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-e aim of this study was to explore the function of long noncoding RNA (lncRNA) FAM13A-AS1 and its associated mechanism
in cervical cancer. A total of 30 cervical cancer tissues and adjacent tissues were collected. Cervical cancer cell lines, including SiHa
and HeLa, were transfected with constructs expressing LV-FAM13A-AS1, silencing RNA LV-siFAM13A-AS1, miRNA mimics,
and miRNA inhibitors. RT-qPCR was used to detect the expression of FAM13A-AS1 in cervical cancer tissues, including SiHa,
HeLa, and HUCEC cells. MTT, flow cytometry, and transwell assays were performed to explore the influence of FAM13A-AS1 on
cervical cancer cell proliferation, apoptosis, invasion, and migration. A bioinformatics analysis and a dual-luciferase assay were
carried to confirm the target relationship between FAM13A-AS1 or DDI2 and miRNA-205-3p. Finally, in vivo tumorigenesis
experiments were performed in nudemice to explore the effect of FAM13A-AS1 expression on cervical cancer. Low FAM13A-AS1
expression and high miRNA-205-3p expression were observed in cervical cancer tissues and cell lines (SiHa and HeLa).
Upregulating the expression of FAM13A-AS1 inhibited proliferation, migration, and invasion of SiHa and HeLa cells, while the
apoptosis of SiHa and HeLa cells was increased. More importantly, LV-FAM13A-AS1 could improve tumor development in vivo.
In addition, FAM13A-AS1 negatively regulated the expression of miRNA-205-3p, while miRNA-205-3p reduced DDI2 ex-
pression, and miRNA-205-3p mimic reversed the effects of FAM13A-AS1 overexpression in vitro. In conclusion, FAM13A-AS1
inhibits the progression of cervical cancer by targeting the miRNA-205-3p/DDI2 axis, suggesting that FAM13A-AS1 might be a
potential target for cancer cell treatment.

1. Introduction

Cervical cancer is the secondmost common type of malignant
tumor affecting women [1]. Recent data suggest that cervical
cancer is caused by HPVs, smoking, genetics, early sexual life,
and different kinds of environmental factors [2, 3]. Although
traditional therapies including surgery, radiation therapy,
targeted therapy, and chemotherapy are widely available for
cervical cancer [4], treatment outcomes remain poor and
most patients die after the onset of metastasis [3].-erefore, it
is urgent to clarify the molecular mechanisms underlying
cervical cancer in order to identify targets for its treatment
and to facilitate diagnosis and prognosis evaluation.

Long noncoding RNAs (lncRNAs) are a group of
noncoding RNAs that exceed 200 nucleotides. lncRNAs are

involved in modulating chromatin or acting as endogenous
sponges of microRNAs that lead to their expression silence
at the transcriptional level, thus leading to pathological
changes [5]. Several lncRNAs have shown to play important
roles in the promotion or suppression of cervical cancer by
regulating various biological processes including cell cycle,
survival, differentiation, and apoptosis [6, 7]. For instance,
lncRNA C5orf66-AS1 negatively regulates the expression of
miR-637 and promotes the invasion and growth of cervical
cancer by adjusting RING1 levels [8]. Moreover, lncRNA-
CTS was verified to be highly expressed in cervical cancer
tissues and cells and was shown to promote cervical cancer
progression by downregulating miR-505 expression and
facilitating the endothelial-mesenchymal transition [9]. Li
et al. revealed that lncRNA NCK1-AS1 accelerated the
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growth of cervical cancer by regulating the miR-6857/
CDK1 axis [10]. Shao et al. demonstrated that lncRNA
STXBP5-AS1 suppressed cervical cancer progression by
targeting the miR-96-5p/PTEN axis [11]. Gong et al.
showed that lncRNA HAND2-AS1 repressed cervical
cancer progression by interaction with transcription factor
E2F4 at the promoter of C16 or f74 lncRNA [12]. FAM13A-
AS1 is a novel lncRNA discovered in thyroid cancer which
shows potential for the prognosis of thyroid cancer [13].
However, its expression and mechanism in cervical cancer
have not been elucidated.

-erefore, in the present study, we examined the
function and mechanism of FAM13A-AS1 in cervical
cancer. We confirm that FAM13A-AS1 upregulates DNA-
damage inducible 1 homolog 2 (DDI2) expression through
miRNA-205-3p to suppress cervical cancer progression,
which implicates FAM13A-AS1 as a potential biomarker for
cervical cancer treatments.

2. Materials and Methods

2.1. Patients and Samples. Tumor tissue samples from 30
cervical cancer patients were collected from the surgical
specimen archives of Wuxi No. 2 People’s Hospital between
August 2019 and June 2020, with written informed consent
from the patients. Inclusion criteria were as follows: patients
diagnosed with direct operative squamous cell carcinoma at
International Federation of Gynecology and Obstetrics
(FIGO) stages I-II; clear preoperative biopsy and postop-
erative pathological diagnoses were available; this was the
first cervical cancer diagnosis for patients, and no other
chemotherapy or radiotherapy was administered before
surgery. -e animal experimental procedure was approved
by the Ethics Committee of the Wuxi No. 2 People’s
Hospital.

2.2. Cell Lines and Cell Culture. Human cervical cell lines
(HeLa cells and SiHa cells) and the human cervical epithelial
cell line HUCEC were obtained from the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China). Cells in the
third to eighth generation logarithmic growth phase were
selected for testing. Cervical cancer cells were incubated in
the Dulbecco’s modified Eagle’s medium (DMEM × high
glucose; Gibco, Invitrogen) containing 10% fetal bovine
serum (Gibco) at 37°C under 5% CO2 in a CO2 incubator.

2.3. Cell Transfection. In order to construct stable cells with
FAM13A-AS1 knockdown, silencing RNA (siFAM13A-
AS1) or negative control siRNA (siNC) was inserted into the
pLKO.1 vector (Sigma). -e target sequences of the siRNAs
were as follows: siRNA1 sense: GCUGGAUUA-
CAUAAUACUAUU, antisense: UAGUAUUAU-
GUAAUCCAGCUG; siRNA2 sense:
GCAAGUUUGCUCUAUAGAAUA, antisense:
UUCUAUAGAGCAAACUUGCUG; siRNA3 sense: GUA-
GAUGAGUGUUGUCUAAUG, antisense: UUAGACAA-
CACUCAUCUACAG. In order to construct stable cells
overexpressing FAM13A-AS1, the sequence of FAM13A-

AS1 was subcloned into the pLV plasmid (Inovogen,
KLV3501). TurboFect (-ermo) was used to cotransfect the
lentiviral expression plasmid psPAX2 (Addgene) and
pMD.2G plasmid (Addgene) into 293T cells. After trans-
fection, the lentiviral particles were harvested and used to
infect SiHa or HeLa cells. After 48 h, puromycin (3 μg/mL)
was administered for 1 week to select stable cells.

2.4. RT-qPCR. -e total RNA of cervical cancer tissues,
SiHa, HeLa, and HUCEC cells were extracted by TRIzol
reagent (-ermo Fisher) to detect the abundance of
FAM13A-AS1, miRNA-205-3p, and DDI2 in cervical cancer
tissues and cells. -e TaqMan microRNA Reverse Tran-
scription Kit or High Capacity cDNA Reverse Transcription
Kit (-ermo Fisher) was used to reverse transcribe 1 μg of
RNA into cDNA. Quantitative PCR was carried out using
SYBR Green Mix (-ermo Fisher) and a 7900HT Fast RT-
qPCRmachine (-ermo Fisher).-e reaction conditions for
qPCR were as follows: denaturation at 94°C for 15 s,
annealing at 56°C for 30 s, and extension at 72°C for 60 s, 35
cycles. -e primer sequences are given in Table 1. -e
relative levels of FAM13A-AS1, miRNA-205-3p, and DDI2
were calculated by the 2−ΔΔCtmethod. β-Actin was used for
the internal control for FAM13A-AS1 and DDI2, and U6
was used for the internal control for miR-205-3p.

2.5. In Situ Hybridization (ISH) Assay. ISH analysis was
performed to detect the expression level of FAM13A-AS1
in cervical cancer and normal tissues. -e ISH probe was
designed to target the following FAM13A-AS1 sequence:
5′-ATGCCTAACATATTATCTAGCCCT-3′. -e tissue-
fixed slides were digested with proteinase K (1 μg/ml) at
37°C for 10 minutes, and then, the slides and probes were
prehybridized at 42°C for 30 minutes at a final concen-
tration of 1.5 μg/ml. Incubate the slides in blocking buffer
for 15 minutes and preabsorb with biotin-conjugated
mouse antidigoxigenin (Boster, MK1003) at a dilution of
1 : 1000 at room temperature for 1 hour. Finally, hema-
toxylin was used as a background color, and 3,3′-dia-
minobenzidine was used to stain the slide to show the
positively stained tissue area. -ree biological replicates
were performed.

2.6. Western Blotting. Protein was extracted from the ex-
perimental and control groups, electrophoretically separated
by SDS-PAGE, and then transferred onto nitrocellulose
membranes.-e primary rabbit anti-human antibodies used
for immunoblotting were as follows: β-actin (42 kDa, 1 :
1000, ab8226, Abcam) and DDI2 (45 kDa, 1 : 500, sc-514004,
Santa Cruz). -e samples were incubated overnight at 4°C
and then washed with TBS-T three times. Goat anti-rabbit
secondary antibody (1 : 5000, Biosharp, BL001A) was in-
cubated with the membrane for 1 h, followed by washing
with TBS-T. -e Odyssey infrared laser scanning imaging
system (LI-COR Biosciences) was used to scan protein
bands. Membrane bands were analyzed using Image J v1.48
software (National Institutes of Health, USA).
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2.7.MTTAssay. HeLa cells in the logarithmic growth phase
were collected, and 5×103 cells were seeded in a 96-well
culture plate with a cell culture solution containing 10% fetal
bovine serum and DMEM. After culturing for 24 h, the
supernatant was discarded and 20 μl of sterile MTT (Sigma,
M2128) was added to the wells, including three replicate
wells for each time point. After 4 h of continuous culture, the
supernatant was completely removed, DMSO at 150 μl/well
was added, and the wells were shaken for 10min. -e ab-
sorbance at a 492 nm wavelength was measured with a
microplate reader, and the proliferation rate of each group
was calculated.

2.8. Transwell Invasion and Migration Assay. -e upper
chamber of a transwell insert was spread with Matrigel for
invasion assays (or left without Matrigel for migration ex-
periments) one day before cells were inoculated in the upper
chamber. ADMEM/high glucose mediumwith 10% FBS was
added to the lower invasion chamber, and the cell sus-
pension was transferred to the upper chamber at a density of
1× 105 cells/well. -e cells were incubated for 24 h; then, a
cotton swab was used to remove the Matrigel and the cells
from the upper chamber. -e cells that had migrated to the
lower chamber were fixed with 4% paraformaldehyde and
stained with 0.1% crystal violet. Photographs were captured
using light microscopy (Olympus).

2.9. Flow Cytometry Analysis of Cell Apoptosis. Four trans-
fected cell lines (LV-NC, LV-FAM13A-AS1, LV-siNC, and
LV-siFAM13A-AS1) were collected and resuspended in
binding buffer and used according to the instructions for the
Annexin V-FITC/PI kit (Beyotime) for apoptosis detection.
-e cells were analyzed by flow cytometry, and the apoptotic
rate was expressed as the percentage of cells in early apo-
ptosis (Annexin V-FITC-positive and PI-negative) and late
apoptosis (Annexin V-FITC-positive and PI-positive).

2.10. Dual-Luciferase Reporter Assay. -e DIANA database
(http://diana.imis.athena-innovation.gr/DianaTools/) and
TargetScan (https://www.targetscan.org/vert_80/) were used
to predict the binding sites for FAM13A-AS1 and DDI2 of
miR-205-3p, respectively.-e Shanghai Biotech Engineering
Co., Ltd. provided the mutant and wild-type sequences for
FAM13A-AS1 and DDI2. FAM13A-AS1 wild-type (WT),
FAM13A-AS1 mutant (MUT), DDI2 WT, and DDI2 MUT

reporter plasmids were transfected into 293 T cells with
miRNA mimics and NC mimics. Lipofectamine 2000 was
used for plasmid transfection, and Renilla luciferase plasmid
was used for experimental control. Luciferase activity was
measured 48 h after transfection using a dual-luciferase
reporter gene assay system (Promega, Madison, USA).

2.11. InVivoNudeMouseCervical CancerModel. Nude mice
(4–8 weeks old) were purchased from the Experimental
Animal Center of Yangzhou University. After the nude mice
were reared for one week, the same volume of control, LV-
NC, or LV-FAM13A-AS1 cell suspensions were injected
subcutaneously (0.5mL, 2×106mL−1 cells). -ere were six
nude mice in each group. -e tumor growth of the mice in
each group was monitored every 7 days. After 35 days, the
tumor mass in the nude mice was dissected.

2.12. ImmunohistochemicalAssay. -e tissues were fixed in a
formalin solution overnight, dehydrated in ethanol, em-
bedded in paraffin, and sectioned at 5 µm. -e slides were
blocked with 5% normal goat serum and incubated with
anti-Ki67 (1 : 500) and anti-DDI2 (1 :100) at 4°C. After
washing with PBS, the slides were incubated with goat anti-
rabbit horseradish peroxidase (Vector Laboratories, USA) at
room temperature for 30min. A DAB kit (DAB-1031, MXB
Biotechnologies, China) was used to visualize the immu-
nohistochemical reactions. Photographs were captured us-
ing light microscopy (Olympus Ckx53, Japan).

2.13. Statistical Analysis. Quantitative data are presented as
means± standard deviation. SPSS software (version 19.0;
IBM, USA) and GraphPad Prism 6.0 software (GraphPad
Software Inc., USA) were used. -e t-test and one-way
ANOVA were performed, followed by Stu-
dent–Newman–Keuls tests to determine statistical differ-
ences. -ree biological replicates were performed. P< 0.05
was considered to be a significant difference.

3. Results

3.1. FAM13A-AS1WasWeakly Expressed in Cervical Cancer.
ISH assays and RT-qPCR were performed to detect the
expression of FAM13A-AS1 using a specific probe. -e
expression of FAM13A-AS1 was significantly lower in

Table 1: Primer sequences used in real-time PCR.

Primer name Primer sequence

FAM13A-AS1 Forward (F): 5′-CAAATATGGGTAAGGAGG-3′
Reverse (R) 5′-GTTTAGAACTATGAGGGACT-3′

miRNA-205-3p Forward (F): 5′-GGCAGGGATTTCAGTGGAG-3′

DDI2 Forward (F): 5′’-TTCCCAAACTTACCCCGAATAGA-3′
Reverse (R): 5′-GGAGCAAGGCTGGATTGTC-3′

β-Actin Forward (F): 5′-TTCCCAAACTTACCCCGAATAGA-3′
Reverse (R): 5′-GGGCACGAAGGCTCATCATT-3′

U6 Forward (F): 5′-CTCGCTTCGGCAGCACA-3′
Reverse (R): 5′-AACGCTTCACGAATTTGCGT-3′
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cervical cancer tissues compared with the normal group
(Figures 1(a) and 1(b)).

3.2. FAM13A-AS1 Inhibited Proliferation and Promoted
Apoptosis of Cervical Cancer Cells. In order to examine the
effect of FAM13A-AS1 on the proliferation and apoptosis of
cervical cancer cells, RT-qPCR was used to evaluate the
expression of FAM13A-AS1 in SiHa and HeLa cells. -e
results in Figure 2(a) shows that the expression of FAM13A-
AS1 in SiHa and HeLa cells was significantly lower than that
in HUCEC cells. -e FAM13A-AS1 plasmid was transfected
into SiHa and HeLa cells, and transfection efficiency was
checked by RT-qPCR. -e results showed that FAM13A-
AS1 expression significantly decreased in LV-siFAM13A-
AS1 stable cell lines while increased in LV-FAM13A-AS1
stable cell lines compared with the control group
(Figures 2(b)–2(e)). Cell viability was detected by the MTT
assay, and the results showed that viability in the LV-
FAM13A-AS1 group was lower than in the LV-siFAM13A-
AS1 group and control group (Figure 2(d)). In addition, a
flow cytometry assay showed that downregulation of
FAM13A-AS1 notably inhibited apoptosis in SiHa and HeLa
cells, while compared with the control group, overexpression
of FAM13A-AS1 promoted the apoptotic process
(Figure 2(e)).

3.3. FAM13A-AS1 Inhibited Invasion and Migration of Cer-
vical Cancer Cells. Transwell assays were used to examine
the effects of FAM13A-AS1 on the invasion andmigration of
SiHa and HeLa cells. -e results showed that compared with
the control group and LV-NC group, the number of in-
vading and migrating cells in the LV-FAM13A-AS1 group
was significantly decreased but increased in the LV-
siFAM13A-AS1 group (Figures 3(a) and 3(b)). -e results
indicated that FAM13A-AS1 inhibited the invasion and
migration of cervical cancer cells.

3.4. FAM13A-AS1 Was a Sponge of miRNA-205-3p.
RT-qPCR was performed to detect the expression of miR-
205-3p in cervical cancer tissue and cell lines. -e results
showed that the expression of miR-205-3p in cervical cancer
tissue was significantly higher than in the control group
(Figure 4(a)), and a negative correlation was found between
FAM13A-AS1 and miR-205-3p in SiHa and HeLa cells
(Figures 4(b) and 4(c)). A dual-luciferase reporter assay
was performed to analyze the targeting of miR-205-3p to
FAM13A-AS1 in cervical cancer by establishing FAM13A-
AS1 constructs with WT and Mut binding sites for miR-
205-3p. Decreased FAM13A-AS1 luciferase activity was
observed after transfection of miR-205-3p (Figures 4(d)
and 4(e)), suggesting that FAM13A-AS1 was a sponge of
miR-205-3p.

3.5. DDI2 Was the Target of miRNA-205-3p. In order to
know the targets of miR-205-3p, TargetScan was used to
predict the targets of miR-205-3p. We further found that the
expression of DDI2 was lower in the tumor group compared

with the normal group of the targets with a high binding
score (Figure 5(a)). RT-qPCR also confirmed that the ex-
pression of DDI2 in cervical cancer was lower than in
normal tissue (Figure 5(b)). In cervical cancer cell lines,
overexpression of FAM13A-AS1 increased the DDI2 ex-
pression level (Figure 5(c)), and the miR-205-3p inhibitor
also increased the expression of DDI2, while miR-205-3p
mimic reversed these effects (Figure 5(d)). Similar results
were obtained by Western blot (Figures 5(e) and 5(f )).
According to the DIANAwebsite, miR-205-3p targets DDI2,
and the binding site is shown in Figure 5(g). -e results of
luciferase reporter experiments also indicated that miR-205-
3p targets DDI2 (Figure 5(h)).

3.6. LV-FAM13A-AS1 Inhibited Development of Tumors In
Vivo. Tumor volumes and weights in mice inoculated with
LV-FAM13A-AS1 cells were reduced compared with the
control and LV-NC group after transfection (Figures 6(a)–
6(c)). -e expression of FAM13A-AS1, miR-205-3p, and
DDI2 in tumor tissues was evaluated by RT-qPCR. Results
suggested that the expression of FAM13A-AS1 and DDI2
increased in the LV-FAM13A-AS1 group, while miR-205-3p
expression was decreased (Figure 6(d)). Immunohisto-
chemistry was performed to detect the expression of DDI2
and the tumor cell proliferation factor Ki67. Results showed
that the expression of DDI2 was increased, while the ex-
pression of Ki67 was decreased in the LV-FAM13A-AS1
group compared with the NC group (Figure 6(e)).

4. Discussion

Cervical cancer is one of the most common malignant
tumors worldwide. Human papillomavirus (HPV) infec-
tion is an important cause of cervical cancer [14, 15].
Persistent HPV infection may be related to cervical
intraepithelial neoplasia of different grades and invasive
cancer [16]. Radiotherapy and chemotherapy are the main
therapies for the treatment of cervical cancer [17]. How-
ever, the resistance of cervical cancer cells to therapeutic
drugs and the side effects of chemotherapy are the main
obstacles to the treatment of cervical cancer [18]. -ere-
fore, the discovery of new biomarkers for cervical cancer is
necessary for the early diagnosis, prevention, and treat-
ment [19].

lncRNAs are a class of noncoding RNA containing more
than 200 nucleotides that were initially considered tran-
scriptional noise [20]. Previous studies have reported that
lncRNAs have functions in numerous biological activities,
including cell cycle regulation [21], stem cell differentiation,
the immune response [22], cancer progression [23], and
chemotherapy resistance [24]. Zhang et al. [25] suggested
that abnormal expression of lncRNAs plays an important
role in tumorigenesis, invasion, and metastasis, including in
cervical cancer. FAM13A-AS1 has been reported as a novel
genetic locus in clinical thyroid disease and bladder cancer,
which can inhibit tumor growth and prolong the survival
time of patients [13, 26]. Recently, Wang et al. demonstrated
that FAM13A-AS1 promoted renal carcinoma
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Figure 1: FAM13A-AS1 is weakly expressed in cervical cancer. (a) RT-qPCR was used to detect the expression of FAM13A-AS1 in tumor
tissues and normal tissues. (b) ISH assay performed to detect the expression of FAM13A-AS1 using a specific probe.
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Figure 2: Continued.
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tumorigenesis through sponging miR-141-3p to upregulate
NEK6 expression, suggesting that FAM13A-AS1 played an
important role in the progression of cervical cancer [27].
However, the functions of FAM13A-AS1 in cervical cancer
have not been studied. -e current study was designed to
investigate the roles of FAM13A-AS1 in cervical cancer and
the underlying mechanisms of cancer development and
progression. In the present study, we found that the ex-
pression levels of FAM13A-AS1 were revealed to be sig-
nificantly downregulated in cervical cancer tissues and were
related to the poor survival of cervical cancer patients. In
addition, we found that overexpression of FAM13A-AS1
inhibited proliferation, migration, and invasion of cervical
cancer cells in vitro and blocked tumor growth in vivo.
-erefore, FAM13A-AS1 is likely to act as a tumor sup-
pressor in cervical cancer.

A number of studies have shown that in cervical cancer,
lncRNAs competitively decoy miRNAs via miRNA re-
sponse elements (MREs), and this process reduces the
binding of miRNAs to their target mRNAs, which indi-
rectly upregulates the level of downstream mRNAs
[28–30]. -us, we assumed that FAM13A-AS1 might

function as a molecular sponge in suppressing cervical
cancer. It has been shown that miR-205-3p is highly
expressed in cervical cancer patients and is associated with
poor survival [31]. Our results indicate that the expression
of miR-205-3p is significantly downregulated in cervical
cancer tissues and cells. FAM13A-AS1 and miR-205-3p
were negatively correlated in cervical cancer. With the help
of the DIANA database, we found that miR-205-3p has a
potential binding site targeting FAM13A-AS1. -e dual-
luciferase reporter gene assay confirmed that FAM13A-AS
can bind with miR-205-3p to inhibit its level, suggesting
that FAM13A-AS could act as a sponge to bind with miR-
205-3p.

DDI2 is a DNA damage-inducing protein homolog. -e
functions of DDI2 in cancer biology have only been reported
in colorectal cancer and thyroid cancer [32, 33]. In the
present study, we indicated that the expression of DDI2 in
cervical cancer tissue was significantly lower than in normal
tissue. Dual-luciferase reporter gene assays showed that
DDI2 is a direct target of miR-205-3p. Further analysis
showed that the expression of DDI2 could be regulated by
miR-205-3p both in vitro and in vivo.
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Figure 2: Effects of FAM13A-AS1 on proliferation and apoptosis of cervical cancer cells. (a) Expression of FAM13A-AS1 in cervical cancer
cell lines detected by RT-qPCR. (b) SiHa and HeLa cells transfected with LV-siNC (negative control, NC) or LV-siFAM13A-AS1. FAM13A-
AS1 levels were examined by RT-qPCR. (c) SiHa andHeLa cells transfected with LV-FAM13A-AS1 or LV-vector (NC). FAM13A-AS1 levels
were examined by RT-qPCR. (d) Cell proliferation detected by the MTT kit. (e) Flow cytometry assays used to detect cell apoptosis.
∗P< 0.05, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001.
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Figure 3: Effects of FAM13A-AS1 on migration and invasion of cervical cancer cells. (a, b) Transwell chamber assays analyzed the effect of
FAM13A-AS1 on cervical cancer cell migration and invasion. Statistical analysis shows the effect of FAM13A-AS1 on migration and
invasion of cervical cancer cells, compared with the NC group. ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001.
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Figure 4: Continued.
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Figure 5: miR-205-3p interacts with DDI2. (a) -e expression of DDI2 in cervical cancer patients from TCGA performed by gene
expression profiling interactive analysis. (b) RT-qPCR was used to detect the expression of DDI2. (c), (d) Relative DDI2 expression after
transfection of FAM13A-AS1, miR-205-3p inhibitor, or miR-205-3p mimic. (e), (f ) Western blot assay detected the protein level of DDI2
after transfection. (g) -e binding site of miR-205-3p and DDI2. (h) Luciferase reporter experiments confirmed that miR-205-3p targeted
DDI2. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001.
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Figure 6: LV-FAM13A-AS1 inhibited development of tumors in vivo. (a) HeLa cells (2 × 106 cells per mouse, n� 6) inoculated in NOD/
SCID nude mice to establish subcutaneous xenograft tumors. -e mice were euthanatized at 35 days and the tumors were dissected. (b), (c)
Relative tumor volumes and weights measured at 35 days. (d) RT-qPCR was used to detect the expression of FAM13A-AS1, miR-205-3p,
and DDI2 in tumor tissues. (e) Representative images of immunohistochemical staining for Ki67 and DDI2 in different groups. ∗∗P< 0.01,
∗∗∗∗P< 0.0001.
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In conclusion, FAM13A-AS inhibited the progression of
cervical cancer by targeting the miR-205-3p/DDI2 axis.
-ese findings suggest that FAM13A-AS might be a new
target for cervical cancer treatment.
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