enrichment level and function
of immune cells in each sample, and then they were divided
into two groups using hierarchical cluster analysis (Figure 1A
and Supplementary Figure 1A). Next, we used ESTIMATE to
evaluate the level of immune cell infiltration, tumor purity, and
matrix content (stromal score) of each ccRCC sample and defined
the two clusters as Immunity High (Immunity_H) and Immunity
Low (Immunity_L) (Figure 1A). We found that the stromal score
and immune cell infiltration were significantly higher in the
Immunity_H group than in the Immunity_L group, and tumor
purity was significantly lower in the Immunity_H group group
than in the Immunity_L group. To further investigate the reasons
for the differences in immune activity between the different
groups, we analyzed the gene expression changes between the
Immunity_H and Immunity_L cohorts. We obtained a total
of 437 upregulated genes and 77 downregulated genes in the

2https://tcia.at/

Immunity_H cohort using | log2FC| > 1 and FDR < 0.05
as the criteria (Figure 1B). To further obtain DEGs related
to prognosis, 514 DEGs were subjected to univariate Cox
regression analysis. The genes were reserved for subsequent
unsupervised cluster analysis with a p-value < 0.01. According
to the screening criteria, 182 DEGs related to prognosis were
obtained (Supplementary File 1), and the top 30 are shown in
Figure 1C. To specifically investigate the role of these candidate
DEGs in different immune subgroups, we divided the ccRCC
samples into different subgroups according to the expression
similarity of these related genes using the ConsensusClusterPlus
package in R language (Supplementary Figures 1B–F). A k
value of 2 proved to be the most suitable choice for dividing
the ccRCC patient cohort into two clusters—namely, Cluster 1
and Cluster 2 (Supplementary File 2). Survival analysis showed
that the two subtypes had obvious clinical significance, and the
prognosis of Cluster 2 was significantly worse than that of Cluster
1 (Figure 1D). Therefore, we believed that these 182 DEGs could
be used to assess the immune status of each patient with ccRCC
and to predict the prognosis of the patients.

Generation of Immune-Related Gene
Signatures and Functional Annotation
We performed PCA on the gene expression matrix of 530 ccRCC
samples, extracted principal component 1 of 182 DEGs, and
constructed the immune score (IS). Subsequently, all patients
were randomly assigned to a training set (1/2 for all patients)
and a testing set (1/2 for all patients). According to the IS, the
samples were defined as the immune score low (ISL) group and
immune score high (ISH) group in the training set, testing set,
and total set. In the training set, compared with the ISH group,
the overall survival of the ISL group was significantly reduced
(Figure 2A). For overall survival (OS) prediction, the 3-, 5-,
and 7-year AUCs of the ROC curve were 0.64, 0.62, and 0.67,
respectively, which were higher than 0.6 and had good survival
prediction ability (Figure 2B). The survRM2 package was used to
calculate the restricted mean survival time (RMS time) of ccRCC
patients during the 9-year follow-up. The RMS time is simply the
overall average of the event-free survival time during the initial
period of follow-up. This period can be evaluated by calculating
the area under the KM curve. The RMS time in the ISH group was
6.08 years, and that in the ISL group was 5.21 years, a finding that
also confirmed a better prognosis in the high group (Figure 2C).
The predictive ability of the immune score was further verified in
the testing set and total set.

According to the immune score constructed above, each
patient in the test set and total dataset was divided into the ISL
group and ISH group. Survival analysis showed that patients
with high immune scores had longer OS in the testing set
(Figure 2F). The 3-, 5-, and 7-year AUCs of the ROC curve were
0.6, 0.61, and 0.67, respectively (Figure 2G). The RMS time in
the ISH group was 6.61 years, and that in the ISL group was
5.03 years (Figure 2H).

Additionally, the prognosis of the ISL group in the total
dataset was significantly worse than that of the ISH group
(Figure 3A). The 3-, 5-, and 7-year AUCs of the ROC curve
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FIGURE 1 | Investigation of the immune infiltration-dependent expression change in clear cell renal cell carcinoma (ccRCC). (A) Twenty-nine immune-related gene
sets were enriched in ccRCC. These genes comprised immune cells and immune processes. The tumor purity, estimates, immunity scores, and stromal scores are
also shown in the heatmap. Immunity High: Immunity_H, Immunity Low: Immunity_L. (B) Volcano plot of 514 genes differentially expressed between Immunity_L and
Immunity_H. Purple dots and blue dots represent upregulated and downregulated genes, respectively. The screening criteria were | log2FC| > 1.0 and
p-value < 0.05. (C) Univariate Cox regression analysis was used to screen genes significantly associated with prognosis with a p-value < 0.01. The top 30 genes
are shown in the forest map. (D) Survival analysis of Cluster 1 and Cluster 2. In Cluster 1 and Cluster 2, the Kaplan–Meier curve with a log-rank p-value of 0.013
showed significant survival differences.

were 0.62, 0.61, and 0.67, respectively (Figure 3B). The RMS time
in the ISH group was 6.42 years and that in the ISL group was
5.42 years (Figure 3C).

The Immune Score and Response of
Patients to ICI Treatment
Because of the lack of immunotherapy response data matching
patients in the TCGA database, we used the IPS value to
replace the patient’s immunotherapy response. We extracted
two IPS values (IPS-PD-1/PD-L1/PD-L2_pos and IPS-CTLA-
4_pos) from the TCIA database to measure the response of
ccRCC patients to anti-PD-1/PD-L1 and anti-CTLA4 treatment
alternatives. The ISL group had a higher relative probability of
responding to anti-PD-1/PD-L1 and anti-CTLA4 treatment in
the training set, testing set, and total set (Figures 2D,E,I,J, 3D,E).
These results indicated that patients with low immune scores
were more likely to benefit from immunotherapy.

Functional Annotation and Pathway
Enrichment of the Immune Score
The above results proved the accuracy of the immune score
model. Therefore, we used the total set for subsequent analysis.
To further explore the biological behaviors among different
immune groups, we performed GSVA enrichment analysis for

KEGG pathway analysis in the total set. The ISL group was
markedly enriched in immune-related pathways, such as natural
killer cell-mediated cytotoxicity, the T-cell receptor signaling
pathway, the B-cell receptor signaling pathway, and primary
immunodeficiency (Figure 3F). The enrichment pathways in the
ISH group were mainly concentrated in the TGF beta signaling
pathway, PPAR signaling pathway, and WNT signaling pathway
(Figure 3F). Similarly, we used GSEA to perform GO analysis
to reveal specific biological processes related to immunity. The
biological processes in the ISL group were mainly related to
the T-cell receptor signaling pathway, B-cell-mediated immunity,
positive regulation of the immune effector process, leukocyte-
mediated immunity, and adaptive immune response (Figure 4A).
Therefore, we believed that the constructed immune score could
determine the immune status of different groups and predict
the prognosis. Interestingly, we found that the immune status
was active in the ISL group, but the prognosis of patients was
worse in the ISL group. From the above, we hypothesized that
although the immune state was active in the ISL group, its
function might be inhibited.

Immune Cell Infiltration in Clear Cell
Renal Cell Carcinoma
To identify the infiltration status of immune cells in different
groups, CIBERSORT was used to process the data and select
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FIGURE 2 | An immune score was constructed in the training set and verified in the validation set. (A) Survival analysis of the ISL group and ISH group in the training
set. In these two groups, the Kaplan–Meier curve with a log-rank p-value of 0.030 showed significant survival differences. (B) Time-dependent receiver operating
characteristic (ROC) curve analysis of the immune score in the training set. The 3-, 5-, and 7-year area under curves (AUCs) in all samples were 0.64, 0.62, and 0.67,
respectively. (C) The restricted mean survival (RMS) curve for the immune scores was plotted in the training set. In the ISL and ISH groups, the RSM times were 6.08
and 5.21, respectively. The blue part represents the RMS time, and the green part represents the restricted mean time lost (RMTL). (D,E) The relative probabilities of
anti-cytotoxic T lymphocyte-associated protein 4 (CTLA4) and anti-programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) treatment between
the immune score low (ISL) and ISH groups in the training set. (F) Survival analysis of the ISL group and ISH group in the testing set. In these two groups, the
Kaplan–Meier curve with a log-rank p-value of 0.002 showed significant survival differences. (G) Time-dependent ROC curve analysis of the immune score in the
testing set. The 3-, 5-, and 7-year AUCs in all samples were 0.60, 0.61, and 0.67, respectively. (H) The RMS curve for immune scores was plotted in the testing set.
In the ISL and ISH groups, the RSM times were 6.61 and 5.03, respectively. The blue part represents the RMS time, and the green part represents the restricted
mean time lost (RMSL). (I,J) The relative probabilities of anti-CTLA4 and anti-PD-1/PD-L1 treatment between the ISL and ISH groups in the testing set.

samples with p-values less than 0.05. The immune infiltration
landscapes of the ISL group (n = 253) and ISH group
(n = 166) are shown in Supplementary Figure 2A, and the
correlations of immune cells are shown in Figure 5O and
Supplementary File 3. Different immune cells were weakly
correlated or moderately correlated in tumor tissues in both
subgroups. The interaction between immune cells was higher
in the lower group than in the higher group. The highest
positive correlations were found with CD8+ T cells and
gamma delta T cells, follicular helper T cells, and activated
NK cells in the ISL group. The highest negative correlations
were found with CD8+ T cells and resting memory CD4+
T cells, and M2 macrophages in ISL. In the ISH group,
only follicular helper T cells had a higher positive correlation.
Similarly, resting memory CD4 T cells and M2 macrophages
had a negative correlation with CD8+ T cells. In the ISL
group, the degree of infiltration of CD8+ T cells, gamma
delta T cells, regulatory T cells (Tregs), and follicular helper
T cells were significantly higher than that in the ISH group
(p < 0.05) (Figure 5A). Likewise, the degree of infiltration of
resting memory CD4+ T cells, activated dendritic cells, M2
macrophages, and monocytes was higher in the ISH group. To
accurately distinguish the status of CD8+ T cells, we used xCell
to specifically quantify their classification (Supplementary File 4;
Aran et al., 2017). The infiltration degree of CD8+ central
memory T cells (Tcm) and CD8+ effective memory T cells
(Tem) in the ISL group was higher than that in the ISH

group (Figure 5B). Tem had a rapid effector function and
easily differentiated into effector T cells, which secreted a
large amount of IFN and was highly cytotoxic. Tcm also
differentiated into effector T cells, but the differentiation speed
was slower than that of Tem. At the same time, analysis
of HLA expression in the two groups also confirmed the
difference in the immune infiltration status (Supplementary
Figure 2B). Additionally, the TIME correlation scores of the
two groups showed significant differences (Figures 4F–I). This
finding was consistent with our previous results that the
infiltration and activation of CD8+ T cells in the ISL group
were higher than those in the ISH group. Many CD8+ memory
T cells in the low immune group were also potential targets
for immunotherapy.

Factors That Regulate the Recruitment
and Activation of CD8+ T Cells
The above results indicated that the degree of infiltration of
CD8+ T cells in the ISL group was higher than that in the
ISH group, but the degree of activation was lower than that
in the ISH group. By comparing the chemokines of CD8+ T
cells, we found that the expression levels of CXCL9/10/11/16
in the ISL group were significantly higher than those in the
ISH group (p < 0.001) (Figures 4B–E). These results indicated
that other components of the tumor microenvironment in the
ISL group secreted these chemokines to recruit more CD8+ T
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FIGURE 3 | Validating the immune score in the total dataset. (A) Survival analysis of the ISL group and ISH group in the total set. In these two groups, the
Kaplan–Meier curve with a log-rank p-value of 0.002 showed significant survival differences. (B) Time-dependent ROC curve analysis of the immune score in all
samples. The 3-, 5-, and 7-year AUCs in all samples were 0.62, 0.61, and 0.67, respectively. (C) The RMS curve for the immune scores was plotted for all ccRCC
samples. In the ISL and ISH groups, the RSM times were 6.42 and 5.42, respectively. The blue part represents the RMS time, and the green part represents the
restricted mean time lost (RMSL). (D,E) Relative probabilities of anti-CTLA4 and anti-PD-1/PD-L1 treatment between the ISL and ISH groups in the total set. (F)
Gene set variation analysis (GSVA) enrichment analysis of the activation states of biological pathways in distinct immune score groups. These biological processes
are shown in the heatmap. Purple represents the activated pathway, and blue represents the inhibited pathway.

cells into the tumor tissue. At the same time, we explored the
expression of inhibitory receptors and ligands in CD8+ T cells.
In the ISL group, the inhibitory receptors of CD8+ T cells,
such as CTLA4, PD-1, LAG3, TIM-3, BTLA, and TIGIT, were
significantly increased compared with those in the ISH group
(p < 0.001) (Figures 5C–H). In addition to NECTIN2 and PVR,
the inhibitory ligands PD-L1, PD-L2, TNFSF14, and LGALS9 of
CD8+ T cells were also significantly increased in the ISL group
(p < 0.01) (Figures 5I–N). From the above results, although the
infiltration degree of CD8+ T cells increased in the ISL group,
their functions were significantly inhibited. This finding might
explain why the prognosis of the ISL group was worse than that
of the ISH group.

Comparisons of Somatic Mutations
Under Different Immune Score Groups
The waterfall map showed the highly mutated genes and their
mutation classifications in the ISL (n = 162) group and ISH
group (n = 170) (Figures 6A,B). In the ISL group, 139 patients

had somatic mutations altered, accounting for 85.8%. In the
ISH group, 142 patients had somatic mutations, accounting for
83.53%. In the ISL group, the top five genes with mutation
frequencies were VHL, PBRM1, SETD2, BAP1, and TTN. In
the ISH group, the top five genes with mutation frequencies
were PBRM1, VHL, TTN, SETD2, and MTOR. The most
common types of mutations were missense mutations in both
the ISL and ISH groups (Supplementary Figures 3A,B). In
the ISL and ISH groups, the median value of variants was
42 and 40, respectively, with no significant difference. Single
nucleotide polymorphisms (SNPs) were the most common type
of variation compared with deletions (DELs) and insertions
(INSs). Additionally, C > T had the highest incidence among
the six variation types in both groups. Interestingly, VHL and
PBRM1 both had a higher mutation frequency in ccRCC.
However, no significant difference was found after comparing the
mutation sites in the two cohorts (Supplementary Figures 3C,F).
This finding indicated that they might have a lower effect on
the infiltration of immune cells in tumor tissues and were
more involved in tumorigenesis. At the same time, we used
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FIGURE 4 | Gene set enrichment analysis (GSEA), chemokine expression, and estimateScore results in the ISL and ISH groups. (A) Gene ontology (GO) enrichment
analysis of the activation states of immune-related pathways in distinct immune score groups. (B–E) Expression of CXCL9/10/11/16 between the ISL and ISH
groups. The upper and lower ends of the box indicate the interquartile range of values. The line in the box indicates the median value, and the black dot indicates the
outlier. The asterisk indicates the statistical p-value (***<0.001). (F–I) Violin plot of the estimateScore between the ISL and ISH groups, including the tumor purity (F),
immunity score (G), estimate score (H) and stromal score (I). The asterisk indicates the statistical p-value (***<0.001).

the maftools package to obtain drug-gene interactions and
druggability information. Supplementary Figures 3D,E show
the potential gene categories for drug therapy and the top
five genes involved in them. Subsequently, we investigated co-
occurring and exclusive mutations in the top 20 most frequently
mutated genes (Figure 6C). In the two cohorts, PBRM1-
SETD2 and PBRM1-LRP2 showed significant co-occurrence. This
finding indicated that they might have redundant effects in
the same pathway, and they had selective advantages between
them that could retain multiple mutant copies. Additionally,
some of the genes had different mutation frequencies in the
two groups. Fisher’s test was used to detect the differentially
expressed genes with a p-value less than 0.05 (Figure 6D).
We further analyzed the effect of these genes with higher
mutation frequency on the survival prognosis in different cohorts
and all sample cohorts. Except for BAP1, mutations in other
genes had no significant effect on the prognosis in different
cohorts (Figure 6E) or all sample cohorts (Figures 6F–H and
Supplementary Figures 2C–V).

BRCA1-Associated Protein 1 Mutation
Pattern in the Immune Score Cohort of
Clear Cell Renal Cell Carcinoma
BRCA1-associated protein 1 (BAP1) is a tumor suppressor
that regulates multiple processes, such as cell cycle control,
programmed cell death, DNA damage repair, chromatin
modification, and the immune response. In the ISL group, the

mutation frequency of BAP1 was 12.96% higher than that of the
ISH group (7.06%) (Figure 7A). Additionally, by analyzing the
infiltration of immune cells in different immune score cohorts
and whole sample groups, we found that BAP1 mutation might
regulate the immune response in tumor tissues by affecting Treg
cells (Figure 7B). At the same time, we used GSEA to analyze
the biological behavior difference between the BAP1 mutant
and BAP1 wild type. The BAP1 mutation was mainly enriched
in the CTLA4 pathway, T helper cell lineage commitment,
interleukin 10 signaling and regulation of lymphocyte apoptotic
process, while wild-type BAP1 was mainly enriched in ligand-
activated transcription factor activity, maintenance of synapse
structure, pathway regulating Hippo signaling and transforming
growth factor β receptor binding (Figure 7C). Additionally, the
expression level of BAP1 in the ISL group was significantly lower
than that in the ISH group (p < 0.01) (Figure 7D). Furthermore,
the prognosis of patients with high BAP1 expression was similar
to that of patients with low expression (Figure 7E). These results
indicated that the BAP1 mutation could regulate the immune
response in tumor tissues.

DISCUSSION

With the increased use of immunotherapy, many studies have
investigated potential immunotherapy markers. Presently, the
choice of immunotherapy is mainly based on the level of
expression of immune checkpoints, leading to some patients
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FIGURE 5 | Changes in immune cell infiltration in different immune score groups. (A,B) The horizontal axis and vertical axis represent tumor infiltrating immune cells
and relative percentages, respectively. Blue and purple represent the ISL group and ISH group, respectively. The data were evaluated using Wilcox tests. (C–N) The
expression of inhibitory receptors and inhibitory ligands of CD8+ T cells between the ISL group and ISH group. The upper and lower ends of the box indicate the
interquartile range of values. The line in the box indicates the median value, and the black dot indicates the outlier. Asterisks indicate statistical p-values (**<0.01,
***<0.001). (O) The relationship between the abundance ratios of different tumor immune infiltrating cells. The dot indicates that the p-value is less than 0.05, and
the area is negatively correlated with the p-value. Purple indicates a positive correlation, and blue indicates a negative correlation.

not benefiting from immunotherapy. Thus, in a complex tumor
environment, it is difficult for drugs to achieve a perfect
therapeutic effect based only on the immune checkpoint. Our
study aimed to screen and identify genes related to immune

infiltration and tumor mutation in the tumor microenvironment
and to accurately identify not only patients but also drugs suitable
for immunotherapy. We propose new research ideas concerning
immunotherapy for other tumors.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 October 2021 | Volume 9 | Article 747985

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-747985 October 12, 2021 Time: 14:29 # 9

Gao et al. Model Predicts ccRCC Immunotherapy Efficacy

FIGURE 6 | Landscape of somatic mutations in the ISL and ISH groups. (A,B) Waterfall plot of tumor somatic mutations established by those with low immune
scores (A) and high immune scores (B). Each column represents an individual patient. The bar plot above the figure shows the tumor mutation burden (TMB), and
the number on the right represents the mutation frequency of each gene. (C) The heat map shows the mutual co-occurring and exclusive mutations of the top 20
frequently mutated genes. The color or symbol of each cell represents the statistical significance of the exclusivity or co-occurrence of each pair of genes,
respectively. Green represents mutual co-occurrence, and brown represents exclusive mutation. Asterisks indicate statistical p-values (·<0.05). (D) Forest plot of
statistically significant mutant genes between the groups. Asterisks indicate statistical p-values (*<0.05, **<0.01) (E) The lollipop plot illustrates the differential
distribution of variants for BRCA1-associated protein 1 (BAP1). (F–H) Kaplan–Meier curves show the independent relevance between the overall survival time and
BAP1 mutation in the ISL group, ISH group and all cohorts.

In the present study, we first used ssGSEA to quantify the
activity, enrichment level, function, and pathway of immune
cells in each sample. Next, through hierarchical cluster analysis,
the patients were divided into an immunity high group and
an immunity low group. We identified differentially expressed
genes by comparing the two groups. We believed that these
DEGs were immune-related DEGs. Subsequently, univariate Cox
regression analysis was used to further screen the prognosis-
related DEGs. Based on these genes, the patients were divided
into two groups (Cluster 1 and Cluster 2) through unsupervised
cluster analysis. The prognosis of Cluster 2 was worse than
that of Cluster 1. Therefore, we speculated that the prognosis-
related DEGs could be used as genes to construct immune
score models. After that, we used principal component analysis
to extract principal component 1 and calculated the immune
score according to relevant literature (Sotiriou et al., 2006; Zeng
et al., 2019; Zhang et al., 2020). All the patients were randomly
assigned to a training set (1/2 for all patients) and a test set
(1/2 for all patients). We used the training set to construct
the immune score model and verified it in the validation set
and total set. The patients were divided into ISL and ISH
groups according to the immune score. The 3-, 5-, and 7-
year AUCs were all greater than 0.6, and the RSM time in the
ISH group was longer than that in the ISL group, proving the

sensitivity and predictability of the immune score model. Thus,
the immune score model accurately predicted the prognosis of
patients. Therefore, we used the total set for subsequent analysis.
Using GSEA and GSVA, differences were found in immune-
related pathways between the groups. By comparing HLA-related
genes and related scores in the immune microenvironment,
we also confirmed that the immune activity status of the ISL
group was higher than that of the ISH group. Interestingly,
the ISL group, which had a poor prognosis, had a higher
level of immune activity. Hence, we speculated whether the
function of immune cells was inhibited in the ISL group. We
used CIBERSORT and xCell to further quantify the types of
infiltrating immune cells in each sample. CD8+ T cells are
the main immune killer cells in tumor tissues. Therefore, we
evaluated the status of CD8+ T cells in different immune score
groups. Because of the increased secretion of CXCL9/10/11/16
chemokines, we believed that the infiltration of CD8+ T cells
in the ISL group was significantly higher than that in the ISH
group. At the same time, the inhibitory ligands and inhibitory
receptors of CD8+ T cells in the ISL group were also significantly
increased compared with those in the ISH group. Therefore,
we hypothesized that despite the higher immune activity and
infiltration of CD8+ T cells in the ISL group, smart tumor cells
would express their inhibitory ligands to prevent its function.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 October 2021 | Volume 9 | Article 747985

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-747985 October 12, 2021 Time: 14:29 # 10

Gao et al. Model Predicts ccRCC Immunotherapy Efficacy

FIGURE 7 | Changes in BAP1 mutations in ISL and ISH groups. (A) Mutation frequency of BAP1 in the ISL group and ISH group. Each column represents an
individual patient. The bar plot above the figure shows the TMB, and the number on the right represents the mutation frequency of each gene. (B) Effect of BAP1
mutation on tumor immune infiltrating cells in the ISL group, ISH group, and whole samples (p-value, * < 0.05, ** < 0.01, ns > 0.05). (C) Gene set enrichment
analysis comparing the BAP1 phenotype between the mutation group and wild-type group with FDR < 0.25. (D) The expression of BAP1 between the ISL group
and ISH group (p-value, ** < 0.01). (E) The survival curve shows that the expression level of BAP1 is not related to the prognosis of ccRCC patients.

This finding may also explain the poor prognosis in the ISL
group. In the low group, the massive infiltration of Tem
and Tcm cells also serve as potential targets for subsequent
immunotherapy. Although the model has certain deficiencies
in the accuracy of the prognosis and effect of immunotherapy,
we recognize that the reason may be the insufficient number
of modeling samples. If conditions permit continued expansion
of the sample size, the accuracy of the model may be further
improved. Additionally, if the sequencing data before and after
immunotherapy can be further collected, further optimization of
the model will be valuable.

Generally, two indicators are related to tumor
immunotherapy: the degree of immune cell infiltration and
tumor mutation burden. Therefore, to accurately select patients
suitable for immunotherapy, both factors must be considered.
By comparing the mutant landscapes of the ISL group and ISH
group, we found that the mutation frequency of the two groups
was not significantly different. Both VHL and PBRM1 had very
high mutation rates in both groups. This finding confirmed
that VHL and PBRM1 played a key role in the pathogenesis
of ccRCC (Gu et al., 2017; Hsieh et al., 2017; Zhang J. et al.,
2018; Cai et al., 2019). However, the genes with a high mutation
frequency did not significantly affect the prognosis compared
with all the other genes except BAP1, whether in the ISL
group, ISH group or whole sample group. BAP1 regulates DNA
damage repair pathways (Nishikawa et al., 2009; Zhao et al.,

2017), the cell cycle, and cell proliferation (Yu et al., 2010;
Okino et al., 2015), chromatin (Scheuermann et al., 2010), and
cell death pathways (Sime et al., 2018; Zhang Y. et al., 2018).
Additionally, BAP1 is implicated in immune regulation (Gezgin
et al., 2017; Figueiredo et al., 2020). However, the mechanism of
IMMUNE regulation by BAP1 remains unclear. The mutation
frequency of BAP1 in the ISL group was higher than that in
the ISH group. The effects of BAP1 mutation on infiltrating
immune cells were compared in the ISL group, ISH group, and
full sample group. BAP1 mutation increased the infiltration
degree of Treg cells. The BAP1 mutation was mainly enriched
in the CTLA4 pathway, T helper cell lineage commitment,
interleukin 10 signaling, and regulation of the lymphocyte
apoptotic process pathway by GSEA. These results indicated
that BAP1 mutation can inhibit the activity of immune cells
in tumor tissues by regulating Treg cells. Therefore, we believe
that combining the immune score and BAP1 mutation can
better screen patients suitable for immunotherapy. Additionally,
inhibitors of Treg cells can be combined to achieve better
therapeutic effects.

CONCLUSION

Our study predicted the prognosis of renal cancer patients
by constructing a new immune score combined with the
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BAP1 mutation. At the same time, it provides a new way
to identify patients suitable for immunotherapy and explore
effective immunotherapy strategies in ccRCC patients.
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