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ABSTRACT: Artificial force has been proven useful to get over
energy barriers and quickly search a large portion of the energy
landscape. This work proposes a method based on graph neural
networks to optimize the choice of transformation patterns to
examine and accelerate energy landscape exploration. In open
search from glutathione, the search efficiency was largely improved
in comparison to random selection. We also applied transfer
learning from glutathione to tuftsin, resulting in further efficiency
gains.

In computational chemistry, chemical reactions are oftenrepresented as multiple transitions between equilibrium
structures (denoted as EQs) on the quantum chemical energy
landscape.1,2 A reaction path network is defined as a graph
where EQs and transitions between them are described as
nodes and edges, respectively. Construction and analysis of
reaction path networks allow us to predict the products of a
reaction and their production pathways from a set of
reactants.3,4 Conversely, the reactants can be predicted from
a given set of products by tracing back production pathways.5

To construct a reaction path network, various approaches
including gradient extremal following,6 eigenvector following,7

VADER,8 anharmonic downward distortion following
(ADDF),9,10 single-/double-ended growing string method
with systematic molecular graph transformations,11,12 freezing
string method with the Berny algorithm,13 nanoreactor,14

KinBot,15 Chemoton,16 and so forth17−19 have been proposed.
Considering the balance of accuracy and computational cost,
this study focuses on Monte Carlo search using artificial force
and density functional theory (DFT) calculations.20 It is
possible to find neighboring nodes by naive Monte Carlo
simulation,21 but it takes a long time to get over the energy
barrier. To cope with the problem, the artificial force induced
reaction (AFIR) method employs an artificial force to help the
transition beyond a barrier20 (Figure 1a). The additional force
term V(Q) modifies the potential energy surface to encourage
transition to another EQ. Monte Carlo simulation based on the
modified surface FAFIR provides us a path from the current EQ
to another, i.e., AFIR path. A variant of the AFIR algorithm
called single-component artificial force induced reaction (SC-
AFIR) maintains a list of currently available EQs and choose
one based on an energy-based criterion (Figure 1b). Then, two
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Figure 1. Schematic illustrations of single-component artificial force
induced reaction (SC-AFIR) method. (a) AFIR function (FAFIR)
consisting of the potential energy surface E(Q) and the force term
V(Q) for the reaction coordinate from EQ1 to EQ2. (b) Expansion of
the reaction path network by an AFIR-path calculation from a selected
node EQ1 to EQ2. (c and d) Fragments around the chosen atom pair
pulled apart or pushed closer.
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atoms in the EQ and the force direction are randomly chosen.
The direction can be either positive (push closer, Figure 1d) or
negative (pull apart, Figure 1c). An AFIR-path calculation
based on DFT is performed with the artifical force applied to
the fragments around the chosen atoms. The SC-AFIR method
has been proven effective in elucidating various reactions such
as N-difluoroalkylative dearomatization of pyridines,22 CO
oxidation on Pt(111) surface,23 and difluoroglycine syn-
thesis.24

Despite remarkable applications, the SC-AFIR search still
requires an excessively large number of DFT calculations. One
reason is that the probability that a new EQ is found is
relatively low, because the chosen atoms may not be relevant
to any possible reaction. A similar problem is seen in various
automated potential energy surface exploration methods.
Conventionally, energy-based indices such as the magnitudes
of normal-mode eigenvalue and anharmonic downward
distortion have been used to rank the importance of paths
and improve the probability of finding low-barrier paths.7,10

However, such energy-based indices tend to guide low-barrier
paths such as conformational changes rather than middle- to
high-barrier paths accompanying bond reorganizations and
thus are not ideal for the present purpose. In this work, we aim
to use a deep learning model to optimally choose an
intervention (i.e., the atom pair and the direction). Given an
EQ and an intervention, our graph neural network (GNN)
provides a score about the chance of the outcome being a
success. We regard the outcome as a success if both of the
following criteria are satisfied: (1) A new EQ is found. (2) The
new EQ contains a change in 2D structure (e.g., bond
formation or break). The second criterion is added to avoid
making too many EQs of the same 2D structure and realize
quick exploration of the chemical space. Before SC-AFIR is
applied to an EQ, all possible interventions are listed and
scored by our GNN. The best scoring intervention is chosen
for an AFIR-path calculation (Figure 1a,b). In the search,
GNN is trained online; that is, the training set grows as the
search proceeds. In the beginning, GNN conducts un-informed
decisions, but it gradually learns from the past experience to
make better decisions.
In an exploratory search starting from a tripeptide

glutathione, we demonstrate that GNN substantially improves
search efficiency over conventional SC-AFIR. In addition, we
perform tranfer learning25 to investigate how well the data
obtained in previous searches can improve future search. We
took the GNN trained in glutathione search and retrained a
part of it in the search from a different peptide, tuftsin. As a
result, the search efficiency was improved over the search
without transfer learning, showing that knowledge transfer is
possible. Our case studies imply that deep learning models that
have shown exceptional performances in various tasks26 can
also contribute to reaction analysis and suggest the possibility
of further improvement via systematic data collection.
In our model (Figure 2), an EQ is translated to two graphs.

One is a fully connected graph, whose node is labeled with a
one hot vector of its atom symbol and each edge is labeled,
with the following m-dimensional vector,
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where rij is an interatomic distance between atom-i and atom-j
and the cutoff values are defined as μk = 0.1k Å (k = 1, 2, ...,

m). In the following experiments, m is set as 64. The other is a
molecular graph whose nodes are labeled with atom symbols
and an edge represents the existence of a chemical bond.
In this network, we are interested in creating a vector

representing both the graph and the intervention. Each graph
is first processed with 4 layers of graph isomorphism network
(GIN),27 where feature vectors of each node are computed by
message-passing. To take the direction into account, an
attribute (+1 or −1) is concatenated to all node vectors.
Next, a multihead attention layer28 creates a vector
representation specific to the atom pair (i.e., the network
pays attention to the atom pair). There are eight independent
attention layers, each of which is described as follows. Let X be
the matrix of all feature vectors, and xa and xb are those of the
chosen atom pair, atom-a and atom-b. Let us define

q x W q x W K XW V XW, , ,a a q b b q k v= = = =

where Wq, Wk, and Wv are trainable parameters for query (q),
key (K), and value (V), respectively. The output of the
attention layer is computed as
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where n is the dimensionality of the query and key, and it is set
to eight in this study. The dimensionality of z is designated as
eight, so each graph is translated to a 64-dimensional vector.
Finally, the vectors from the two graphs are concatenated and
fed into a fully connected network to yield a final prediction
score about the outcome. Training was conducted with a
Radam optimizer29 on Pytorch Geometric.30

In our implementation of GNN/SC-AFIR, model training,
and AFIR-based exploration run in parallel, while sharing a set
of training examples. The explorer selects an EQ from the pool
of existing EQs by a energy-based criterion and computes the
scores with respect to all possible interventions with the
current GNN. The top-scoring intervention is chosen and
AFIR is carried out to either find a new EQ or fail to do so.
This AFIR trial creates a new training example, which is added

Figure 2. Deep learning model for predicting AFIR outcomes. An EQ
geometry is translated to two graphs, i.e., 2D and 3D graphs. A
multihead attention layer creates a vector representation. Finally, two
vectors are concatenated and fed into a fully connected network to
yield a prediction score.
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to the training set. The model trainer works continuously in
parallel, where GNN is updated with the currently available
training set at each epoch.
The SC-AFIR searches are done by GRRM2031 interfaced

with ORCA32 in a vacuum at the GFN2-xTB level.33,34 In this
study, EQs are selected according to original GRRMs strategy,
which is based on Boltzmann distribution. The temperature of
the distribution is 10000 K. The algorithm avoiding Hessian
calculations is adopted. The model collision energy parameter
γ of the AFIR method is set to 200 kJ/mol. To prevent a
molecule from going too far from the reaction center, a weak
force with γ/(kJ/mol) = 100/[N(N − 1)/2] is applied to all
atom pairs, where N corresponds to the number of atoms in
each system. GNN/SC-AFIR was developed as a stand-alone
external code. The GRRM20 program31 equips SubSelectEQ
and SubPathsGen options, and these options allow one to
develop an SC-AFIR driver without accessing internal
functions of GRRM. The external python code for GNN/
SC-AFIR is available at https://github.com/NakaoAtsuyuki/
GNN-SC-AFIR.
Glutathione is a tripeptide that works as an antioxidant in

plants and animals35 (Figure 3a). In the search from this

molecule, we compare our model with random selection in
efficiency. Figure 4 shows the number of unique 2D structures
discovered in the search against the number of AFIR-path
calculations during an SC-AFIR search. It is clearly observed
that our method is significantly more efficient than a random
search. On average over five runs in each method, the success

rate of our model is 18.2%, more than double that of random
selection, 8.2%.
Table 1 shows the top-10 frequently selected interventions

by our model and random selection. The success rate of the

atom pairs selected by GNN/SC-AFIR is higher than those by
random selection, implying that GNN successfully learned to
choose reactive atom pairs. In random selection, a hydrogen
connected to a carbon is frequently chosen, simply because
such connections are common in molecules. Such hydrogens
are often not reactive, and interventions to them are unlikely to
change the 2D structure. In GNN/SC-AFIR, the atoms
belonging to polar groups are overrepresented. They are
highly reactive and likely to lead to new 2D structures. The
most frequent pair is the combination of the hydrogen in a
carboxy group and the oxygen in a carbonyl group.
Considering the fact that a carboxy group is likely to constitute
a peptide bond, the atom pair seems to be related to
hydrolysis.
Transfer learning is a machine learning methodology of

reusing the knowledge obtained from solving a problem to
solve a related but different problem.25 It is often implemented
by taking a neural network trained with data about a learning
problem and retraining a subset of the parameters with data
about a different problem.36 Here, we take the GNN trained
with 60000 examples from the glutathione search and retrain
the last part of the GNN, i.e., multihead attention layer and
fully connected layers, in searching from a new peptide,

Figure 3. Target molecules: (a) glutathione and (b) tuftsin.

Figure 4. Search efficiency of our model and random selection in the
search from glutathione. Light-colored lines represent individual trials,
and dark-colored lines represent the mean value of 5 trials.

Table 1. Top-10 Frequently Selected Interventionsa

aTable a is sorted by the number of GNN/SC-AFIR selections
(denoted as ML), and table b is sorted by the number of random/SC-
AFIR selections (denoted as RN). Atom-a and atom-b indicate the
vicinity 2D structure around the selected atoms (circled). Force
indicates the AFIR force direction, push together (+) or pull apart
(−). Success rate represents the rate of reaching EQs having different
2D structures.
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tuftsin.37 It is a tetrapeptide Thr-Lys-Pro-Arg related to
immunity (Figure 3b). The transfer learning is compared
with learning from scratch and random selection. As shown in
Figure 5, transfer learning outperformed nontransfer learning

significantly, indicating that knowledge obtained in a search
can successfully be transferred to a related search. The GRRM
input file and the EQs found in the all explorations are
available at https://github.com/NakaoAtsuyuki/GNN-SC-
AFIR.
In conclusion, we have shown that a graph neural network

can be used to accelerate the chemical space search by the SC-
AFIR method. Although the guide by GNN has been
introduced in the combination with SC-AFIR in this work, it
would be possible to combine a similar guide with various
other methods such as ones that also choose atom pairs and
apply artificial force,16 ones that choose modes to follow,6,7,9,10

ones that choose driving coordinates,8,13 and ones that choose
bonds to reorganize.11,12 Notably, our success in knowledge
tranfer is encouraging, because it suggests that the construction
of a general purpose model applicable to any reaction (like
Alphafold38) may be possible. To this aim, however, it is
necessary to collect data from as many reactions as possible.
Accumulation of such data about reactions would be essential
not only to help chemical space search but also to understand
the detailed mechanisms of chemical reaction.
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