
Computational and Structural Biotechnology Journal 18 (2020) 2075–2080
journal homepage: www.elsevier .com/locate /csbj
Review
Method development for cross-study microbiome data mining:
Challenges and opportunities
https://doi.org/10.1016/j.csbj.2020.07.020
2001-0370/� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: College of Computer Science and Technology, Qingdao
University, Qingdao, Shandong 266071 China.

E-mail address: suxq@qdu.edu.cn (X. Su).
Xiaoquan Su a,b,⇑, Gongchao Jing b, Yufeng Zhang a,b, Shunyao Wu a

aCollege of Computer Science and Technology, Qingdao University, Qingdao, Shandong 266071 China
b Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101 China
a r t i c l e i n f o

Article history:
Received 4 June 2020
Received in revised form 22 July 2020
Accepted 24 July 2020
Available online 1 August 2020

Keywords:
Microbiome
Shotgun metagenome
Amplicon sequencing
Data mining
Microbiome search
Multi-omics data
a b s t r a c t

During the past decade, tremendous amount of microbiome sequencing data has been generated to study
on the dynamic associations between microbial profiles and environments. How to precisely and effi-
ciently decipher large-scale of microbiome data and furtherly take advantages from it has become one
of the most essential bottlenecks for microbiome research at present. In this mini-review, we focus on
the three key steps of analyzing cross-study microbiome datasets, including microbiome profiling, data
integrating and data mining. By introducing the current bioinformatics approaches and discussing their
limitations, we prospect the opportunities in development of computational methods for the three steps,
and propose the promising solutions to multi-omics data analysis for comprehensive understanding and
rapid investigation of microbiome from different angles, which could potentially promote the data-driven
research by providing a broader view of the ‘‘microbiome data space”.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Microbiome data provides a unique view to understand the
micro-ecology and further investigate the interactions between
microorganisms and their surrounding environment [1]. In recent
years, a vast number of microbial community specimens have been
sequenced to study on the microbial- associations to the natural
environment dynamics [2,3], human health [4–7], agriculture
[8,9], etc. Therefore, how to efficiently and comprehensively dis-
cover biological stories hidden under such a large-scale data has
become one of the most essential bottlenecks for microbiome
research at present [10,11]. Newly developed bioinformatics tools
are bringing opportunities in deciphering the microbiome data,
from general-purpose algorithms such as sequence alignment
and machine learning (ML), to microbiome-specific approaches
like operational taxonomy unit (OTU) picking [12] and
phylogeny-based distance metrics [13,14]. On the other hand, chal-
lenges have also already been placed by the vast volume of micro-
biome data, especially in integration of datasets produced by
multiple studies and platforms [15], comparison among samples
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Fig. 1. Key steps for meta-analysis on cross-study microbiome big-data. (a) Compositional profiling decodes the microbiome taxonomical and functional profiles from
sequences. (b) Data integration curates, normalizes and unifies existing datasets. (c) Data mining identifies and classifies the status of a given specimen by learned microbial
features from integrated data.
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[16] and status or disease classification and prediction by training
on large-scale datasets [17,18].

Meta-analysis on cross-study datasets can generate constant and
reproducible results as fundamental for further studies and applica-
tions [19–21]. Three analytical steps (Fig. 1) are playing crucial roles
in handling microbiome big-data: compositional profiling that
decodes the microbiome taxonomical and functional profiles from
sequences (Fig. 1a), data integration that curates, normalizes and
unifies existing datasets (Fig. 1b), and data mining that identifies
and classifies the status of a given specimen by learned microbial
features from integrated data (Fig. 1c). By reviewing the computa-
tional methods and tools development for microbiome profiling,
integration and data mining respectively, in this mini-review we
summarize the challenges and opportunities from such three
aspects (Table 1 and Table 2), and propose more prospective solu-
tions for comprehensive understanding and rapid investigation of
microbiome from different angles by multi-omics data analysis.
2. Microbiome compositional profiling

DNA sequencing is the primary approach to survey the compo-
sitional features of microbial communities [22]. Generally, two
sequencing strategies are widely used: amplicon sequencing that
employs the marker genes (e.g. 16S rRNA, 18S rRNA or ITS) for tax-
onomy identification, and shotgun metagenomic whole-genome
sequencing (WGS) that captures genome-wide sequences of all
organisms in a sample.
Table 1
Summary of challenges and opportunities for microbiome data analysis.

Methods Major challenges and limitations

Microbial profiling Marker-based profiling
� Only genus-level resolution
� Limited applicable range for functional profiling
WGS-based profiling

� Expensive sequencing cost
� Both data- and computing-intensive for analysis

Data integration General-purpose repositories
� Mostly only store raw sequences
� Lack of unified metadata and annotation
� Difficult to seek microbiomes that under a targeted cond
tion or with specific features

Status classification
and prediction

Machine learning
� Difficult to broadly decide whether a microbiome
healthy or not

� Inadequate performance in multiple-status classificatio
� Hard to extend a model to other cohorts
For marker-gene-based analysis, several algorithms have been
widely used for taxonomy assignment by sequence clustering
and OTU picking algorithms like UPARSE [12] and Usearch [23]
that based on sequence similarity. Amplicon sequence variants
(ASVs) tools such as DADA2 [24], Deblur [25] and UNOISE3 [26]
are further developed to improve the analytical precision of ampli-
con sequences on single-nucleotide level, which have higher relia-
bility, reproducibility and comprehensiveness than regular OTUs
[27]. Functional profiles could also be inferred from amplicons
using the linkages between marker genes and reference genomes
by PICRUSt [28,29], Tax4Fun [30] and other similar software. Most
of these approaches have already been integrated into comprehen-
sive pipelines such as QIIME [31,32], Mothur [33] or Parallel-
META3 [34] with additional statistical processes for quantitative
analysis on alpha and beta diversity of microbial communities.
As a cost-efficient method, amplicon-based analysis has been
adopted for large-scale microbiome surveys, however, the accuracy
is also limited due to PCR bias [35], low-resolution of short-read-
based markers and lack of marker-genome associations. For exam-
ple, taxonomy annotation by targeting sub-regions of 16S rRNA
short-reads is always on genus level [36,37], and function predic-
tion is not accurate for environmental microbes that lack reference
genomes [28].

Since WGS is more informative, some approaches utilize
unassembled WGS short reads for species or strain level taxonomy
annotation [38,39] (e.g. Karken [40], mOTUs [41], and MetaPhlAn2
[42]) and direct function parsing (e.g. HUMANn2 [43]), as well as
binning- or assembling-based tools (e.g. metaSPAdes [44], meta-
Opportunities and prospects

Full-length 16S
� Species- or strain-level resolution
� Expanded marker-genome linkage
� Unified reference and definite phylogeny for wide-range comparison

Shallow WGS
� Obtain species-level taxonomic and functional data at approximately the
same cost as amplicon sequencing

i-

Curated database
� Standard sequence quality control
� Unified microbial structural profiles and metadata annotation
� Feature-based sample query

Microbiome search engine
� ‘‘Community to communities” match on whole-microbiome-level
� Real-time level search speed

is

n

Search-based approach
� Status-assumption-free and bio-marker-free
� Robustness to data heterogeneity and contamination
Deep learning

� Hardware and system environment support for big-data training
� Optimization in multi-tag classification
� Well-implemented script-based packages



Table 2
Summary of current tools for microbiome data analysis.

Tool name Type URL Parallel computing Installation Reference

UParse OTU clustering tool https://drive5.com/uparse/ Multi-threads parallel computing Binary package [12]
Usearch Integrated sequence analysis tool for amplicons (e.g.

OTU clustering, denoising)
https://www.drive5.com/usearch/ Multi-threads parallel computing Binary package [23]

Vsearch Alternative implementation of Usearch https://github.com/torognes/vsearch Multi-threads parallel computing Source code / Binary package [49]
DADA2 Amplicon sequence variants (ASVs) tools https://benjjneb.github.io/dada2/ Multi-threads parallel computing Bioconda / Source code / Binary package [24]
Deblur Amplicon sequence variants (ASVs) tools https://github.com/biocore/deblur Multi-threads parallel computing Conda / Source code [25]
UNOISE3 Amplicon sequence variants (ASVs) tools http://www.drive5.com/

usearch/manual/unoise_algo.html
Multi-threads parallel computing Binary package [26]

PICRUSt/PICRUSt2 Functional profiles prediction from amplified marker
genes

http://picrust.github.io/picrust/ Multi-threads parallel computing Bioconda / Miniconda / Source code /
Online service (galaxy)

[28,29]

Tax4Fun Functional profiles prediction from amplified marker
genes

http://tax4fun.gobics.de/ Not appliable R package [30]

QIIME/QIIME2 Integrated microbiome bioinformatics workflow http://qiime.org/https://qiime2.org/ Partially with multi-thread parallel computing,
depends on the specific tool in the pipeline

Conda / Miniconda / VirtualBox / Docker [31,32]

Mothur Integrated microbiome bioinformatics workflow https://mothur.org/ Partially with multi-thread parallel computing,
depends on the specific tool in the pipeline

Binary package / Source code [33]

Parallel-META3 Integrated microbiome bioinformatics workflow http://bioinfo.single-cell.cn/parallel-
meta.html

Multi-threads parallel computing Source code [34]

Karken Taxonomical annotation of WGS short reads http://ccb.jhu.edu/software/kraken/ Multi-threads parallel computing Source code [40]
mOTUs Taxonomical annotation of WGS short reads https://motu-tool.org/ Multi-threads parallel computing Conda / Source code [41]
MetaphlAn2 Taxonomical annotation of WGS short reads https://huttenhower.sph.harvard.edu/

metaphlan
Multi-threads parallel computing Bioconda / Source code [42]

HUMANn2 Functional annotation of WGS short reads https://huttenhower.sph.harvard.edu/
humann

Multi-threads parallel computing Source code / Python-pip / Conda [43]

metaSPAdes Assembling of WGS short reads https://github.com/ablab/spades Multi-threads parallel computing Source code / Binary package [44]
Meta-IDBA Assembling of WGS short reads https://github.com/loneknightpy/idba Multi-threads parallel computing Source code [45]
MetaWARP Extraction and interpretation of high-quality

metagenomic bins
https://github.com/bxlab/metaWRAP Partially with multi-thread parallel computing,

depends on the specific tool in the pipeline
Conda / Bioconda / Docker / Source code [46]

NCBI-SRA Online general-purpose bio-data repository https://www.ncbi.nlm.nih.gov/sra Not appliable Online service [57]
MG-RAST Online microbiome data repository https://www.mg-rast.org/ Not appliable Online service [58]
EBI-Metagenomics Online microbiome data repository https://www.ebi.ac.uk/metagenomics/ Not appliable Online service [59]
JGI-IMG/M Online microbiome data repository https://img.jgi.doe.gov/ Not appliable Online service [60]
MPD Pathogen genome and metagenome database http://data.mypathogen.org Not appliable Online service [61]
GMrepo Curated database of human gut metagenomes https://gmrepo.humangut.info/home Not appliable Online service [65]
GcMeta Integrated microbiome research platform https://gcmeta.wdcm.org/ Partially with multi-thread parallel computing,

depends on the specific tool in the pipeline
Online service [66]

Qiita Online microbiome study management platform https://qiita.ucsd.edu/ Partially with multi-thread parallel computing,
depends on the specific tool in the pipeline

Online service [67,68]

MSE Microbiome search engine http://mse.ac.cn/ Multi-threads parallel computing Online Service / Source code [69]
TensorFlow Open source platform for machine learning https://www.tensorflow.org/ GPU parallel computing Python-Pip / Docker / Source code
PyTorch Library for deep learning https://pytorch.org/ GPU parallel computing Conda / Python-pip / Source code
IMP Integrated meta-omic pipeline framework https://r3lab.uni.lu/web/imp/ Partially with multi-thread parallel computing,

depends on the specific tool in the pipeline
Conda / Docker / Source code [97]
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IDBA [45] and MetaWRAP [46]) are capable for species genome re-
construction, de novo gene prediction and single nucleotide poly-
morphism (SNP) analysis. Nevertheless, WGS is also limited for a
broad-range application by the 3–10 folds higher overall cost
including sequencing, data storage and sharing, bioinformatics
processing of reads quality control [47,48], taxonomical and func-
tional [38,43] profiling than those of amplicons [28,34,49,50]. A
new library preparation protocol of shallow shotgun sequencing
obtains species-level taxonomic and functional profiles of micro-
biomes similar to that offered by regular deep sequencing, making
the WGS in a more economical way [51].

Rather than targeting specific variable sub-regions of short-
read-based amplification, full-length 16S rRNA gene sequencing
by PacBio or Oxford Nanopore sequencing platforms has the poten-
tial for accurate classification of individual organisms from micro-
bial communities at species or strain taxonomic resolution [52].
Meanwhile, since more and more full-length 16S rRNA gene
sequences and full genomes have been released [53], mapping
markers to unified references also enables the high-resolution
comparison of microbiome profiles on a wide range. To couple with
such advantages by long-read sequencing platform data, new
denoising, sequence clustering and annotation algorithms and
strategies should also be updated. Thus, the rapid development
of microbiome profiling methods provides the basis to enable a
broader view of the ‘‘microbiome data universe”.
3. Data repositories and integration

A huge number of microbiome datasets have been produced by
studies such as Human Microbiome Project [54], Earth Microbiome
Project [55] and American Gut Project [56]. Samples have been
deposited in online repositories, e.g. NCBI-SRA [57], MG-RAST
[58], EBI Metagenomics [59], JGI-IMG/M [60], MPD [61] and so
on. Such massive data brings the ‘‘materials” for research on the
global-wide microbial diversity and distribution, while also makes
new problems in data integration and reusage. In these reposito-
ries, most samples are organized by study and stored as raw or
clean DNA sequences, and metadata among studies are not unified
for feature selection and comparison, leading to the difficulty for
seeking microbiomes under a targeted condition or with specific
features.

To utilize and reuse valuable microbiome big-data for further
meta-analysis and comparison, several works re-organized the
microbiome samples with unified metadata format [62,63] and
standard operating procedures (SOPs) [64] for sequence process-
ing. GMrepo [65] is a database of well-organized and curated
human gut metagenomes with constantly annotated metadata.
GcMeta [66] features a data management system that integrated
with data analysis tools and workflows for archiving and publish-
ing data in a standardized way. In addition, Qiita [67,68] allows
users to perform meta-analysis across multiple studies, and
retrieve microbiomes that contain a specific feature (e.g. metadata,
taxon terms, and sequence fragments) by SQL-like queries.

Nevertheless, when new microbiomes are sequenced, it is still
difficult to find what existing microbiomes in the repositories or
databases have overall similar composition to them, thus answer
further questions like prediction of environmental conditions or
human health status. To tackle this case, a Microbiome Search
Engine (MSE) [69] has been developed for rapid ‘‘community to
communities” comparisons and matches. By a dynamic indexing
strategy and a series of whole-microbiome-level similarity scoring
function [70,71], MSE enables the real-time-level accessibility of
targeted microbiomes with specific structure frommassive volume
of data.
Another important barrier for integrating the cross-study
microbiome datasets is the technical variation of amplicon
sequencing data from multiple sources and batches. Technical fac-
tors can significantly affect the comparison among datasets includ-
ing DNA extraction, PCR primers for marker genes, sub-regions of
the marker gene amplification, sequencing platforms and types
of sequence reads [72]. For biological studies with large effect size
like comparing environmental microbiomes from multiple habitat
types, human microbiomes from different body sites and from
hosts with different ages, locations and diets, the technical differ-
ences can be outweighed by referenced-based taxonomy assign-
ment of 16S rRNA (e.g. mapping short-reads to full-length 16S
rRNA genes) [73,74], making the cross-study integration to be
meaningful. However, studies of more subtle effects still require
unified experimental protocols for producing amplicon datasets.
In contrast, shotgun WGS has been tested as less sensitive to tech-
nical differences in studying the disease association and temporal
dynamics of microbiome [19,75], which is an alternative option
for integration and comparison of cross-study datasets.
4. Data mining for status identification and classification

Since microbial communities shape the dynamics of ecological
systems, ranging from the human gut to the marine, one potential
of microbiome is linking variation of microbial composition to phe-
notypic and physiological statuses, which can inspire the develop-
ment of new techniques for disease diagnosis, ecological dysbiosis
detection and treatment evaluation. Previous studies have demon-
strated the feasibility of ML methods [18,76] in disease detection
and classification with human-associated microbiome data for
inflammatory bowel disease (IBD) [77], colorectal cancer (CRC)
[19], caries [78], etc., by extreme gradient boosting (XGBoost), ran-
dom forest (RF), support vector machine (SVM), k-nearest neighbor
(KNN) and otherML algorithms. As a quantitative approach, theML-
based indices are also designed to assess the risks for potential dis-
eases and to evaluate the effects amongdifferent treatments [79,80].

Typically, microbiome-based detection has to make a priori
assumption about a specific status (e.g. a disease) for given sam-
ples, and seek organismal or functional features (e.g. taxon or gene)
that unevenly distributed between disease and control samples as
bio-markers. Then ML models are trained and constructed using
these bio-markers for disease recognition. Since the detection
range is restricted to the given status types in such models, it is dif-
ficult to broadly decide whether the sample is healthy or not. Fur-
thermore, extending a particular model of a disease to other
cohorts can be challenging due to the heterogeneity of microbiome
data among population [81]. In addition, the same bio-markers can
be associated with multiple different diseases, which may also
result in errors in multiple disease classification [82].

A search-based strategy for disease detection and classification
has been developed, which detects abnormal samples via their out-
lier search-based novelty against large number of samples from
healthy subjects, and then identifies the specific disease type by
top-hits that searched in samples from patients [83]. This whole-
microbiome-level search and match strategy enables the identifi-
cation of microbiome states associated with disease even in the
presence of different cohorts, multiple sequencing platforms or sig-
nificant contamination, while currently the software is only imple-
mented for amplicon sequences processed by referenced OTU
picking.

Nowadays, application of deep learning such as deep neural
network (DNN) or convolutional neural network (CNN) has been
shifted from computer vision problems to microbial biological field
[17]. By parallel-computing-based hardware-level boost of
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multi-core CPU and many-core GPU, deep learning approach shows
its advantages in big data integration and robustness to data
heterogeneous [84], while the particular parameters in model con-
struction still need to be optimized for solving different questions.
At the same time, TensorFlow (https://www.tensorflow.org/) and
PyTorch (https://pytorch.org/) packages provide the easy imple-
mentation of artificial intelligence (AI) techniques by Python, driv-
ing the applications of deep learning for microbial analysis in
taxonomy identification [85], biomarker selection [86], multiple
disease detection and classification [87]. Another potential of deep
learning in microbiome research is the ability of multi-label classi-
fication that has been widely used in image processing [88]. It is
common that a single microbiome specimen could be associated
with more than one disease, and such samples have been collected
by several studies [56,89]. Since the current studies on microbiome
and disease mainly focus on single-label classification that each
individual sample is only with one specific status, such situation
could be solved by further extension of AI techniques in micro-
biome field.
5. Outlook of multi-omics data analysis

Studying on ‘‘what organisms exist in a microbial commu-
nity” and ‘‘what a microbial community can do” is no longer
adequate to fully understand the interactions between micro-
biome and environment. Although the profiling of DNA sequenc-
ing surveys the functional genes in a microbial community, the
functional activities and gene expressions of cells and the
metabolite products that reflect the biosynthetic features are still
unclear. Multi-omics data analysis of microbiome [90] utilizes
chemical and biological approaches to provide a comprehensive
view on ‘‘what a microbial community is doing”, which investi-
gates a microbiome community from further dimensions of
metatranscriptomics [91], metaproteomics [92], metabolomics
[93] and viromics [94]. Some of the previous works have demon-
strated the in-depth and unique insights of multi-omics data in
understanding human microbiome [95,96]. Nevertheless, the
data types and computational tools are mostly omics-specific,
e.g. software for metagenomic sequencing is not compatible with
RNA-seq data of metatranscriptomics and mass spectrum data of
metabolomics, making the combination of the multiple tools to
be case-specific, inextensible and irreproducible. Recently, a
workflow named IMP (Integrated Meta-omic Pipeline) was
released to perform automatic, standardized and flexible analysis
to incorporate metagenomic and metatranscriptomic data [97].
This open-development framework strategy enhances the inte-
gration of different type data analysis and the interpretation of
results from multiple aspects, as well as promotes the general
paradigm of microbiome multi-omics research.

Sequencing-based analysis is not routinely used in clinical or
industrial applications mainly due to the data generation by
sequencers usually takes at least 2 days [98]. At present,
fluorescence-activated cell sorting (FACS) approaches have been
developed for rapid functional cell-sorting, which is based on the
labeling of cells for target proteins, metabolites, or nucleic acids
[99]. A new series of label-free, single-cell-level imaging tools
using Raman-activated cell sorting (RACS) are also proposed for
the taxonomy or status identification of individual cells in a micro-
bial community [100,101]. Because it is an imaging approach,
obtaining the Raman spectrum can be non-destructive to the cell
and does not require external labeling or preexisting biomarkers.
More importantly, since FACS or RACS only costs seconds to profile
each cell, such techniques can be considered as single-cell-
resolution approaches that monitor microbiome with high
throughput and low time cost.
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