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Breast cancer is one of the most common malignancy among women worldwide.
Metastasis is mainly responsible for treatment failure and is the cause of most breast
cancer deaths. The role of metabolism in the progression and metastasis of breast cancer
is gradually being emphasized. However, the regulatory mechanisms that conduce to
cancer metastasis by metabolic reprogramming in breast cancer have not been
expounded. Breast cancer cells exhibit different metabolic phenotypes depending on
their molecular subtypes and metastatic sites. Both intrinsic factors, such as MYC
amplification, PIK3CA, and TP53 mutations, and extrinsic factors, such as hypoxia,
oxidative stress, and acidosis, contribute to different metabolic reprogramming
phenotypes in metastatic breast cancers. Understanding the metabolic mechanisms
underlying breast cancer metastasis will provide important clues to develop novel
therapeutic approaches for treatment of metastatic breast cancer.
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INTRODUCTION

Breast cancer is the most common malignant tumor and the second capital reason for cancer death
among women worldwide (1, 2). Metastatic breast cancer, not the primary tumor, is responsible for
more than 90% cancer-related deaths (3). A SEER based study showed that for metastatic breast
cancer patients: 30–60% have metastases in the bone, 21–32% in the lung, 15–32% in the liver and
4–10% in the brain. Moreover, the preferred metastatic sites appear to depend on the specific
pathological subtypes of primary breast cancers (4).

Recently, increasing evidence point out that cancer is not only a genetic disease but also a
metabolic disease, in which oncogenic signaling pathways participate in energy regulation and
anabolism to support rapidly spreading tumors (5). In this sense, metabolic reprogramming is
considered a hallmark of cancer (6, 7). Notably, metabolic reprogramming and its complex
regulatory networks also affect the tumorigenesis and progression of breast cancer (8).
Considered as a high heterogeneous disease, breast cancer includes four main intrinsic molecular
subtypes: Luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). Each
subtype has different proliferation and metastasis capabilities, as well as metabolic genotypes and
phenotypes (9–16) (Table 1). Specifically, TNBC cells possess particular metabolic traits
characterized by high glycolysis and low mitochondrial respiration (22). HER2-positive tumors
display higher glutamine metabolic activity and higher lipid metabolism than other subtypes
January 2021 | Volume 10 | Article 6024161

https://www.frontiersin.org/articles/10.3389/fonc.2020.602416/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.602416/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zhangshizhen@zju.edu.cn
mailto:wangxiaochen@zju.edu.cn
https://doi.org/10.3389/fonc.2020.602416
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.602416
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.602416&domain=pdf&date_stamp=2021-01-07


Wang et al. Metastatic Metabolism of Breast Cancer
(15, 20). Nevertheless, metabolic changes may not only be varied
in different breast cancer subtypes, but also diverged relying on
the interplay of cancer cells with the complex microenvironment
(16, 23).

This review addresses the current knowledge on the crosstalk
between metabolic reprogramming and metastatic process in
breast cancer. A better understanding of the metabolic
mechanisms driving breast cancer metastasis may provide
clues for discovering new anticancer therapeutics.
OVERVIEW OF METABOLIC
PROGRAMMING IN BREAST CANCER

Glucose Metabolism
In response to external growth signals, normal cells in a rapidly
proliferating state activate assorted signaling pathways to
suppress oxidative phosphorylation (OXPHOS), and advance
glycolysis and anabolic metabolism for cell growth. Cancer cells
Frontiers in Oncology | www.frontiersin.org 2
is able to hijack this mechanism to meet developmental needs
even if there are no external signals (24) (Figure 1). Different
from normal cells where glycolysis and OXPHOS are always
negatively correlated, cancer cells possess these two modes
coexisting to disparate degrees (25). Moreover, unlike normal
cells, which mainly produce adenosine triphosphate (ATP) from
glucose-derived pyruvate by OXPHOS through the TCA cycle,
most cancer cells depend on glycolysis to generate energy even
under aerobic conditions (26). It was found that tumors
displayed dual metabolic natures that tumor cells could switch
from the aerobic glycolysis back to OXPHOS phenotype upon
lactic acidosis (27). Furthermore, some tumors exhibit two-
compartment tumor metabolism, called the reverse Warburg
effect or metabolic coupling, which indicates that glycolytic
metabolism in the cancer-related stroma sustains the adjacent
cancer cells. Such metabolic phenotype will contribute to
chemotherapy resistance, and also explain the contradictory
phenomenon of high mitochondrial respiration and low
glycolysis rate in some tumor cells (28–30). Moreover, a large
sample data study showed luminal subtype correlated with
TABLE 1 | Metabolic differences in different breast cancer subtypes.

Expression level Luminal A subtype Luminal B subtype HER2+ subtype Basal-like/TNBC

Glucose
metabolism

G6PD and 6PGL (17) lower Higher
6PGDH (17) only
HIF-1a, IGF-1, and MIF
(18)

Notedly increased

GLUT-1 and CAIX (18) Notedly Increased
Amino acid
metabolism

Stromal GLS1 (19) Lowest Highest
Stromal GDH (19) Lowest Highest
Tumoral GDH (19) Highest lowest
Tumoral ASCT2 (19) Lowest Highest
Stromal PSPH and
SHMT1 (14).

Lowest Highest

Stromal and tumoral
GLDC (14)

Highest lowest

Lipid
metabolism

Tumoral PLIN1, CPT-1A,
and FASN (20)

Highest lowest

Tumoral FABP4, and
ACOX-1 (20)

Highest

ER+ tumor ER- tumor
Inhibition of 27-hydroxycholesterol synthesis decreases
cell proliferation in ER+ cancers but not in ER- cancers
(12).

Higher ACAT activity, higher caveolin-1 protein levels, greater LDL
uptake, and lower de novo cholesterol synthesis (10);
Products of de novo fatty acid synthesis, such as palmitate-
containing phosphatidylcholine, were high (11).

Genes
related
with
metabolism

Luminal B tumors displayed higher glutamine metabolic
activity driven by MYC than Luminal A tumors (15).

Highest glutamine
metabolic activity and
higher MYC amplification
(15).

Loss of p53 collaborates with MYChigh/
TXNIPlow-driven metabolic dysregulation
to drive the aggressive clinical behavior
in TNBC but not in other subclasses of
breast cancer (21).
Jan
ER, estrogen receptor; TNBC, triple-negative breast cancer; G6PD, glucose-6-phosphate dehydrogenase; 6PGL, 6-phosphogluconolactonase; GLS1, glutaminase 1; GDH, glutamate
dehydrogenase; ASCT2, alanine-serine-cysteine transporter2; HIF-1a, hypoxia‐inducible factor 1a; SHMT1, serine hydroxymethyltransferase 1; IGF-1,insulin-like growth factor-1; MIF,
macrophage migration inhibitory factor; GLDC, glycine decarboxylase; PLIN1, perilipin-1; FASN, fatty acid synthase; CPT-1A, carnitine palmitoyltransferase-1; FABP4, fatty acid binding
protein 4; ACOX-1, acyl-CoA oxidase 1; GLUT-1 glucose transporter protein-1; CAIX, carbonic Anhydrase IX; ACAT, acetyl-CoA acetryltransferase; sPLA2, secreted phospholipase A2;
TXNIP, thioredoxin-interacting protein.
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reverse-Warburg/null phenotypes that are metabolically inactive,
while TNBC correlated with Warburg/mixed phenotypes that
are metabolically active (31). Additionally, hypoxic environment
in breast tumors brings about increased production of reactive
oxygen species (ROS) (32), at the same time, induced hypoxia-
inducible factor 1 (HIF-1) is able to boost glucose metabolism to
maintain the redox homeostasis (33).

Glucose transport cross cell membrane through the glucose
transporter proteins (GLUTs) and different GLUTs expression in
breast cancers are related to dissimilar pathological grades and
prognosis. GLUT1-5 and GLUT12 are functionally in breast
cancer cells (34–37), and GLUT1 appears to play the most
important role (38). Interestingly, TNBC had the highest
expression of GLUT1 when contrasted with other subtypes,
suggesting the highly active metabolic status in TNBC (18).
Moreover, some critical glycolysis-related enzymes, such as
hexokinase (HK) and lactate dehydrogenase-A (LDHA), are
highly activated in breast cancer and related to cancer growth
and progression (39, 40).

The pentose phosphate pathway (PPP) is another way of
oxidative decomposition of glucose besides glycolysis and TCA
cycle, which produces nicotinamide adenine dinucleotide
phosphate (NADPH), ribose phosphate, fructose-6-phosphate
(F6P) to make cancer cells satisfy their anabolic needs and
respond to oxidative stress (41). Proteins involved in PPP are
distinctively expressed in different molecular subtypes of breast
Frontiers in Oncology | www.frontiersin.org 3
cancers. For example, the expression of glucose-6-phosphate
dehydrogenase (G6PD) and 6-phosphogluconolactonase
(6PGL) were elevated, implying a more activated PPP in HER2
subtype than other subtypes of breast cancer (17). It has been
suggested that the expression of G6PD and transketolase (TKT)
are positively correlated to the decreased overall and relapse-free
survival in breast cancer (42).

Amino Acid Metabolism
Glutamine and its metabolic intermediates such as antioxidants
nicotinamide adenine dinucleotide (NADH), and glutathione
(GSH), participate in energy supply, supplement glucose
metabolism and help cells resist oxidative stress to uphold
proliferation and progression of tumor cells (43, 44). Some
cancer cells exhibit “glutamine addiction” that cannot survive
in the absence of exogenous glutamine (45). More importantly,
certain oncogenic transcription factors, such as c-MYC and RAS,
can increase the cancer cell glutamine metabolic activity by
upregulating glutamine transporters such as alanine-serine-
cysteine transporter 2 (ASCT2) and enzymes participating in
the conversion of glutamine-to-glutamate, such as glutaminase
(GLS)-1 (46). For example, c-MYC activates the expression of
ASCT2 and GLS-1 under the induction of lactic acid, leading to
elevated glutamine uptake and catabolism in cancer cells (47).
Notably, a metabolomic analysis indicted that breast tumor
tissues had a higher glutamate‐to-glutamine ratio (GGR) than
FIGURE 1 | Metabolic pathways in breast cancer cells. Breast cancer cells enhance metabolism of glucose, amino acid lipid by regulating multiple metabolic
pathways. Breast tumor cells mainly use aerobic glycolysis to produce ATP and utilize the pentose phosphate pathway to produce macromolecules such as NADPH.
Wild-type and mutant P53 have contrary effects in monitoring fatty acid metabolism. Hypoxia, acidosis and ROS are regarded as important events which influence
multiple metabolic pathways.
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normal tissues, especially in estrogen receptor (ER) negative
tumors and the GGR levels dramatically correlated with ER
status and tumor grade (48). The glutamine metabolism-related
proteins, such as GLS-1, glutamate dehydrogenase (GDH), and
ASCT2 were found to be highly expressed in HER2-positive
breast cancer than other subtypes, which indicated that HER2-
positive breast cancer had the highest glutamine metabolism
activity (19).

One-carbon metabolism, also known as network of folate
utilization reactions, participates in multiple metabolic pathways
such as amino acid biosynthesis and degradation, de novo
nucleotide biosynthesis, and methylation and reductive
metabolism (49). It has been widely accepted that one-carbon
metabolism acts a pivotal part in supporting the high
proliferative rate of tumor cells (50). Folate (vitamin B9), a
carrier of one-carbon units, and other B vitamins, such as B6
and B12, take part widely in one-carbon metabolism, which is
requisite for DNA biosynthesis and methylation (51). Although
the relationship between folic acid intake and the risk of breast
cancer is still controversial, a recent meta-analysis, analyzing 23
prospective studies, found that an increment of folate intake
decreased the risk of ER-, ER-/PR-, premenopausal breast cancer
and had the preventive effects against breast cancer in individuals
with alcohol consumption (52).

In addition to glutamine, upregulation of serine/glycine
metabolism closely connected with folate metabolism is
relevant to high proliferation of tumor cells and poor
prognosis of patients (50). Tryptophan and arginine are
involved in the manipulation of immunity and tolerance,
which are generally deregulated in cancers (53). The activity of
arginase, the key enzyme catalyzing L-arginine, in breast tumor
environments is strengthened, which generates an unfavorable
milieu for T cell adaptability (54).

Lipid Metabolism
The fatty acids (FAs) and lipid metabolic programming also play
significant parts in promoting breast cancer growth and
progression (55). Cancer cells maintain a highly proliferative
state by activating the uptake of exogenous lipids and
lipoproteins, or by reinforcing de novo lipid and cholesterol
biosynthesis, showing active lipid and cholesterol metabolisms
(56). Moreover, tumor cells mostly rely on de novo fatty acid
synthesis (FAS) to satisfy the augmented demand for membrane
metabolism in favor of rapid growth and proliferation. The
expression of fatty acid synthase (FASN), a key enzyme
essential for the FAS, is elevated in breast cancer (57), and its
upregulation appears to be connected with cancer development,
recurrence and poor prognosis (58), suggesting the augmented
FAS activity is important for breast cancer progression. Notably,
FASN was found to be expressed highest in HER2-positive breast
cancer and lowest in TNBC at both cell and tissue levels (20, 59). It
has been assumed that a two-way regulatory system between FASN
and HER2, the “HER2-FASN axis”, may enhance breast cancer
proliferation, metastasis and chemoresistance (60). Sterol regulatory
element-binding protein (SREBP)-1, a lipogenic transcription
factor, can regulate FASN expression by binding with the FASN
Frontiers in Oncology | www.frontiersin.org 4
promoter site (61, 62). And phosphatidylinositol-3-kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR) and
mitogen-activated protein kinase (MAPK) signal transduction
pathways are also likely to regulate FASN expression (63, 64).
Under hypoxic conditions, FASN gene is upregulated due to the
arousal of AKT and SREBP-1 in breast tumor cells (65).
Inhibition of MAPK pathway and mTOR inhibitor rapamycin
both can decrease FASN expression in breast cancer cells
(66, 67).
OVERVIEW OF METASTASIS
IN BREAST CANCER

Tumor metastasis is a sequential multi-step process, which
includes local invasion, intravasation, migration through the
lymphatics or blood vessels, extravasation and colonization
giving rise to the formation of metastases in distant organs
(68). Particularly, organ-specific colonization hinge on the
dynamic and mutual interrelation between tumor cells and
tumor microenvironment (TME), comprised by varieties of
non-cancerous cells such as immune cells, endothelial cells,
fibroblasts, adipocytes, together with extracellular matrix
(ECM) and soluble factors (69). In addition to the linear
metastasis model, breast cancers prefer to the parallel
metastasis model, which means that breast cancer cells begin
to spread in the early stages of tumor development (70), and the
spread of cancer cells may be independent of the progression of
the primary tumors (71). Studies have shown that the genetic
changes of the bone marrow disseminated breast cancer cells are
usually not identical to their corresponding primary tumors (72).
Different breast cancer subtypes have been found to show
different metastatic sites preference governed by different
molecular mechanisms (73). The molecular characteristics of
breast cancers and target tissues appear to confirm the
organotropism of metastasis (74). All the breast cancer
subtypes are apt to develop bone metastasis, luminal A subtype
is regarded as a risk factor for recurrence in the bone (75), and
luminal B subtype is more likely to have bone as a first relapse
site when compared to other subtypes (76). Moreover, the
incidence of luminal subtype tumors to have bone metastasis is
much higher (80.5%) than HER2-positive tumors (55.6%) and
basal-like tumors (41.7%) (77). While luminal B and basal-like
subtypes present higher levels of lung-specific metastasis (78).
Compared with the HER2-negative subtype, the HER2-positive
subtype is more often observed with liver metastases (4).
Another study showed that basal-like tumors had a higher rate
of metastasis to the brain, lungs and distant lymph nodes, while
the rate of liver and bone metastasis is much lower (79).

The Process of Metastasis
The step one of the metastasis is that tumor cells break away
from the tumor bed and migrate from the stroma into the
bloodstream (80). In order to leave the primary tumor and
invade surrounding tissues, these tumor cells need to reduce
January 2021 | Volume 10 | Article 602416
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their tight cell adhesion through undergoing epithelial-
mesenchymal transitions (EMT) (81, 82). EMT is typified by
loss of epithelial traits (including cell polarity and cell-cell
junctions) and acquisition of mesenchymal traits (including
fibroblastic spindle-shaped morphology) to increase the
mobility of tumor cells. EMT also links to cancer metastasis
with stem cell properties (83, 84). Moreover, the integrin-mediated
adhesion and debonding interactions with matrix components is
critical for regional migration. And the intratumoral blood vessels
characterized by increased permeability allow cancer cells to enter
the systemic circulation readily (85).

After escaping from the original tumor site to blood circulation,
breast tumor cells begin to migrate to remote organs. The first
obstacle encountered by circulating tumor cells is the blood vessel
wall, especially endothelial cells. In some organs, such as bone
marrow and liver, microvessels are composed of sinuses with strong
permeability, which make cancer cells easier to break through (86).
Whereas in most other organs, including brain, endothelial cells
form a continuous barrier that prevents cancer cells from
penetrating freely. Platelets and white blood cells can help tumor
cells pass through the vasculature by forming complexes with tumor
cells through L- or P-selectin (87, 88). As such, increased expression
of selectin ligands by tumor cells is well connected with metastatic
progression and bad prognosis (89). The induction of angiopoietin-
like 4 (ANGPTL4) by transforming growth factor-beta (TGFb)/
small mother against decapentaplegic (SMAD) signaling pathway in
cancer cells is reported to enhance their subsequent retention in the
lungs and empower breast cancer cells to destroy lung capillary
wall and form pulmonary metastases (90). Chemokines in target
cell tissues can also induce directed cell migration, initiate
signal pathways, and monitor cytoskeletal rearrangment and
adhesion (91).

Adjusting to new environment is another hurdle for circulating
tumor cells (CTCs) to form metastasis. Disseminated cancer cells
will spring up in targeted tissues and organs through a way that is
significantly different from their origins. Cancer cells must acquire
new capabilities, especially the ability to interact with cells in the
ECM and new microenvironment. Tumor cells form a two-way
connection with circumferent stroma in the early stage of invasion
and after that, tumor-stroma interaction helps the tumor to develop
toward metastasis (6).

Pre-Metastatic Niche
An appropriate microenvironment, namely, pre-metastatic
niche, can be established in secondary tissues and organs
before metastases occurring through a complicated mechanism
by interaction between the primary tumors and organs stromal
components (92). Kaplan et al. emphasized the role of tumor-
mobilized bone marrow-derived cells (BMDCs) in developing a
satisfactory microenvironment for lung metastatic colonization.
The factors, such as vascular endothelial growth factor (VEGF),
and placental growth factor (PlGF), released by the primary
tumor act on the bone marrow mesenchymal stem cells to
induce the BMDCs to reach the expected metastasis site
before the disseminated tumor cells arrive (93). Hiratsuka et al.
demonstrated that matrix metalloproteinase (MMP)-9 is
Frontiers in Oncology | www.frontiersin.org 5
particularly motivated in premetastatic lung endothelial
cells and macrophages mediated by primary tumors via the
VEGFR-1/Flt-1 pathway, which is important for lung
metastasis (94). The integrin b1/a5/JNK/c-JUN signaling
pathway in cancer cells is able to upregulate the higher matrix
stiffness-induced lysyl oxidase like (LOXL)-2, then subsequently
promote production offibronectin, expression of MMP-9 and C-
X-C motif chemokine ligand (CXCL)-12 and recruitment of
BMDCs to encourage pre-metastatic niche establishment (95).
Chemokines binding to specific receptors on the target cell
membrane help to recruit immune cells into the tumor
microenvironment, thereby managing immune surveillance,
angiogenesis, invasion and metastasis (96). The CXCL-12/C-X-
C motif chemokine receptor (CXCR)-4 axis provides a fit
microenvironment before breast cancer bone metastasis
formation (97). Carmen et al. suggested that HIF-1 is a crucial
regulatory factor inducing breast cancer metastatic niche
forming through activation of several elements of the lysyl
oxidase (LOX) family, which catalyze collagen cross-linking in
the lungs before BMDC recruitment (98). Dickkopf (DKK)-1
suppresses prostaglandin endoperoxide synthase (PTGS)-2-
induced macrophage and neutrophil recruitment to lung
metastases by antagonizing cancer cell non-classical WNT/
Planar cell polarity (PCP)-RAC1-JNK signaling, whereas it
encourages breast-to-bone metastasis by modulating classical
WNT signaling of osteoblasts (99).

Organotropism
The site-specific metastasis of breast cancer is related to subtypes
and divergent gene signatures of metastatic cancer cells.
Functional studies have identified many key genes that mediate
breast cancer organ-specific metastasis, and the expression of
these genes in the primary tumor is likely to forecast the patient’s
organ-specific metastasis (100, 101).

Bone is the most frequent site of breast cancer metastasis (73).
Bone metastasis is usually connected with osteolytic-type lesions
as a result of the overactive bone resorption mediated by
osteoclasts (102). Integrin complexes, such as integrin avb3,
a4b1 and a5, play important roles in the attraction and adhesion
of breast tumor cells to the bone (103–105). Some clinical,
genetic, and functional evidence suggest that the SMAD tumor
suppressor pathway may diverted into potent pro-metastatic
factor in breast cancer, and signaling through the SMAD
pathway can facilitate breast cancer bone metastasis (106).
Moreover, both hypoxia (via HIF-1a) and TGFb signaling can
independently stimulate the VEGF and CXCR4 expression to
drive breast cancer bone metastases (107). In basal-like TN
breast cancer, CCL20 promotes bone metastasis by raising the
secretion of MMP-2/9 and increasing the receptor activator of
nuclear factors-kappa B (NF-kB) ligand/osteoprotegerin ratio in
breast cancer and osteoblastic cells (108).

The second most common metastatic site of breast cancer is
the brain (73). Brain metastasis of breast cancer can be located in
the parenchymal brain (around four-fifths) or in leptomeningeal
region (109). CTCs need to break through the blood-brain
barrier (BBB), interplay with the local microenvironment to
January 2021 | Volume 10 | Article 602416
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survive, and then set up brain metastatic colonies. CD44, VEGF
and CXCR4 can impair endothelial integrity to raise the
transendothelial migration of tumor cells (110). Angiopoietin-2
(Ang-2) expression is elevated in brain microvascular endothelial
cells (BMECs) and secreted Ang-2 can increase BBB permeability
by disrupting tight junction protein structures between ZO-1 and
Claudin-5 in TNBC models of brain metastasis (111).
Cyclooxygenase (COX)-2, heparin-binding epidermal
growth factor-like growth factor (HBEGF), and ST6GALNAC5
are all able to help tumor cell pass through the BBB (112).
Additionally, astrocytes and microglia are related with brain
metastases. Astrocytes-derived factors, such as MMP-2 and
MMP-9, are able to enhance the migration and invasion of
breast tumor cells, thus leading to brain metastasis (113).
Similarly, microglia can also be stimulated by culturing with
cancer cells, so that it boosts cancer cell colonization in a WNT-
dependent manner (114).

Compared to other metastatic lesions, lungmetastasis generally
show phenotypes of aggressive growth and invasiveness (101).
EGFR, COX2, MMP-1, and MMP-2 expressed in breast cancers
jointly facilitate lung metastasis by promoting the angiogenesis,
emancipating cancer cells into the circulation and breaking
through lung capillaries (115). Studies have determined that
compared with primary breast cancer, the degree of pyruvate
carboxylase (PC)-dependent anaplerosis in lung metastasis of
breast cancer is higher, as a result of responding to the lung
microenvironment (116). Bone morphogenetic proteins (BMPs)
secreted by lung resident cells can restrict cancer development by
turning cancer cells into a dormant state, while Coco and GALNTs
derived from lung metastatic breast tumor cells are able to inhibit
the effect of BMPs and reactivate dormant tumor cells to seed in
the lung, thereby leading to metastasis (117).

Breast cancer cells preferred to liver-specific homing display
unique transcriptional profiling (118). The status of ER,
progesterone receptor (PR) and HER2 between the primary
and liver metastatic tumors of breast cancer can be changed
after treatment (119). Development of breast cancer liver
metastasis is reported to be associated with the activation of b-
catenin-independent WNT signaling (120). A model for breast
cancer liver metastasis was established involving diverse factors
from breast tumor cells and the liver microenvironment such as
integrin complexes, HIFs and LOX (121).

Breast Cancer Stem Cells
and Dormant Cells
Breast cancer stem cells (BCSCs), a small number of cells with
self-renewal and unlimited replication capabilities, have been
shown in numerous cancer models to be involved in tumor
development and metastatic dissemination. Moreover, the
occurrence of BCSCs with the properties of stemness, EMT
and drug resistibility, is the main cause for cancer recurrence
and treatment failure (122). Multiple researches revealed that
several signaling pathways, such as WNT/b-catenin and Notch,
contribute significantly to the development of BCSCs (123).
Devon A et al. showed that early metastatic breast cancer cells
had unique stem-like gene expression characteristics and prefer
Frontiers in Oncology | www.frontiersin.org 6
to proliferate and differentiate to produce advanced metastatic
disease at the single-cell level (124). Additionally, BCSCs isolated
from primary human breast cancers possess the advanced
metastasis potential and the CD70+ subpopulations appear to
preferentially mediate lung-specific metastasis by enhancing self-
renewal potential (125).

After colonizing the distant metastatic site, BCSC can enter
into a metastatic dormant state, showing the halted proliferation
and activated cellular stress response, while maintaining
metabolic activity (126–128). The dormant phenotype is able
to be reversed by manipulating of intrinsic and/or extrinsic
factors and then the proliferative program restarts in vivo (129,
130). However, the biological mechanisms of cell dormancy and
re-awakening are still elusive (131). The dormant state is
regarded as a high risk of cancer recurrence and is supposedly
limit the efficiency of chemotherapy. Targeting the metastatic
dormancy, therefore, could be an promising treatment strategy
to improve long-term control of cancer progression (132).
METABOLIC REPROGRAMMING
AND ORGAN-SPECIFIC METASTASIS

Metabolic plasticity is one of the important characteristics that
distinguishes the tumor cells with high metastatic potentiality
from non-metastatic tumor cells. Metastatic cancer cells always
operate multiple metabolic pathways concurrently, thus they can
adjust the application of diverse pathways according to their
adaptive requirements (133, 134). Cancer cells are challenged by
diverse environmental and cellular stresses during metastatic
progression (135). Strikingly, cancer cells are capable of
manipulating one or more metabolic pathways according to
their stage in the metastatic cascade and the site they
metastasize (133, 136–139). For instance, extracellular
acidification by the release of CO2, lactic acid and other organic
acids from metabolically vigorous tumor cells promotes
intravasation of cells from the primary tumor. Once tumor cells
enter the circulatory system, they produce NADPH and GSH
through the PPP pathway to protect themselves from oxidative
stress. The coordination of the metabolism between cancer cells
and adjacent microenvironment is critical for successful
colonization of distant sites and survival during dormancy. Most
importantly, anabolic metabolism is reactivated in cancer cells to
facilitate the growth of macro-metastatic tumors (140). Tumor
metabolism reprogram also occurs when tumors progress in order
to adapt to lack of sufficient blood supply. While during
adaptation to environmental stress, such as cyclic hypoxia,
tumor metabolism reprogram contributes to selection of drug-
resistant and metastatic clones (141, 142).

Primary breast tumor cells exhibit metabolic heterogeneity
and participate in different metabolic reprogramming according
to metastatic sites (Figure 2). Liver-metastatic breast cancer cells
display a distinct metabolic reprogramming characterized by
accumulation of glucose-derived lactate and reduction in the
TCA cycle and OXPHOS (138). In brain metastatic breast
cancer, the significant metabolic changes are mainly the
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enhanced glycolysis, mitochondrial respiration and the PPP.
Intriguingly, breast cancer cells metastasized to the brain are
less sensitive to glucose deficiency (136), which may attribute to
upregulation of glutamine and branched chain amino acid
oxidation (143).

Preference for metastatic sites is determined by many
factors, including proximity to the primary tumor site and
breast cancer subtype. Not only pro-metastatic genes in these
subtypes, but also related metabolic mechanisms are closely
related to the propensity of metastatic organs. Monica et al.
utilized Raman spectroscopy (RS) and Multivariate Curve
Resolution-Alternating Least Squares (MCR-ALS) analysis to
study biochemical differences between metastasis tropisms in
two TNBC cell lines and showed that bone metastasis tropism
was characterized by the increase of amino acids and the
decrease of mitochondrial signal, while high lipid and
mitochondrial (cytochrome C and RNA) levels for lung
metastasis (144). NETosis is an important neutrophil
function that can promote liver metastasis of breast cancer
and different pro-metastatic neutrophil populations are highly
metabolically adaptable, which facilitates the formation of liver
metastases (145). The products of pathologically deposited
lipids can promote metastasis and nonalcoholic fatty
liver disease (NAFLD) activates tumor-induced triglyceride
Frontiers in Oncology | www.frontiersin.org 7
lipolysis in juxtaposed hepatocytes, thereby promoting breast-
to-liver metastasis (146). In addition to genetic tendency,
metastatic cells that inhabit the brain are adaptive to crosstalk
with many different brain residential cells (112, 147). The
important role of Notch signaling in breast cancer brain
metastasis has been recognized, and it has recently been
considered to regulate metabolism (148, 149). Reactive
astrocytes promote the metastatic growth of breast cancer
stem-like cells by activating Notch signals in the brain and
astrocyte-derived cytokines contribute to the metastatic brain
specificity of breast cancer cells (150, 151). In addition to the
similarity of certain metabolic signaling pathways such as the
Wnt/b-catenin pathway, Heregulin-HER3-HER2 signaling and
the EGFR/PI3K/Akt pathway, brain metastatic cancer cells also
share certain metabolic characteristics with neuronal cells
(152). Metastatic cells with neuron-like properties thrive in
the brain microenvironment. For example, neurons typically
catabolize gamma-aminobutyric acid (GABA) to create NADH
to support biosynthetic processes and breast tumor cells with a
GABAergic phenotype have a strong growth advantage in the
brain by converting GABA to succinate to boost the citric acid
cycle (153). Enzymes involved in lipid metabolism may also be
the appropriate target to prevent the formation of brain
metastases, because oncogenic lipid signaling can promote
FIGURE 2 | Metabolic reprogramming in the metastatic cascade. Metabolic reprogramming occurs at several steps of metastasis. The intravasation of cells from the
primary tumor is promoted by extracellular acidification. CTCs survive in oxidative stress by producing NADPH and GSH. Cancer cells show different metabolic
characteristics based on the sites which they metastasize. Last, anabolic metabolism is reactivated during macro-metastatic tumor proliferation.
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the metastasis of breast tumor cells to the brain by supporting
cell survival, migration, and invasion (154).
CROSSTALK BETWEEN METABOLIC
REGULATORS AND METASTATIC
PATHWAYS

Intrinsic Factors: Tumor-related Genes
that Regulate Metabolic Pathways
in Breast Cancer Metastatic Cascade
TP53
TP53 mutations are very common in breast cancers, especially in
triple-negative and HER2-positive subtypes (155). TP53 is
recognized to mediate its tumor-suppressive functions by
adjusting the expression of genes that promote cell cycle arrest,
apoptosis, and senescence (156). Moreover, TP53 is able to suppress
tumorigenesis by regulation of metabolism and reactive oxygen
species (ROS) production (157). There are several mechanisms
involved in TP53-mediated metabolic changes (158, 159). For
example, wild-type TP53 is able to inhibit glycolysis by
suppressing the expression of GLUT1, GLUT3, and GLUT4 (160,
161), and regulating the expression of enzymes involved in the
glycolytic pathway, such as HK2 (162), phosphofructokinase 1
(PFK1) (163), phosphoglycerate mutase (PGM) (163), pyruvate
dehydrogenase (PDH), parkin 2 (PARK2) (164), and pyruvate
dehydrogenase kinase (PDK2) (165). TP53 also regulates
mitochondrial respiration in cancer progression. TP53 loss results
in downregulation of mitochondrial respiration and oxidative
metabolism, which contribute to the Warburg effect in tumor
cells, thus linking to tumor progression (166). Besides, by
upregulating the cytochrome c oxidase 2 (SCO2) (167), TP53
initiates several transcriptional programs to promote the
expression of genes related to mitochondrial biogenesis (168),
such as apoptosis-inducing factor (AIF) (169, 170) and ferredoxin
reductase (FDXR) (171). The expression of GLS-2 is also positively
regulated by wild-type TP53, as such the conversion of glutamine-
to-glutamate increases, which is requisite for supplement of
NADPH and GSH (172, 173). In contrast, mutant TP53 has been
proved to drive the glycolysis by activating the RhoA/ROCK/
GLUT1 signaling cascade (164), repress the catabolic activities,
such as fatty acid oxidation (FAO), by inhibiting 5′-AMP-
activated protein kinase (AMPK) pathways, and enhance the
anabolic processes, such as enhanced fatty acid synthesis (174).

Wild-type and mutant TP53 have contrary effects in
managing the fatty acid metabolism. Wild-type TP53 hampers
the shunt of the glucose carbon to anabolic pathways by binding
to and inhibiting the G6PD, whereas mutant TP53 is unable to
affect the G6PD activity (175). Moreover, wild-type TP53
appears to negatively control the mTOR pathway and the PPP,
therefore governing fatty acid synthesis (175, 176). However,
mutant TP53 enhances lipid synthesis through interacting with
SREBPs (177). In particular, TP53mutation connects with raised
expression of genes involved in mevalonate pathway in human
breast cancer, and most importantly, mutant TP53 upregulates
Frontiers in Oncology | www.frontiersin.org 8
these genes and activates the mevalonate pathway, which is
indispensable to keep the malignant status of breast cancer (178).

c-MYC
Amplification of c-MYC and activation of its downstream effectors
are related with high metastatic ability, endocrine resistance and
poor disease outcome in breast tumors (179). The c-MYC pathway
is well known to enhance the cancer cell growth and proliferation.
Its role in the orchestration of metabolic pathways, which provides
nutrients and other essential factors to motivate DNA
replication and cell division, was recently identified. Specifically,
MYC amplification mediates the glutamine-related metabolic
rewiring in breast cancers, that promotes the excessive uptake of
glutamine by inducing the expression of glutamine transporters and
glutamine-metabolizing enzymes (180). Such MYC amplification-
mediated molecular mechanism is specifically upregulated in the
luminal B, HER2-positive, and TN breast cancers (15). Moreover, c-
MYC activation links to TCA cycle overactivation in HER2-positive
and TN breast tumors by increasing the uptake of serine, glycine,
and tryptophan and the synthesis of one-carbon units (181).

Beside, c-MYC and other transcription factors, such as mTOR
and HIF-1, can act synergistically to improve glycolysis and
promote cancer proliferation (182, 183). c-MYC is also a direct
target and a coregulator of ERa (184), it can act synergistically
with ERa to induce breast cancer cell proliferation (185).
Furthermore, ER regulates the glutamine metabolism by
crosstalking with HER2 signaling in a way dependent on c-
MYC in aromatase inhibitor-resistant breast cancer cells (186).
Other studies have reported that c-MYC drives glucose
metabolism in TNBC by inhibiting thioredoxin-interacting
protein (TXNIP)—an inhibitor of glycolysis (21).

PI3K/AKT/mTOR Pathway
PI3K/AKT/mTOR pathway is an intracellular signaling pathway
significant for cell cycle and metabolism involved in cancer
progression (187). The activation of PI3K/Akt/mTOR pathway
is able to enhance expression of genes related to glucose uptake
and glycolysis through normoxic upregulation of HIF-1a (188–
191). Activation of mTORC1 is also likely to be a latent
mechanism driving the Warburg effect by upregulation of c-
MYC (182, 183). Moreover, the PI3K/AKT/mTOR pathway can
facilitate the expression of lipogenic genes in an SREBP-
dependent manner (192), and mTORC1 has been regarded as
a vital effector in advancing the trafficking or processing of
SREBP to stimulate de novo lipogenesis (193). Activation of
mTORC1 is adequate to provoke the expression of genes
encoding the enzymes of both the oxidative and non-oxidative
branches of the PPP, thus activating specific bioenergetic and
anabolic cellular processes (194). The PI3K/AKT/mTOR
pathway was recently showed to reduce oxidative stress and
promote cell survival of breast epithelial cells segregated from the
ECM by strengthening flux through the oxidative PPP (195)

PIK3CA mutation, which leads to increased PI3K activity, is
the most common somatic mutation in breast cancer, and 36% of
patients with HR+/HER2- breast cancer are PIK3CA mutated
(196). It was suggested that crosstalk between the ER and PI3K/
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AKT/mTOR signaling pathway exists during breast cancer
development (197). Estrogens stimulate PI3K/AKT/mTOR
pathway to conduct the migratory and invasive features of
ER tumors (198, 199). Reciprocally, mTOR signaling monitors
the expression and activity of ERa (200). A recent study reported
that PI3K pathway repression triggered the activity of the histone-
lysine N-methyltransferase 2D (KMTD2), which leads to the
activation of ER in breast cancer cells (201). Interestingly,
reactivation of AKT/mTOR signaling by using small molecule
PI3K antagonists activates the transport of energy-active
mitochondria to the cortical cytoskeleton of cancer cells,
therefore heightening tumor cell invasion (202). Although PI3K
pathway inhibitors reduce cancer growth, they could accidentally
increase tumor invasion by inducing reprograming of
mitochondrial trafficking, OXPHOS, and promoting cell motility
(203). Moreover, suppression of the mTOR-p70S6K axis is able to
induce possessing of unique metabolic features, distinguished by
high glucose uptake, incremental lactate production, and low
mitochondrial respiration, in TNBC cells (22).

Estrogen Receptor
More than two-thirds of the breast cancer cases present as ERa-
positive, and cancers with ERa-positive without HER2-positive is
termed as luminal breast cancer (204). Luminal breast cancer
appears to have a metabolic phenotype that balances the
glycolysis and OXPHOS, while TNBC is more relying on
OXPHOS (22). ER-positive tumors have lower levels of glycine,
lactate, and glutamate (high glutamine) and lower GGR with lower
levels of glutaminolysis, which suggest that ER is implicated in
regulation of tumor metabolism (205). ER plays a central role
in metabolic regulation through crosstalk with multiple pivotal
regulators and pathways, such as TP53, c-MYC, HIF, Ras/Raf/
MAPK and PI3K/AKT/mTOR pathway, enabling tumors to
reprogram their metabolism to fit various kinds of environment
(16). 17b-estradiol (E2) is capable of increasing the expression of
insulin receptors and decreasing the lipogenic activity of lipoprotein
lipase in adipose tissue by activating ERa (206). Moreover, E2 and
ERa can regulate the metabolism reprogram based on glucose
availability. In high glucose conditions, E2 enhances glycolysis via
enhanced AKT kinase activity and suppresses TCA cycle activity,
while in low extracellular glucose conditions, E2 stimulates the TCA
cycle via the upregulation of PDH activity and suppresses glycolysis
to satisfy the energy requirements of the tumor cell (207). Besides, a
study employing the nuclear magnetic resonance spectroscopy
illustrated that E2 appeared to induce glycolysis, whereas
tamoxifen reduced it (208–210). Mechanically, E2 is able to
transcriptionally upregulate GLUT1, thus promote glycolysis (210).

Contrary to ERa, ERb is expressed in more than 50% of
normal mammary epithelial cells, but less than 10% of tumor cells
in invasive ductal carcinoma (211). In general, expression of ERb
is downregulated or lost in high grade breast tumors, but its
relation to clinical outcome does not reach an agreed conclusion
(212). In glucosemetabolism, ERb, similar to ERa, seems to enhance
glycolysis while repress OXPHOS (213). Most importantly, ERb is
suggested to play a key role in regulating the metabolism of BCSCs,
given several glycolysis-related pathways are upregulated in ERb-
activated mammospheres (214).
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HER2-positive breast tumors generally exhibit a glycolytic
phenotype (215, 216) and display the increased uptake levels of
glutamine, glycine, creatinine, and succinate while a reduction in
alanine levels (205). Moreover, the expression of FASN, carnitine
perilipin-1 (PLIN1), and palmitoyltransferase-1A (CPT1A) are
elevated in HER2-positive breast cancers (20). HER2 is involved
in multiple signaling pathways that promote glucose utilization
(216), regulate LDHA (40) and 6-phosphofructo-2-kinase
(PFKFB3) expression levels (217), and induce lactate accumulation
in tumors (218). Additionally, HER2 can be translocated to the
mitochondria by the intercourse with mitochondrial heat shock
protein-70 (mtHSP70), which negatively controls oxygen
consumption and thus enhancing glycolysis (219). Inhibition
of HER2 pathways by a dual novel EGFR/HER2 inhibitor,
KU004, significantly inhibits the Warburg effect by downregulating
HK2, thus decreasing cancer cell proliferation (220). Overactivated
HER2 signaling results in increased HIF-1a and VEGF expression,
which in turn activate the downstream kinase FKBP-rapamycin-
associated protein (FRAP), therefore contributing to tumor
progression by mediating angiogenesis and metabolic
adaptation (221).

Breast Cancer Type 1 Susceptibility
BRCA1-mutated breast tumors are usually phenotyped as
aggressive, high-grade, aneuploidy tumors (222, 223), and with
a worse prognosis (224). Loss of BRCA1 function caused by
BRCA1mutation results in the production of hydrogen peroxide
in both epithelial breast tumor cells and adjacent stromal
fibroblasts, which is able to promote the onset of a reactive
glycolytic stroma, suggesting the metabolic phenotype of stromal
cells in the TME may also be affected by BRCA1 mutation in
tumor cells (225). Moreover, the BRCA1 loss mutation, like
oncogene activation (RAS, NF-kB, TGF-b), in cancer cells will
drive the initiation of metabolic symbiosis phenotype between
tumor cells and fibroblasts in both primary and metastatic
cancers (226).

PGC-1a
PGC-1a is a transcriptional co-activator that actively participates
in gene regulation of energy metabolism. Elevated expression of
PGC-1a in breast cancer is well associated with the formation of
distant metastases. Notably, breast cancer cells with higher levels
of PGC-1a may preferentially metastasize to some specific
tissues, such as lung and bone (139). Silencing of PGC-1a
appears to suspend cancer cell invasive potential and attenuate
metastasis (137). The invasive cancer cells particularly do favor
mitochondrial respiration with augmented production of ATP.
As such, the circulating and metastatic cancer cells upregulate
the PGC-1a to facilitate oxygen consumption rate oxidative
phosphorylation, and mitochondrial biogenesis to uphold
metastasis (137).

RB1
RB1 is a tumor suppressor that is commonly disrupted in many
human tumors, including breast cancer (227). RB1 deficiency is
connected with cancer invasion and metastasis (228, 229). It is
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evaluated that RB1 and TP53 are lost together in 28–40%
of human TNBCs, and RB/P53-double mutant mouse breast
tumor cells exhibit more mesenchymal phenotypes than only
P53-deficient cells (230, 231). RB1 loss links to increased
mitochondrial OXPHOS, which links to enhanced anabolic
metabolism and augmented cancer cell stemness and
metastatic spread (232). Additionally, RB1 deficiency is able to
enhance tumor metastasis by increasing OXPHOS to generate
more ATP fueling for tumor invasion and cooperating oncogenic
alterations to uphold EMT and metastasis (232).

LKB1-AMPK Signaling
AMPK is a universally expressed metabolic sensor, which can be
phosphorylated and activated under some stress conditions, such
as energy deprivation. Phosphorylated AMPK activates multiple
downstream elements to regulate adaptive changes and maintain
metabolic homeostasis, including glucose, lipid or protein
metabolism. Recently, the latent roles of AMPK signaling in
tumorigenesis and progression have been gradually revealed
(233). Activated AMPK signaling regulates protein and lipid
synthesis by inhibiting mTORC1 through activation of tuberous
sclerosis complex 2 (TSC2) and phosphorylation of raptor (234–
237). The chief activator of AMPK is the serine-threonine tumor
suppressor kinase LKB1, which contributes to phosphorylation
of AMPK to activate energy sensors (235, 238). As long as LKB1-
AMPK signaling is activated, the regulation of the metabolic
branch of mTOR signaling cannot be impaired in spite of the
abnormal of PI3K/AKT or receptor tyrosine kinase signaling
(237). LKB1 inactivation has recently been reported to drive
tumor progression by cooperating with certain activating
oncogene mutations in various models of cancer (239–242).
Lysine demethylase 5B (also known as KDM5B) is upregulated
in breast tumors and play an important role in lipid metabolic
reprogramming (243). A recent study clearly demonstrated the
knockdown of KDM5B reversed the EMT process to inhibit
breast tumor cell migration by activating AMPK signaling-
mediated lipid metabolism (244).

Extrinsic Factors: Interaction Between
Metabolic Pathways/Fluxes and Breast
Cancer Metastasis Induced by Hypoxia,
Oxidative Stress, Acidosis, and Tumor
Microenvironment
Hypoxia
Hypoxia represents an important characteristic in the TME
arising as a mismatch between cellular oxygen consumption
and supply (245). About 25%–40% of invasive breast tumors
display hypoxic situations (246). Hypoxia is able to regulate
glycolysis, glycogen synthesis, lipid metabolism and oxidative
phosphorylation, thus playing a vital role in tumor cell survival
and growth during all stages of metastasis (247).

Hypoxia-inducible factors, including HIF-1a and HIF-2a, are
main regulators in adaptation to hypoxia and nutrient
deprivation during tumor progression (141). The activated
HIFs is able to induce the expression of various gene products,
such as glycolysis- and EMT program-associated molecules
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(CXCR4, SNAIL and TWIST), the induced pluripotency-
associated transcription factors (OCT-3/4, NANOG, and
SOX2), angiogenic factors (VEGF) and microRNAs, which are
vital to self-renewal, survival, invasion, metastasis, angiogenesis,
metabolic reprogram, and treatment resistance of cancer cells.
Furthermore, elevated HIF-1a level is a predictive marker of
early relapse and metastasis, and correlated with bad clinical
outcome in human breast cancer (248–250). Inhibition of HIF-1
activity has a significant inhibitory effect on primary tumor
proliferation and metastasis to lymph nodes and lungs in mice
by orthotopic transplantation of TNBC (251, 252). Notably, HIF-
1 mediates adaptive metabolic responses to hypoxia by
enhancing glycolytic pathway, serine synthesis and one-carbon
metabolism to promote mitochondrial antioxidant production
(NADPH and GSH), and inhibiting the TCA cycle so as to
diminish mitochondrial ROS production (247). HIF-1a has
recently been shown to increase the expression levels of pro-
collagen prolyl (P4HA1 and P4HA2) and lysyl (PLOD1 and
PLOD2) hydroxylases in both tumor and stromal cells, thereby
enhancing cancer cell alignment along collagen fibers, thereby
promoting invasion and metastasis to lymph nodes and lungs
(253–255). Hypoxia raises the proportion of BCSCs in a HIF-
1a–dependent manner (256, 257), which will contribute to
cancer metastasis. A recent study demonstrated that HIF-1a
appeared to dynamically regulate glucose metabolism based on
oxygen availability to prevent the risk of continuous incremental
ROS production to keep redox homeostasis. This HIF-1a-
induced effect is vital for induction of the BCSC phenotype in
breast cancer when in response to hypoxia or cytotoxic
chemotherapy (33). PDK1, a HIF-1a target that antagonizes
the function of PDH, a main rate-limiting enzyme for pyruvate
converting to acetyl-coA and entering the TCA cycle, has been
reported to be a critical regulator of breast cancer metabolism
and metastasis (138). Liver metastatic breast cancer cells are
recognized to depend on the HIF-1/PDK1 axis for their metabolic
reprogramming to accelerate their efficient colonization and
proliferation in the liver (138). Some metabolic enzymes, such as
succinate dehydrogenase (SDH), fumarate hydratase (FH), IDH
and pyruvate kinase 2 (PKM2) are likely to activate HIF-1
pathway by stabilizing HIF-1a, therefore enhancing cancer
metastasis (258).

Reactive Oxygen Species and Antioxidants
Tumor cells can only survive within a narrow window of ROS
levels. Inhibition of ROS clearance is a therapeutic approach
(259), and on the contrary, prohibition of ROS enhances tumor
metastasis (260). Among the detachment from ECM during the
procedure of metastasis, cancer cells can undergo alterations in
metabolic pathways harmful to survival, such as moderated
glucose uptake, PPP flux, and ATP levels while promoting the
producing of ROS (261). Antioxidant enzymes support survival
of breast tumor cells deprived of ECM, implying that eliminating
antioxidant enzyme activity in ECM-detached tumor cells may
be an efficacious strategy to stop metastatic spreading (262).
Additionally, the untransformed breast epithelial cells upregulate
PDK4 to inhibit PDH and attenuate the flux of glycolytic carbon
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into mitochondrial oxidation, consequently suppressing anoikis
(the absence of the home environment) upon detachment from
ECM (261). By stimulating PDH in cancer cells to normalize
glucose metabolism, it can restore their sensitivity to anoikis and
weaken their metastatic potential, suggesting that PDKs are
potential targets for anti-metastasis therapy (261). Another
way to counter increased ROS production in breast cancer cells
is to induce the expression of catalases, such as manganese
superoxide dismutase (MnSOD). The expression of MnSOD is
elevated in metastatic breast cancer, and its overexpression is
correlated with histologic tumor grades (263). Isaac et al. has
suggested that combined inhibition of endogenous antioxidant
GSH and thioredoxin antioxidant pathways can produce a
synergistic anti-cancer effect both in vitro and in vivo (264).

Extracellular Acidification
Lactate, the final product of glycolysis, is released from cells
together with H+ ions by means of monocarboxylate transporters
and hydrogen ion pumps, and the excess carbon dioxide
produced in the process of mitochondrial metabolism diffuses
into the extracellular space and is then converted into H + and
HCO3- by carbonic anhydrase (265). In situations of metabolic
stress, such as nutrient deprivation and hypoxia, these reactions
are strengthened, leading to extracellular acidification and
enhancing the proteolytic activity of MMPs. Afterwards, the
ECM is remodeled, which facilitates tumor invasion (265, 266). It
has been reported that extracellular lactate also increase tumor
invasion and metastasis by facilitating the fibroblast expression
of hyaluronan and CD44 (267). Besides, increased extracellular
lactate induces tumor-associated stromal cells to secrete VEGF,
thus reinforcing angiogenesis (268). The augment in extracellular
lactate has also been reported to provide an immune-conducive
environment for tumor cells by reducing the activation and
function of dendrites and T cells (269, 270).

Cancer-Associated Fibroblasts
Cancer-asscociated fibroblasts (CAFs), the paramount stromal cells
in breast tumor microenvironment, contribute to tumor
progression through many mechanisms, such as releasing of
assorted secretory proteins (e.g. TGF-b, IGF, and IL6), direct
interplaying with tumor cells, regulating immune-response, ECM
remodeling, and inducing cancer metabolic reprogramming (271).
Breast cancer cells MCF-7 exhibited increased aerobic glycolysis
when co-cultured with adjacent fibroblasts. Mechanically, the lactate
produced by the CAFs can be used by cancer cells, thus enhancing
aerobic glycolysis, which is called the “reverse Warburg effect” (28,
272). Similarly, metabolomic analysis showed that CAFs also
produce glutamine and other metabolites that can be utilized by
tumor cells (273). Subsequent researches demonstrated that co-
culture with MCF-7 and CAFs resulted in promoted glutamine
catabolism and inhibited glutamine synthesis in cancer cells, thereby
promoting cancer cell growth and progression (274).

Cancer-Associated Adipocytes
The “cancer-associated adipocytes (CAAs)” are generated by the
transformation of tumor adjacent adipocytes (275). It has been
reported that tumor-surrounding adipocytes exhibit an distinct
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phenotype comparing to normal adipocytes, which is
characterized by upregulated beige/brown adipose markers and
increased catabolism and the release of metabolites, including
lactate, free fatty acids, pyruvate, and ketone bodies. Importantly,
the tumor-adipocyte interaction can reprogram energy
metabolism and foster tumor progression (276).

Accumulation of lipids is found in breast tumor cells when
co-cultured with adipocytes (277). Tumor cells can switch from
glycolysis to lipid-dependent energy production and also store
excess lipids, which provides energy to support their expansion
and metastasis (278). The ketone bodies produced and released
by glycolytic fat cells are the ideal fuel for ATP production and
they can be burned more efficiently than other mitochondrial
substrates, even during hypoxia, potentially allowing the tumor
grow when without adequate blood supply (279). It is worth
noting that the co-existence of adipocytes and cancer cells
enhances both ketogenesis in adipocytes and ketolytic activity
in breast cancer cells (276). In addition, b-hydroxybutyrate
secreted from adipocytes is able to induce several tumor-
promoting genes in breast cells, and facilitate breast tumor
cells malignant growth in vitro (280). Moreover, elevated
ketone-specific gene expression is related with worse outcomes
in breast cancer patients (281).

Immune cells in Tumor Microenvironment
The local immune surveillance environment is increasingly
recognized as a significant factor inhibiting tumor metastasis.
Apart from fundamental competition for nutrients required by
cancer cells and immune cells in TME, metabolic pathways change
in tumor cells may influence tumor-infiltrating immune cells, and
different immune cell subgroups in TME have specific metabolic
characteristics (282). The limitation of glucose and amino acids
within the TME can significantly affect the T cell response and the
determinants of metabolic dysfunction and associated T cell
exhaustion within the TME are also being explored. Studies have
shown that cancer itself can cause effector T (Teff) cell metabolism
disorders, and there is a negative correlation between the degree of
glycolytic activity of cancer cells and the antitumor function of
infiltrating T cells (282). A study has confirmed that the expression
of glycolysis-related genes in tumor samples from patients with
melanoma and non-small-cell lung cancer is negatively correlated
with T cell infiltration, and that tumor glycolysis is related to the
efficacy of adoptive T cell therapy (ACT), suggesting that the
glycolytic pathway may be a candidate target for combined
therapeutic intervention (283). Inhibition of cholesterol
esterification in T cells by genetic ablation or pharmacological
inhibition of ACAT1 (a key cholesterol esterase) can lead to
potentiated effector function and enhanced proliferation of CD8
(+) T cells by increasing plasma membrane cholesterol levels, which
causes enhanced T-cell receptor clustering and signaling as well as
more efficient formation of the immunological synapse, thereby
controlling the growth and metastasis of mouse melanoma (284).
However, such studies are still lacking in breast cancer. Tumor-
derived myeloid-derived suppressor cells (MDSCs) are critical
tumor immunosuppression components. Glycolysis restriction
limited the development of MDSCs by inhibiting tumor
expression of granulocyte colony-stimulating factor (G-CSF) and
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granulocyte macrophage colony-stimulating factor (GM-CSF),
therefore enhanced T cell immunity, reduced tumor growth and
metastasis, and prolonged survival in two TNBC mouse models
(285). Interestingly, hypoxia through HIF-1a significantly changes
the function ofMDSC in TME and shifts its differentiation direction
to tumor-associated macrophages (TAMs) (286). TAMs are well-
known parts of breast cancer microenvironment and most TAMs
within TME are closely related to the M2-like phenotype, which
participate in almost all metastatic processes, including local
invasion, blood vessel intravasation, extravasation at distant sites
and metastatic cell growth (287, 288).The hypoxic areas in tumors
are related to the accumulation of macrophages, which assist tumor
progression by producing angiogenic factors, mitogenic factors and
cytokines related to tumor metastasis (289–291). In addition,
hypoxia can promote the differentiation and functional
capabilities of immunosuppressive macrophages (292). Blockade
of Eotaxin/Oncostatin M not only prevented hypoxic breast tumor
cells from recruiting and polarizing macrophages towards the M2-
like phenotype and hindered cancer progression in 4T1 breast
cancer model but also improved the efficacy of antiangiogenic
Bevacizumab, suggesting these two cytokines as novel targets for
devising effective anticancer therapy (293). Lactic acid production
by tumor cells, as a byproduct of aerobic or anaerobic glycolysis, has
also been shown to play a vital role in the M2-like polarization of
TAMs, which is mediated by HIF- 1a (294).

The metabolites produced by cancer cells may hinder the
antitumor immune response by affecting different tumor
infiltrating immune cells (295). Cholesterol metabolites, oxysterols,
which act as endogenous regulators of lipid metabolism through the
interaction with the nuclear Liver X Receptors-(LXR)a and LXRb,
aid tumor progression by inhibiting antitumor immune responses,
and by recruiting proangiogenic and immunosuppressive
neutrophils. A recent study showed that in the 4T1 breast cancer
model the enzymatic depletion of oxysterols in primary tumors
decreases the formation of lung metastases by regulating the levels
of immune cells infiltrating the metastatic TME, and tumor-
associated neutrophils are the main driving force of local
immunosuppression (296). Another work also proved that by
recruiting immunosuppressive neutrophils in the metastatic niche,
oxysterol 27-HC played a role in promoting metastasis in breast
cancer models (297).
DRUGS TARGETING METABOLISM
IN METASTATIC BREAST CANCER

Breast cancer patients who have not yet foundmetastasis are at high
risk of metastasis, and those metastatic breast cancers are not
curable due to lack of effective treatments. Early intervention in
the early stage of distant metastasis, during the period of
colonization and growth will be more beneficial to the survival of
the patient. There are many promising drugs targeting altered
metabolism pathways undergoing disparate stages of preclinical
studies and clinical trials (Table 2). However, there is currently no
clear conclusion of the clinical benefit of metabolic interfering drugs
in the treatment of breast cancer. A Phase II clinical trial involving
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164 patients was recently showed that in patients with HER2-
metastatic breast cancer, addition of indoximod, the Indoleamine
2,3-dioxygenase 1 (IDO1) pathway inhibitor, to taxane did not
improve PFS compared with taxane alone (300). The use of glucose
metabolic inhibitors such as 2-deoxy-D-glucose (2-DG) and
metformin in combination with chemotherapy has shown
encouraging results in combating chemotherapy resistance (301).
One patient with medullary breast cancer metastatic to lung and
lymph nodes underwent extensive pretreatment (8 previous
systemic treatment options) was reported to have a confirmed
partial response (PR) with a duration of 65 days when treated
with 45 mg/kg 2-DG every other week (298). Dichloroacetate
(DCA) can enhance metformin-induced oxidative damage with
simultaneous reduce of metformin promoted lactate production
through PDK1 inhibition, suggesting the innovative combinations,
such as metformin and DCA, will be promising in expanding breast
cancer therapies (302). Nevertheless, due to the limited sample and
the lack of evidence for benefit, further researches are needed.

Metabolic inhibitors combined with checkpoint inhibitors holds
promise to enhance the efficacy of immunotherapy and the
relationship of tumor-intrinsic metabolism and successful
immunotherapy is being explored. Tumor-imposed metabolic
restrictions can mediate T cell hyporesponsiveness during cancer.
Checkpoint blockade antibodies against CTLA-4, PD-1, and PD-L1,
can restore glucose in tumor microenvironment, permitting T cell
glycolysis and IFN-g production, and blocking PD-L1 directly on
tumors dampens glycolysis by inhibiting mTOR activity and
decreasing expression of glycolysis enzymes (270). Because breast
cancer immunotherapy is in the ascendant, understanding the
metabolic dependence between infiltrating immune cells and
cancer is an important direction for future research.

For ER-positive breast cancer patients, endocrine therapy is very
beneficial, but some patients will develop endocrine therapy
resistance. Whether endocrine therapy combined with metabolic
therapy will achieve better results still needs a lot of preclinical
studies and clinical trials to verify. It has been reported that
trastuzumab resistant cells exhibit enhanced glycolysis phenotype,
and glycolytic restraint is able to sensitize trastuzumab resistant
HER2+ breast cancers to trastuzumab treatment (303). The TN/
basal-like breast cancer lacks the therapeutic targets, and
chemotherapy is currently the main treatment strategies. Based on
the TNBC unique metabolic phenotype, there are many existing
researches focus on the metabolic interference in chemotherapy
resistance models and spontaneously metastatic preclinical models
(304, 305). What is more, the metabolic characteristics of tumor
cells and their microenvironment in different metastatic sites are
different, therefore, the corresponding targeting treatment plans can
also be considered in the future (306).

Although anti-cancer therapy targeting metabolism has achieved
some gratifying results, it is still currently believed that this field has
the following shortcomings for possible future breakthroughs: 1)
The side effects of such drugs limit their clinical effects as the
optimal dose window is hard to be determined; 2) Due to the
extremely complex signaling pathways in the regulation of normal
cellular biology, inhibition of a specific signaling pathway will
definitely have feedback activation or upregulation of other
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alternative signaling pathways, therefore causing ultimately
treatment failure; 3) To specifically target related mutations
involved in metabolic pathways is challenging. 4) Accurate
screening of the beneficiaries is the key to improve the drug effect,
and is an urgent problem to be solved in the future.
CONCLUSIONS

Metabolic programming supports several steps of successful
metastasis in breast cancer. Breast cancer cells exhibit different
metabolic phenotypes in different metastasis sites. Both intrinsic
factors, properties arising in the malignant cells, such as MYC
amplification, PIK3CA, and TP53 mutations, and extrinsic factors,
metabolic stresses imposed by the microenvironment, such as
hypoxia, oxidative stress, acidosis, contribute to different
metabolic programming phenotypes in metastatic breast cancer.
More importantly, interfering with tumor metabolism to control
tumor progression is a very promising approach in cancer
treatment, although it is full of challenges. More researches are
required to further discover the related genes and molecular
Frontiers in Oncology | www.frontiersin.org 13
mechanisms involved in metabolism reprograming during cancer
progression, so that they can be used for targeting therapy in clinical
practice in the future. We also look forward to further advances in
approaches to judge and quantify metabolic phenotypes in human
breast cancers in vivo, including metabolomics, metabolic imaging
and isotope tracing studies, so that clinical oncologists will develop
treatment strategies by matching the treatment to the patient-
specific tumor metabolic characteristics.
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