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Batch effects and the effective 
design of single-cell gene 
expression studies
Po-Yuan Tung1,*, John D. Blischak1,2,*, Chiaowen Joyce Hsiao1,*, David A. Knowles3,4, 
Jonathan E. Burnett1, Jonathan K. Pritchard3,5,6 & Yoav Gilad1,7

Single-cell RNA sequencing (scRNA-seq) can be used to characterize variation in gene expression 
levels at high resolution. However, the sources of experimental noise in scRNA-seq are not yet well 
understood. We investigated the technical variation associated with sample processing using the 
single-cell Fluidigm C1 platform. To do so, we processed three C1 replicates from three human induced 
pluripotent stem cell (iPSC) lines. We added unique molecular identifiers (UMIs) to all samples, to 
account for amplification bias. We found that the major source of variation in the gene expression data 
was driven by genotype, but we also observed substantial variation between the technical replicates. 
We observed that the conversion of reads to molecules using the UMIs was impacted by both biological 
and technical variation, indicating that UMI counts are not an unbiased estimator of gene expression 
levels. Based on our results, we suggest a framework for effective scRNA-seq studies.

Single-cell genomic technologies can be used to study the regulation of gene expression at unprecedented resolution1,2.  
Using single-cell gene expression data, we can begin to effectively characterize and classify individual cell types 
and cell states, develop a better understanding of gene regulatory threshold effects in response to treatments or 
stress, and address a large number of outstanding questions that pertain to the regulation of noise and robustness 
of gene expression programs. Indeed, single cell gene expression data have already been used to study and provide 
unique insight into a wide range of research topics, including differentiation and tissue development3–5, the innate 
immune response6,7, and pharmacogenomics8,9.

Yet, there are a number of outstanding challenges that arose in parallel with the application of single cell 
technology10. A fundamental difficulty, for instance, is the presence of inevitable technical variability introduced 
during sample processing steps, including but not limited to the conditions of mRNA capture from a single cell, 
amplification bias, sequencing depth, and variation in pipetting accuracy. These (and other sources of error) may 
not be unique to single cell technologies, but in the context of studies where each sample corresponds to a single 
cell, and is thus processed as a single unrepeatable batch, these technical considerations make the analysis of bio-
logical variability across single cells particularly challenging.

To better account for technical variability in scRNA-seq experiments, it has become common to add spike-in 
RNA standards of known abundance to the endogenous samples11,12. The most commonly used spike-in was 
developed by the External RNA Controls Consortium (ERCC)13; comprising of a set of 96 RNA controls of var-
ying length and GC content. A number of single cell studies focusing on analyzing technical variability based on 
ERCC spike-in controls have been reported11,12,14,15. However, one principle problem with spike-ins is that they 
do not ‘experience’ all processing steps that the endogenous sample is subjected to. For that reason, it is unknown 
to what extent the spike-ins can faithfully reflect the error that is being accumulated during the entire sample 
processing procedure, either within or across batches. In particular, amplification bias, which is assumed to be 
gene-specific, cannot be addressed by spike-in normalization approaches.

To address challenges related to the efficiency and uniformity with which mRNA molecules are ampli-
fied and sequenced in single cells, unique molecule identifiers (UMIs) were introduced to single cell sample 
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processing16–19. The rationale is that by counting molecules rather than the number of amplified sequencing 
reads, one can account for biases related to amplification, and obtain more accurate estimates of gene expression  
levels7,12,20. It is assumed that most sources of variation in single cell gene expression studies can be accounted 
for by using the combination of UMIs and a spike-in based standardization15,20. Nevertheless, though molecule 
counts, as opposed to sequencing read counts, are associated with substantially reduced levels of technical varia-
bility, a non-negligible proportion of experimental error remains unexplained.

There are a few common platforms in use for scRNA-seq. The automated C1 microfluidic platform (Fluidigm), 
while more expensive per sample, has been shown to confer several advantages over platforms that make use of 
droplets to capture single cells3,21. In particular, smaller samples can be processed using the C1 (when cell num-
bers are limiting), and the C1 capture efficiency of genes (and RNA molecules) is markedly higher. Notably, in the 
context of this study, the C1 system also allows for direct confirmation of single cell capture events, in contrast to 
most other microfluidic-based approaches3,22. One of the biggest limitations of using the C1 system, however, is 
that single cell capture and preparation from different conditions are fully independent23. Consequently, multiple 
replicates of C1 collections from the same biological condition are necessary to facilitate estimation of technical 
variability even with the presence of ERCC spike-in controls10. To our knowledge, to date, no study has been pur-
posely conducted to assess the technical variability across batches on the C1 platform.

To address this gap, we collected scRNA-seq data from induced pluripotent stem cell (iPSC) lines of three 
Yoruba individuals (abbreviation: YRI) using C1 microfluidic plates. Specifically, we performed three independ-
ent C1 collections per each individual to disentangle batch effects from the biological covariate of interest, which, 
in this case, is the difference between individuals. Both ERCC spike-in controls and UMIs were included in 
our sample processing. With these data, we were able to elucidate technical variability both within and between 
C1 batches and thus provide a deep characterization of cell-to-cell variation in gene expression levels across 
individuals.

Results
Study design and quality control.  We collected single cell RNA-seq (scRNA-seq) data from three YRI 
iPSC lines using the Fluidigm C1 microfluidic system followed by sequencing. We added ERCC spike-in con-
trols to each sample, and used 5-bp random sequence UMIs to allow for the direct quantification of mRNA 
molecule numbers. For each of the YRI lines, we performed three independent C1 collections; each replicate was 
accompanied by processing of a matching bulk sample using the same reagents. This study design (Fig. 1a and 
Supplementary Table S1) allows us to estimate error and variability associated with the technical processing of 
the samples, independently from the biological variation across single cells of different individuals. We were also 
able to estimate how well scRNA-seq data can recapitulate the RNA-seq results from population bulk samples.

In what follows, we describe data as originating from different samples when we refer to data from distinct 
wells of each C1 collection. Generally, each sample corresponds to a single cell. In turn, we describe data as 
originating from different replicates when we refer to all samples from a given C1 collection, and from different 
individuals when we refer to data from all samples and replicates of a given genetically distinct iPSC line.

We obtained an average of 6.3 +​/−​ 2.1 million sequencing reads per sample (range 0.4–11.2 million reads). 
We processed the sequencing reads using a standard alignment approach (see Methods) and performed mul-
tiple quality control analyses. As a first step, we estimated the proportion of ERCC spike-in reads from each 
sample. We found that, across samples, sequencing reads from practically all samples of the second replicate 
of individual NA19098 included unusually high ERCC content compared to all other samples and replicates 
(Supplementary Fig. S1). We concluded that a pipetting error led to excess ERCC content in this replicate and we 
excluded the data from all samples of this replicate in subsequent analyses. With the exception of the excluded 
samples, data from all other replicates seem to have similar global properties (using general metrics; Fig. 1c–e and 
Supplementary Fig. S1).

We next examined the assumption that data from each sample correspond to data from a single cell. After 
the cell sorting was complete, but before the processing of the samples, we performed visual inspection of the C1 
microfluidic plates. Based on that visual inspection, we flagged 21 samples that did not contain any cell, and 54 
samples that contained more than one cell (across all batches). Visual inspection of the C1 microfluidic plate is an 
important quality control step, but it is not infallible. We therefore filtered data from the remaining samples based 
on the number of total mapped reads, the percentage of unmapped reads, the percentage of ERCC spike-in reads, 
and the number of genes detected (Fig. 1b–e). We chose data-driven inclusion cutoffs for each metric, based on 
the 95th percentile of the respective distributions for the 21 libraries that were amplified from samples that did not 
include a cell based on visual inspection (Supplementary Fig. S1). Using this approach, we identified and removed 
data from 15 additional samples that were classified as originating from a single cell based on visual inspection, 
but whose data were more consistent with a multiple-cell origin based on the number of total molecules, the con-
centration of cDNA amplicons, and the read-to-molecule conversion efficiency (defined as the number of total 
molecules divided by the number of total reads; Supplementary Fig. S2). At the conclusion of these quality control 
analyses and exclusion steps, we retained data from 564 high quality samples, which correspond, with reasonable 
confidence, to 564 single cells, across eight replicates from three individuals (Supplementary Table S2).

Our final quality check focused on the different properties of sequencing read and molecule count data. We 
considered data from the 564 high quality samples and compared gene specific counts of sequencing read and 
molecules. We found that while gene-specific reads and molecule counts are exceptionally highly correlated when 
we considered the ERCC spike-in data (r =​ 0.99; Fig. 1f), these counts are somewhat less correlated when data 
from the endogenous genes are considered (r =​ 0.92). Moreover, the gene-specific read and molecule counts 
correlation is noticeably lower for genes that are expressed at lower levels (Fig. 1f). These observations concur 
with previous studies12,20 as they underscore the importance of using UMIs in single cell gene expression studies.
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Figure 1.  Experimental design and quality control of scRNA-seq. (a) Three C1 96 well-integrated fluidic 
circuit (IFC) replicates were collected from each of the three Yoruba individuals. A bulk sample was included 
in each batch. (b) Summary of the cutoffs used to remove data from low quality cells that might be ruptured 
or dead (See Supplementary Fig. S1 for details). (c–e) To assess the quality of the scRNA-seq data, the capture 
efficiency of cells and the faithfulness of mRNA fraction amplification were determined based on the proportion 
of unmapped reads, the number of detected genes, the numbers of total mapped reads, and the proportion of 
ERCC spike-in reads across cells. The dash lines indicate the cutoffs summarized in panel (b). The three colors 
represent the three individuals (NA19098 in red, NA19101 in green, and NA19239 in blue), and the numbers 
indicate the cell numbers observed in each capture site on C1 plate. (f) Scatterplots in log scale showing the 
mean read counts and the mean molecule counts of each endogenous gene (grey) and ERCC spike-ins (blue) 
from the 564 high quality single cell samples before removal of genes with low expression. (g) mRNA capture 
efficiency shown as observed molecule count versus number of molecules added to each sample, only including 
the 48 ERCC spike-in controls remaining after removal of genes with low abundance. Each red dot represents 
the mean +​/−​ SEM of an ERCC spike-in across the 564 high quality single cell samples.
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We proceeded by investigating the effect of sequencing depth and the number of single cells collected on 
multiple properties of the data. To this end, we repeatedly subsampled single cells and sequencing reads to assess 
the correlation of the single cell gene expression estimates to the bulk samples, the number of genes detected, and 
the correlation of the cell-to-cell gene expression variance estimates between the reduced subsampled data and 
the full single cell gene expression data set (Fig. 2). We observed quickly diminishing improvement in all three 
properties with increasing sequencing depth and the number of sampled cells, especially for highly expressed 
genes. For example, a per cell sequencing depth of 1.5 million reads (which corresponds to ~50,000 molecules) 
from each of 75 single cells was sufficient for effectively quantifying even the lower 50% of expressed genes. To be 
precise, at this level of subsampling for individual NA19239, we were able to detect a mean of 6068 genes out of 
6097 genes expressed in the bulk samples (the bottom 50%; Fig. 2b); the estimated single cell expression levels of 
these genes (summed across all cells) correlated with the bulk sample gene expression levels with a mean Pearson 
coefficient of 0.8 (Fig. 2a), and the estimated cell-to-cell variation in gene expression levels was correlated with the 
variation estimated from the full data set with a mean Pearson coefficient of 0.95 (Fig. 2c). We observed similar 
results when examining each batch separately (Supplementary Fig. S3).

Batch effects associated with UMI-based single cell data.  In the context of the C1 platform, typical 
study designs make use of a single C1 plate (batch/replicate) per biological condition. In that case, it is impossible 
to distinguish between biological and technical effects associated with the independent capturing and sequencing 
of each C1 replicate. We designed our study with multiple technical replicates per biological condition (indi-
vidual) in order to directly and explicitly estimate the batch effect associated with independent C1 preparations 
(Fig. 1a).

As a first step in exploring batch effects, we examined the gene expression profiles across all single cells that 
passed our quality checks (as reported above) using raw molecule counts (without standardization). Using prin-
cipal component analysis (PCA) for visualization, we observed – as expected - that the major source of variation 
in data from single cells is the individual origin of the sample. Specifically, we found that the proportion of vari-
ance due to individual was larger (median: 8%) than variance due to C1 batch (median: 4%; Kruskal-Wallis test; 
P <​ 0.001, Supplementary Fig. S4; see Methods for details of the variance component analysis). Yet, variation due 
to C1 batch is also substantial - data from single cell samples within a batch are more correlated than that from 
single cells from the same individual but different batches (Kruskal-Wallis test; P <​ 0.001).

Could we account for the observed batch effects using the ERCC spike-in controls? In theory, if the total 
ERCC molecule-counts are affected only by technical variability, the spike-ins could be used to correct for batch 
effects even in a study design that entirely confounds biological samples with C1 preparations. To examine this, 
we first considered the relationship between total ERCC molecule-counts and total endogenous molecule-counts 
per sample. If only technical variability affects ERCC molecule-counts, we expect the technical variation in 
the spike-ins (namely, variation between C1 batches) to be consistent, regardless of the individual assignment. 
Indeed, we observed that total ERCC molecule-counts are significantly different between C1 batches (F-test; 
P <​ 0.001). However, total ERCC molecule-counts are also quite different across individuals, when variation 
between batches is taken into account (LRT; P =​ 0.08; Fig. 3a). This observation suggests that both technical and 
biological variation affect total ERCC molecule-counts. In addition, while we observed a positive relationship 
between total ERCC molecule-counts and total endogenous molecule-counts per sample, this correlation pattern 
differed across C1 batches and across individuals (F-test; P <​ 0.001; Fig. 3b).

To more carefully examine the technical and biological variation of ERCC spike-in controls, we assessed the 
ERCC per-gene expression profile. We observed that the ERCC gene expression data from samples of the same 
batch were more correlated than data from samples across batches (Kruskal-Wallis test; Chi-squared P <​ 0.001). 
However, the proportion of variance explained by the individual was significantly larger than the variance due 
to C1 batch (median: 9% vs. 5%, Chi-squared test; P <​ 0.001, Supplementary Fig. S4), lending further support to 
the notion that biological variation affects the ERCC spike in data. Based on these analyses, we concluded that 
ERCC spike-in controls cannot be used to effectively account for the batch effect associated with independent C1 
preparations.

We explored additional properties in the data that may be associated with a batch effect. To do so, we 
focused on the read-to-molecule conversion rates, i.e. the rates at which sequencing reads are converted to 
molecule counts based on the UMI sequences. We defined read-to-molecule conversion efficiency as the total 
molecule-counts divided by the total reads-counts in each sample, considering separately the reads/molecules 
that correspond to endogenous genes or ERCC spike-ins (Fig. 3c and d). We observed a significant batch effect 
in the read-to-molecule conversion efficiency of both ERCC (F-test; P <​ 0.05) and endogenous genes (F-test; 
P <​ 0.001) across C1 replicates from the same individual. Moreover, the difference in read-to-molecule conver-
sion efficiency across the three individuals was significant not only for endogenous genes (LRT; P <​ 0.01, Fig. 3c) 
but also in the ERCC spike-ins (LRT; P <​ 0.01, Fig. 3d).

Measuring regulatory noise in single-cell gene expression data.  Our analysis indicated that there is 
a considerable batch effect in the single cell gene expression data collected from the C1 platform. We thus sought 
an approach that would account for the batch effect and allow us to study biological properties of the single-cell 
molecule count-based estimates of gene expression levels, albeit in a small sample of just three individuals. As a 
first step, we adjusted the raw molecule counts by using a Poisson approximation to account for the random use 
of identical UMI sequences in molecules from highly expressed genes (this was previously termed a correction 
for the UMI ‘collision probability’17). We then excluded data from genes whose inferred molecule count exceeded 
1,024 (the theoretical number of UMI sequences) – this step resulted in the exclusion of data from 6 mitochon-
drial genes.
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Figure 2.  The effect of sequencing depth and cell number on single cell UMI estimates. Sequencing reads 
from all the high quality single cells collected for NA19239 were subsampled to the indicated sequencing 
depth and cell number, and subsequently converted to molecules using the UMIs. Each point represents 
the mean +​/−​ SEM of 10 random draws of the indicated cell number. The left panel displays the results for 
6,097 (50% of detected) genes with lower expression levels and the right panel the results for 6,097 genes with 
higher expression levels. (a) Pearson correlation of aggregated gene expression level estimates from single cells 
compared to the bulk sequencing samples. (b) Total number of genes detected with at least one molecule in 
at least one of the single cells. (c) Pearson correlation of cell-to-cell gene expression variance estimates from 
subsets of single cells compared to the full single cell data set.



www.nature.com/scientificreports/

6Scientific Reports | 7:39921 | DOI: 10.1038/srep39921

We next incorporated a standardization step by computing log transformed counts-per-million (cpm) to 
remove the effect of different sequencing depths, as is the common practice for the analysis of bulk RNA-seq 
data (Fig. 4a and b). We used a Poisson generalized linear model to normalize the endogenous molecule log2 cpm 

Figure 3.  Batch effect of scRNA-seq data using the C1 platform. (a) Violin plots of the number of total ERCC 
spike-in molecule-counts in single cell samples per C1 replicate. (b) Scatterplot of the total ERCC molecule-
counts and total gene molecule-counts. The colors represent the three individuals (NA19098 is in red, NA19101 
in green, and NA19239 in blue). Data from different C1 replicates is plotted in different shapes. (c and d) Violin 
plots of the reads to molecule conversion efficiency (total molecule-counts divided by total read-counts per 
single cells) by C1 replicate. The endogenous genes and the ERCC spike-ins are shown separately in (c) and  
(d), respectively. There is significant difference across individuals of both endogenous genes (P <​ 0.001) and 
ERCC spike-ins (P <​ 0.05). The differences across C1 replicates per individual of endogenous genes and ERCC 
spike-ins were also evaluated (both P <​ 0.01).
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values by the observed molecule counts of ERCC spike-ins across samples. While we do not expect this step to 
account for the batch effect (as discussed above), we reasoned that the spike-ins allow us to account for a subset 
of technical differences between samples, for example, those that arise from differences in RNA concentration 
(Fig. 4c).

Finally, to account for the technical batch effect, we modeled between-sample correlations in gene expression 
within C1 replicates (see Methods). Our approach is similar in principle to limma, which was initially developed 
for adjusting within-replicate correlations in microarray data24. We assume that samples within each C1 replicate 
share a component of technical variation, which is independent of biological variation across individuals. We fit a 
linear mixed model for each gene, which includes a fixed effect for individual and a random effect for batch. The 
batch effect is specific to each C1 replicate, and is independent of biological variation across individuals. We use 
this approach to estimate and remove the batch effect associated with different C1 preparations (Fig. 4d).

Once we removed the unwanted technical variability, we focused on analyzing biological variation in gene 
expression between single cells. Our goal was to identify inter-individual differences in the amount of variation 
in gene expression levels across single cells, or in other words, to identify differences between individuals in the 
amount of regulatory noise25. In this context, regulatory noise is generally defined as the coefficient of varia-
tion (CV) of the gene expression levels of single cells26. In the following, we used the standardized, normalized, 
batch-corrected molecule count gene expression data to estimate regulatory noise (Fig. 4d). To account for het-
eroscedasticity from Poisson sampling, we adjusted the CV values by the average gene-specific expression level 
across cells of the same individual. The adjusted CV is robust both to differences in gene expression levels, as well 
as to the proportion of gene dropouts in single cells.

Figure 4.  Normalization and removal of technical variability. Principal component (PC) 1 versus PC2 
of the (a) raw molecule counts, (b) log2 counts per million (cpm), (c) Poisson transformed expression levels 
(accounting for technical variability modeled by the ERCC spike-ins), and (d) batch-corrected expression levels. 
The colors represent the three individuals (NA19098 in red, NA19101 in green, and NA19239 in blue). Data 
from different C1 replicates is plotted in different shapes.
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To investigate the effects of gene dropouts (the lack of molecule representation of an expressed gene6,11) on 
our estimates of gene expression noise, we considered the association between the proportion of cells in which a 
given gene is undetected (namely, the gene-specific dropout rate), the average gene expression level, and estimates 
of gene expression noise. Across all genes, the median gene-specific dropout was 22 percent. We found signifi-
cant individual differences (LRT; P <​ 10−5) in gene-specific dropout rates between individuals in more than 10% 
(1,214 of 13,058) of expressed endogenous genes. As expected, the expression levels, and the estimated variation 
in expression levels across cells, are both associated with gene-specific dropout rates (Supplementary Fig. S5). 
However, importantly, adjusted CVs are not associated with dropout rates (Spearman’s correlation =​ 0.04; 
Supplementary Fig. S5), indicating that adjusted CV measurements are not confounded by the dynamic range of 
single-cell gene expression levels.

We thus estimated mean expression levels and regulatory noise (using adjusted CV) for each gene, by either 
including (Fig. 5a) or excluding (Fig. 5b) samples in which the gene was not detected/expressed. We first focused 
on general trends in the data. We ranked genes in each individual by their mean expression level as well as by their 
estimated level of variation across single cells. When we considered samples in which a gene was expressed, we 
found that 887 of the 1,000 most highly expressed genes in each individual are common to all three individuals 
(Fig. 5c). In contrast, only 95 of the 1,000 most highly variable (noisy) genes in each individual were common to 
all three individuals (Fig. 5d). We found similar results when we considered data from all single cells, regardless 
of whether the gene was detected as expressed (Fig. 5e and f). In particular, the set of 887 highly expressed genes 
was also detected as common to all three individuals, while 80% of the 95 most highly variable genes (76 genes) 
were detected as common to all three individuals when including samples in which the gene was not detected as 
expressed.

Next, we identified genes whose estimated regulatory noise (based on the adjusted CV) is significantly differ-
ent between individuals. For the purpose of this analysis, we only included data from cells in which the gene was 
detected as expressed. Based on permutations (Supplementary Fig. S6), we classified the estimates of regulatory 
noise of 560 genes as significantly different across individuals (empirical P <​ 0.0001, Supplementary Fig. S7 for 
examples; Supplementary Table S3 for gene list). These 560 genes are enriched for genes involved in protein trans-
lation, protein disassembly, and various biosynthetic processes (Supplementary Table S4). Interestingly, among 
the genes whose regulatory noise estimates differ between individuals, we found two pluripotency genes, KLF4 
and DPPA2 (Supplementary Fig. S8).

Discussion
Study design and sample size for scRNA-seq.  Our nested study design allowed us to explicitly estimate 
technical batch effects associated with single cell sample processing on the C1 platform. We found previously 
unreported technical sources of variation associated with the C1 sample processing and the use of UMIs, includ-
ing the property of batch-specific read-to-molecule conversion efficiency. As we used a well-replicated nested 
study design, we were able to model, estimate, and account for the batch while maintaining individual differences 
in gene expression levels. We believe that our observations indicate that future studies should avoid confounding 
C1 batch and individual source of single cell samples. Instead, we recommend a balanced study design consisting 
of multiple individuals within a C1 plate and multiple C1 replicates (for example, Supplementary Fig. S9). The 
origin of each cell can then be identified using the RNA sequencing data. Indeed, using a method originally devel-
oped for detecting sample swaps in DNA sequencing experiments27, we were able to correctly identify the correct 
YRI individual of origin for all the single cells from the current experiment by comparing the polymorphisms 
identified using the RNA-seq reads to the known genotypes for all 120 YRI individuals of the International 
HapMap Project28 (Supplementary Fig. S9). The mixed-individual-plate is an attractive study design because 
it allows one to account for the batch effect without the requirement to explicitly spend additional resources on 
purely technical replication (because the total number of cells assayed from each individual can be equal to a 
design in which one individual is being processed in using a single C1 plate).

We also addressed additional study design properties with respect to the desired number of single cells and the 
desired depth of sequencing (Fig. 2). Similar assessments have been previously performed for single cell sequenc-
ing with the C1 platform without the use of UMIs21,29, but no previous study has investigated the effects of these 
parameters for single cells studies using UMIs. We focused on recapitulating the gene expression levels observed 
in bulk sequencing experiments, detecting as many genes as possible, and accurately measuring the cell-to-cell 
variation in gene expression levels. We recommend sequencing at least 75 high quality cells per biological con-
dition with a minimum of 1.5 million raw reads per cell to obtain optimal performance of these three metrics.

The limitations of the ERCC spike-in controls.  The ERCC spike-in controls have been used in previous 
scRNA-seq studies to identify low quality single cell samples, infer the absolute total number of molecules per cell, 
and model the technical variability across cells11,12,14,15. In our experience, the ERCC controls are not particularly 
well-suited for any one of these tasks, much less all three. With respect to identifying low quality samples, we 
indeed observed that samples with no visible cell had a higher percentage of reads mapping to the ERCC controls, 
as expected. However, there was no clear difference between low and high quality samples in the percentage of 
ERCC reads or molecules, and thus any arbitrarily chosen cutoff would be associated with considerable error 
(Fig. 1e). With respect to inferring the absolute total number of molecules per cell, we observed that the biological 
covariate of interest (difference between the three YRI individuals), rather than batch, explained a large propor-
tion of the variance in the ERCC counts (Supplementary Fig. S4), and furthermore that the ERCC controls were 
also affected by the individual-specific effect on the read-to-molecule conversion rate (Fig. 3d). Thus ERCC-based 
corrected estimates of total number of molecules per cell, across technical or biological replicates, are expected 
to be biased. Because the batch effects associated with the ERCC controls are driven by the biological covariate 
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of interest, they will also impede the modeling of the technical variation in single cell experiments that confound 
batch and the biological source of the single cells.

Figure 5.  Cell-to-cell variation in gene expression. Adjusted CV plotted against average molecule counts 
across all cells in (a) and across only the cells in which the gene is expressed (b), including data from all three 
individuals. Each dot represents a gene, and the color indicates the corresponding gene-specific dropout rate 
(the proportion of cells in which the gene is undetected). (c and d) Venn diagrams showing the overlaps of 
top 1000 genes across individuals based on mean expression level in (c) and based on adjusted CV values in 
(d), considering only the cells in which the gene is expressed. (e and f ) Similarly, Venn diagrams showing the 
overlaps of top 1000 genes across individuals based on mean expression level in (e) and based on adjusted CV 
values in (f ), across all cells.
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More generally, it is inherently difficult to model unknown sources of technical variation using so few genes30 
(only approximately half of the 92 ERCC controls are detected in typical single cell experiments), and the ERCC 
controls are also strongly impacted by technical sources of variation even in bulk RNA-seq experiments31. Lastly, 
from a theoretical perspective, the ERCC controls have shorter polyA tails and are overall shorter than mam-
malian mRNAs. For these reasons, we caution against the reliance of ERCC controls in scRNA-seq studies and 
highlight that an alternative set of controls that more faithfully mimics mammalian mRNAs and provides more 
detectable spike-in genes is desired. Our recommendation is to include total RNA from a distant species, for 
example using RNA from Drosophila melanogaster in studies of single cells from humans.

Outlook.  Single cell experiments are ideally suited to study gene regulatory noise and robustness32,33. Yet, in 
order to study the biological noise in gene expression levels, it is imperative that one should be able to effectively 
estimate and account for the technical noise in single cell gene expression data. Our results indicate that previous 
single cells gene expression studies may not have been able to distinguish between the technical and the biological 
components of variation, because single cell samples from each biological condition were processed on a single 
C1 batch. When technical noise is properly accounted for, even in this small pilot study, our findings indicate 
pervasive inter-individual differences in gene regulatory noise, independently of the overall gene expression level.

Methods
Ethics statement.  The YRI cell lines were purchased from CCR. The original samples were collected by 
the HapMap project between 2001–2005. All of the samples were collected with extensive community engage-
ment, including discussions with members of the donor communities about the ethical and social implications of 
human genetic variation research. Donors gave broad consent to future uses of the samples, including their use 
for extensive genotyping and sequencing, gene expression and proteomics studies, and all other types of genetic 
variation research, with the data publicly released.

Cell culture of iPSCs.  Undifferentiated feeder-free iPSCs reprogrammed from LCLs of Yoruba individuals in 
Ibadan, Nigeria (abbreviation: YRI)28 were grown in E8 medium (Life Technologies)34 on Matrigel-coated tissue 
culture plates with daily media feeding at 37 °C with 5% (vol/vol) CO2. For standard maintenance, cells were split 
every 3–4 days using cell release solution (0.5 mM EDTA and NaCl in PBS) at the confluence of roughly 80%. For 
the single cell suspension, iPSCs were individualized by Accutase Cell Detachment Solution (BD) for 5–7 minutes 
at 37 °C and washed twice with E8 media immediately before each experiment. Cell viability and cell counts were 
then measured by the Automated Cell Counter (Bio-Rad) to generate resuspension densities of 2.5 ×​ 105 cells/
mL in E8 medium for C1 cell capture.

Single cell capture and library preparation.  Single cell loading and capture were performed following 
the Fluidigm protocol (PN 100-7168). Briefly, 30 μl of C1 Suspension Reagent was added to a 70-μl aliquot of 
~17,500 cells. Five μl of this cell mix were loaded onto 10–17 μm C1 Single-Cell Auto Prep IFC microfluidic chip 
(Fluidigm), and the chip was then processed on a C1 instrument using the cell-loading script according to the 
manufacturer’s instructions. Using the standard staining script, the iPSCs were stained with StainAlive TRA-1-60 
Antibody (Stemgent, PN 09-0068). The capture efficiency and TRA-1-60 staining were then inspected using the 
EVOS FL Cell Imaging System (Thermo Fisher) (Supplementary Table S1).

Immediately after imaging, reverse transcription and cDNA amplification were performed in the C1 system 
using the SMARTer PCR cDNA Synthesis kit (Clontech) and the Advantage 2 PCR kit (Clontech) according to 
the instructions in the Fluidigm user manual with minor changes to incorporate UMI labeling20. Specifically, the 
reverse transcription primer and the 1:50,000 Ambion®​ ERCC Spike-In Mix1 (Life Technologies) were added to 
the lysis buffer, and the template-switching RNA oligos which contain the UMI (5-bp random sequence) were 
included in the reverse transcription mix20,35,36. When the run finished, full-length, amplified, single-cell cDNA 
libraries were harvested in a total of approximately 13 μl C1 Harvesting Reagent and quantified using the DNA 
High Sensitivity LabChip (Caliper). The average yield of samples per C1 plate ranged from 1.26–1.88 ng per 
microliter (Supplementary Table S1). A bulk sample, a 40 μl aliquot of ~10,000 cells, was collected in parallel with 
each C1 chip using the same reaction mixes following the C1 protocol (PN 100-7168, Appendix A).

For sequencing library preparation, tagmentation and isolation of 5′​ fragments were performed according 
to the UMI protocol20. Instead of using commercially available Tn5 transposase, Tn5 protein stock was freshly 
purified in house using the IMPACT system (pTXB1, NEB) following the protocol previously described37. The 
activity of Tn5 was tested and shown to be comparable with the EZ-Tn5-Transposase (Epicentre). Importantly, 
all the libraries in this study were generated using the same batch of Tn5 protein purification. For each of the bulk 
samples, two libraries were generated using two different indices in order to get sufficient material for sequencing. 
All 18 bulk libraries were then pooled and labeled as the “bulk” for sequencing.

Illumina high-throughput sequencing.  The scRNA-seq libraries generated from the 96 single cell sam-
ples of each C1 chip were pooled and then sequenced in three lanes on an Illumina HiSeq 2500 instrument 
using the PCR primer (C1-P1-PCR-2: Bio-GAATGATACGGCGACCACCGAT) as the read 1 primer and the 
Tn5 adapter (C1-Tn5-U: PHO-CTGTCTCTTATACACATCTGACGC) as the index read primer following the 
UMI protocol20.

The master mixes, one mix with all the bulk samples and nine mixes corresponding to the three replicates for 
the three individuals, were sequenced across four flowcells using a design aimed to minimize the introduction 
of technical batch effects (Supplementary Table S1). Single-end 100 bp reads were generated along with 8-bp 
index reads corresponding to the cell-specific barcodes. We did not observe any obvious technical effects due to 
sequencing lane or flow cell that confounded the inter-individual and inter-replicate comparisons.
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Read mapping.  To assess read quality, we ran FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc) and observed a decrease in base quality at the 3′​ end of the reads. Thus we removed low quality bases from 
the 3′​ end using sickle with default settings38. To handle the UMI sequences at the 5′​ end of each read, we used  
umitools39 to find all reads with a UMI of the pattern NNNNNGGG (reads without UMIs were discarded). We then 
mapped reads to human genome hg19 (only including chromosomes 1–22, X, and Y, plus the ERCC sequences) 
with Subjunc40, discarding non-uniquely mapped reads (option -u). To obtain gene-level counts, we assigned 
reads to protein-coding genes (Ensembl GRCh37 release 82) and the ERCC spike-in genes using featureCounts41.  
Because the UMI protocol maintains strand information, we required that reads map to a gene in the correct 
orientation (featureCounts flag -s 1).

In addition to read counts, we utilized the UMI information to obtain molecule counts for the single cell 
samples. We did not count molecules for the bulk samples because this would violate the assumptions of the UMI 
protocol, as bulk samples contain far too many unique molecules for the 1,024 UMIs to properly tag them all. 
First, we combined all reads for a given single cell using samtools42. Next, we converted read counts to molecule 
counts using UMI-tools43. UMI-tools counts the number of UMIs at each read start position. Furthermore, it 
accounts for sequencing errors in the UMIs introduced during the PCR amplification or sequencing steps using a 
“directional adjacency” method. Briefly, all UMIs at a given read start position are connected in a network using 
an edit distance of one base pair. However, edges between nodes (the UMIs) are only formed if the nodes have 
less than a 2x difference in reads. The node with the highest number of reads is counted as a unique molecule, and 
then it and all connected nodes are removed from the network. This is repeated until all nodes have been counted 
or removed.

Filtering cells and genes.  We performed multiple quality control analyses to detect and remove data from 
low quality cells. In an initial analysis investigating the percentage of reads mapping to the ERCC spike-in con-
trols, we observed that replicate 2 of individual NA19098 was a clear outlier (Supplementary Fig. S1). It appeared 
that too much ERCC spike-in mix was added to this batch, which violated the assumption that the same amount 
of ERCC molecules was added to each cell. Thus, we removed this batch from all of our analyses.

Next, we kept data from high quality single cells that passed the following criteria:

•	 Only one cell observed per well.
•	 At least 1,556,255 mapped reads.
•	 Less than 36.4% unmapped reads.
•	 Less than 3.2% ERCC reads.
•	 More than 6,788 genes with at least one read.

We chose the above criteria based on the distribution of these metrics in the empty wells (the cutoff is the 95th 
percentile, Supplementary Fig. S1). In addition, we observed that some wells classified as containing only one cell 
were clustered with multi-cell wells when plotting 1) the number of gene molecules versus the concentration of the 
samples, and 2) the read to molecule conversion efficiency (total molecule number divided by total read number)  
of endogenous genes versus that of ERCC. We therefore established filtering criteria for these misidentified 
single-cell wells using linear discriminant analysis (LDA). Specifically, LDA was performed to classify wells into 
empty, one-cell, and two-cell using the discriminant functions of 1) sample concentration and the number of gene 
molecules, and 2) endogenous and ERCC gene read to molecule conversion efficiency (Supplementary Fig. S2). 
After filtering, we maintained 564 high quality single cells (NA19098: 142, NA19101: 201, NA19239: 221).

The quality control analyses were performed using all protein-coding genes (Ensembl GRCh37 release 82) 
with at least one observed read. Using the high quality single cells, we further removed genes with low expression 
levels for downstream analyses. We removed all genes with a mean log2 cpm less than 2, which did not affect the 
relative differences in the proportion of genes detected across batches (Supplementary Fig. S10). We also removed 
genes with molecule counts larger than 1,024 for the correction of collision probability. In the end we kept 13,058 
endogenous genes and 48 ERCC spike-in genes.

Calculate the input molecule quantities of ERCC spiked-ins.  According to the information provided 
by Fluidigm, each of the 96 capture chamber received 13.5 nl of lysis buffer, which contain 1:50,000 Ambion®​ 
ERCC Spike-In Mix1 (Life Technologies) in our setup. Therefore, our estimation of the total spiked-in molecule 
number was 16,831 per sample. Since the relative concentrations of the ERCC genes were provided by the manu-
facturer, we were able to calculate the molecule number of each ERCC gene added to each sample. We observed 
that the levels of ERCC spike-ins strongly correlated with the input quantities (r =​ 0.9914, Fig. 1g). The capture 
efficiency, defined as the fraction of total input molecules being successfully detected in each high quality cell, 
had an average of 6.1%.

Subsampling.  We simulated different sequencing depths by randomly subsampling reads and processing 
the subsampled data through the same pipeline described above to obtain the number of molecules per gene for 
each single cell. To assess the impact of sequencing depth and number of single cells, we calculated the following 
three statistics:

1.	 The Pearson correlation of the gene expression level estimates from the single cells compared to the bulk 
samples. For the single cells, we summed the gene counts across all the samples and then calculated the log2 
cpm of this pseudo-bulk. For the bulk samples, we calculated the log2 cpm separately for each of the three 
replicates and then calculated the mean per gene.

2.	 The number of genes detected with at least one molecule in at least one cell.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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3.	 The Pearson correlation of the cell-to-cell gene expression variance estimates from the subsampled single 
cells compared to the variance estimates using the full single cell data set.

Each data point in Fig. 2 represents the mean +​/−​ the standard error of the mean (SEM) of 10 random sub-
samples of cells. We split the genes by expression level into two groups (6,097 genes each) to highlight that most of 
the improvement with increased sequencing depth and number of cells was driven by the estimates of the lower 
half of expressed genes. The data shown is for individual NA19239, but the results were consistent for individuals 
NA19098 and NA19101. Only high quality single cells (Supplementary Table S2) were included in this analysis.

A framework for testing individual and batch effects.  Individual effect and batch effect between the 
single cell samples were evaluated in a series of analyses that examine the potential sources of technical varia-
tion on gene expression measurements. These analyses took into consideration that in our study design, sources 
of variation between single cell samples naturally fall into a hierarchy of individuals and C1 batches. In these 
sample-level analyses, the variation introduced at both the individual-level and the batch-level was modeled 
in a nested framework that allows random noise between C1 batches within individuals. Specifically, for each 
cell sample in individual i, replicate j and well k, we used yijk to denote some sample measurement (e.g. total 
molecule-counts) and fit a linear mixed model with the fixed effect of individual αi and the random effect of batch 
bij:

α ε= + +y b (1)ijk i ij ijk

where the random effect bij of batch follows a normal distribution with mean zero and variance σb
2, and εijk 

describes residual variation in the sample measurement. To test the statistical significance of individual effect (i.e., 
null hypothesis α1 =​ α2 =​ α3), we performed a likelihood ratio test (LRT) to compare the above full model and the 
reduced model that excludes α1. To test if there was a batch effect (i.e., null hypothesis σ = 0b

2 ), we performed an 
F-test to compare the variance that is explained by the above full model and the variance due to the reduced 
model that excludes bij.

The nested framework was applied to test the individual and batch effects between samples in the following 
cases. The data includes samples after quality control and filtering.

1.	 Total molecule count (on the log2 scale) was modeled as a function of individual effect and batch effect, 
separately for the ERCC spike-ins and for the endogenous genes.

2.	 Read-to-molecule conversion efficiency was modeled as a function of individual effect and batch effect, 
separately for the ERCC spike-ins and for the endogenous genes.

Estimating variance components for per-gene expression levels.  To assess the relative contribu-
tions of individual and technical variation, we analyzed per-gene expression profiles and computed variance 
component estimates for the effects of individual and C1 batch (Supplementary Fig. S4). The goal here was to 
quantify the proportion of cell-to-cell variance due to individual (biological) effect and to C1 batch (technical) 
at the per-gene level. Note that the goal here was different from that of the previous section, where we simply 
tested for the existence of individual and batch effects at the sample level by rejecting the null hypothesis of no 
such effects. In contrast, here we fit a linear mixed model per gene where the dependent variable was the gene 
expression level (log2 counts per million) and the independent variables were individual and batch, both modeled 
as random effects.

The variance parameters of individual effect and batch effect were estimated using a maximum penalized 
likelihood approach44, which can effectively avoid the common issue of zero variance estimates due to small 
sample sizes (there were three individuals and eight batches). We used the blmer function in the R package blme 
and set the penalty function to be the logarithm of a gamma density with shape parameter =​ 2 and rate parameter 
tending to zero.

The estimated variance components were used to compute the sum of squared deviations for individual and 
batch effects. The proportion of variance due to each effect is equal to the relative contribution of the sum of 
squared deviations for each effect compared to the total sum of squared deviations per gene. Finally, we com-
pared the estimated proportions of variance due to the individual effect and the batch effect, across genes, using a 
non-parametric one-way analysis of variance (Kruskal-Wallis rank sum test).

Normalization.  We transformed the single cell molecule counts in multiple steps (Fig. 4). First, we corrected 
for the collision probability using a method similar to that developed by Grün et al.12. Essentially we corrected for 
the fact that we did not observe all the molecules originally in the cell. The main difference between our approach 
and that of Grün et al.12 was that we applied the correction at the level of gene counts and not individual molecule 
counts. Second, we standardized the molecule counts to log2 counts per million (cpm). This standardization was 
performed using only the endogenous gene molecules and not the ERCC molecules. Third, we corrected for 
cell-to-cell technical noise using the ERCC spike-in controls. For each single cell, we fit a Poisson generalized 
linear model (GLM) with the log2 expected ERCC molecule counts as the independent variable, and the observed 
ERCC molecule counts as the dependent variable, using the standard log link function. Next we used the slope 
and intercept of the Poisson GLM regression line to transform the log2 cpm for the endogenous genes in that 
cell. This is analogous to the standard curves used for qPCR measurements, but taking into account that lower 
concentration ERCC genes will have higher variance from Poisson sampling. Fourth, we removed technical noise 
between the eight batches (three replicates each for NA19101 and NA19239 and two replicates for NA19098). We 
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fit a linear mixed model with a fixed effect for individual and a random effect for the eight batches and removed 
the variation captured by the random effect (see the next section for a detailed explanation).

For the bulk samples, we used read counts even though the reads contained UMIs. Because these samples con-
tained RNA molecules from ~10,000 cells, we could not assume that the 1,024 UMIs were sufficient for tagging 
such a large number of molecules. We standardized the read counts to log2 cpm.

Removal of technical batch effects.  Our last normalization step adjusted the transformed log2 gene 
expression levels for cell-to-cell correlation within each C1 plate. The algorithm mimics a method that was ini-
tially developed for adjusting within-replicate correlation in microarray data24. We assumed that for each gene g, 
cells that belong to the same batch j are correlated, for batches j =​ 1, …​, 8. We also assume that the cell-to-cell gene 
expression variation due to C1 batch effect is independent of biological variation between individuals.

We fit a linear mixed model for each gene g that includes a fixed effect of individual and a random effect for 
within-batch variation attributed to cell-to-cell correlation in each C1 plate:

µ α ε= + + +y b , (2)g ijk g g i g ij g ijk, , , ,

where yg,ijk denotes log2 counts-per-million (cpm) of gene g in individual i, replicate j, and cell k; i =​ NA19098, 
NA19101, NA19239, j =​ 1, …​, ni with ni the number of replicates in individual i, k =​ 1, …​, nij with nij the number 
of cells in individual i replicate j. μg denotes the mean gene expression level across cells, αg,i quantifies the individ-
ual effect on mean gene expression, bg,ij models the replicate effect on mean expression level (assumed to be sto-
chastic, independent, and identically distributed with mean 0 and variance σg b,

2 ). Finally, εg,ijk describes the 
residual variation in gene expression.

Batch-corrected expression levels were computed as

= −ˆ ˆy y b , (3)g ijk g ijk g ij, , ,

where b̂g ij,  are the least-squares estimates. The computations in this step were done with the gls.series function of 
the limma package45. We note that the batch correction method described here relies on the assumption that the 
technical effect due to batch is identical across individuals (no interaction). This assumption may be violated, yet 
due to the small number of individuals in our study, we are unable to explicitly test for a first order interaction 
between batch and individual. In the future, the issue of confounding effect between individual and batch may be 
more effectively addressed in the design of the study, instead of increasing the sample size. Indeed, in the main 
text we describe a study design that can effectively address the issue of confounding effect by processing samples 
from multiple individuals in a single C1 plate.

Measurement of gene expression noise.  While examining gene expression noise (using the coefficient 
of variation or CV) as a function of mean RNA abundance across C1 replicates, we found that the CV of molecule 
counts among endogenous genes and ERCC spike-in controls suggested similar expression variability patterns. 
Both endogenous and ERCC spike-in control CV patterns approximately followed an over-dispersed Poisson 
distribution (Supplementary Fig. S11), which is consistent with previous studies11,20. We computed a measure 
of gene expression noise that is independent of RNA abundance across individuals46,47. First, squared coeffi-
cients of variation (CVs) for each gene were computed for each individual and also across individuals, using the 
batch-corrected molecule data. Then we computed the distance of individual-specific CVs to the rolling median 
of global CVs among genes that have similar RNA abundance levels. These transformed individual CV values 
were used as our measure of gene expression noise. Specifically, we computed the adjusted CV values as follows:

1.	 Compute squared CVs of molecule counts in each individual and across individuals.
2.	 Order genes by the global average molecule counts.
3.	 Starting from the genes with the lowest global average gene expression level, for every sliding window of 50 

genes, subtract log10 median squared CVs from log10 squared CVs of each cell line, and set 25 overlapping 
genes between windows. The computation was performed with the rollapply function of the R zoo package48. 
After this transformation step, CV no longer had a polynomial relationship with mean gene molecule count 
(Supplementary Fig. S11).

Identification of genes associated with inter-individual differences in regulatory noise.  To 
identify differential noise genes across individuals, we computed median absolute deviation (MAD) - a robust 
and distribution-free dissimilarity measure for gene g:

= | − |.= =MAD Median MedianadjCV (adjCV ) (4)g i g i i g i1,2,3 , 1,2,3 ,

Large values of MADg suggest a large deviation from the median of the adjusted CV values. We identified 
genes with significant inter-individual differences using a permutation-based approach. Specifically, for each 
gene, we computed empirical P-values based on 300,000 permutations. In each permutation, the sample of origin 
labels were shuffled between cells. Because the number of permutations in our analysis was smaller than the max-
imum possible number of permutations, we computed the empirical P-values as +

+
b
m

1
1
, where b is the number of 

permuted MAD values greater than the observed MAD value, and m is the number of permutations. Adding 1 to 
b avoided an empirical P-value of zero49.
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Gene enrichment analysis.  We used ConsensusPATHDB50 to identify GO terms that are over-represented 
for genes whose variation in single cell expression levels were significantly difference between individuals.

Individual assignment based on scRNA-seq reads.  We were able to successfully determine the correct 
identity of each single cell sample by examining the SNPs present in their RNA sequencing reads. Specifically, we 
used the method verifyBamID (https://github.com/statgen/verifyBamID) developed by Jun et al.27, which detects 
sample contamination and/or mislabeling by comparing the polymorphisms observed in the sequencing reads for 
a sample to the genotypes of all individuals in a study. For our test, we included the genotypes for all 120 Yoruba 
individuals that are included in the International HapMap Project28. The genotypes included the HapMap SNPs 
with the 1000 Genomes Project SNPs51 imputed, as previously described52. We subset to include only the 528,289 
SNPs that overlap Ensembl protein-coding genes. verifyBamID used only 311,848 SNPs which passed its default 
thresholds (greater than 1% minor allele frequency and greater than 50% call rate). Using the option –best to 
return the best matching individual, we obtained 100% accuracy identifying the single cells of all three individuals 
(Supplementary Fig. S9).

Data and code availability.  The data have been deposited in NCBI’s Gene Expression Omnibus53 and 
are accessible through GEO Series accession number GSE77288 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=​GSE77288). The code and processed data are available at https://github.com/jdblischak/singleCellSeq. 
The results of our analyses are viewable at https://jdblischak.github.io/singleCellSeq/analysis.
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