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Abstract
Background: Evolutionary theory suggests that in polygynous mammalian species females in better body
condition should produce more sons than daughters. Few controlled studies have however tested this hypothesis
and controversy exists as to whether body condition score or maternal diet is in fact the determining factor of
offspring sex. Here, we examined whether maternal diet, specifically increased n-6 polyunsaturated fatty acid
(PUFA) intake, of ewes with a constant body condition score around the time of conception influenced sex ratio.

Methods: Ewes (n = 44) maintained in similar body condition throughout the study were assigned either a
control (C) diet or one (F) enriched in rumen-protected PUFA, but otherwise essentially equivalent, from four
weeks prior to breeding until d13 post-estrus. On d13, conceptuses were recovered, measured, cultured to
assess their capacity for interferon-tau (IFNT) production and their sex determined. The experiment was
repeated with all ewes being fed the F diet to remove any effects of parity order on sex ratio. Maternal body
condition score (BCS), plasma hormone and metabolite concentrations were also assessed throughout the study
and related to diet.

Results: In total 129 conceptuses were recovered. Ewes on the F diet produced significantly more male than
female conceptuses (proportion male = 0.69; deviation from expected ratio of 0.5, P < 0.001). Conceptus IFNT
production was unaffected by diet (P > 0.1), but positively correlated with maternal body condition score (P <
0.05), and was higher (P < 0.05) in female than male conceptuses after 4 h culture. Maternal plasma hormone and
metabolite concentrations, especially progesterone and fatty acid, were also modulated by diet.

Conclusion: These results provide evidence that maternal diet, in the form of increased amounts of rumen-
protected PUFA fed around conception, rather than maternal body condition, can skew the sex ratio towards
males. These observations may have implications to the livestock industry and animal management policies when
offspring of one sex may be preferred over the other.
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Background
A number of studies have demonstrated a significant var-
iation from the expected 1:1 birth sex ratio in many mam-
malian species [1-5]. Perhaps the most studied factors
considered to influence sex ratio are maternal diet and
body condition. Based on evolutionary theory, mothers
should adjust their birth sex ratios in relation to the future
reproductive benefits that would accrue to them in terms
of their ability to pass on their genes to future generations
[1-5]. In polygynous species, in particular where a small
proportion of males, usually those that are larger, stronger
and more aggressive are most reproductively successful,
females in good condition should bias their offspring in
favor of males, since that sex would yield the highest
return of fitness. The reverse would be true for females in
poor body condition; they would be anticipated to invest
in daughters rather than sons [1]. Although this theory is
attractive, observations have often been contradictory,
leading some to dismiss the relevance of the hypothesis
[2-5], particularly as no proven mechanism for adjusting
sex ratio has emerged. Several hypothetical mechanisms
to explain sex ratio adjustment focus on differences in
maternal physiology around conception, implantation or
in relationship to early development [2,6-10].

The sex-allocation hypothesis of Trivers and Willard [1-5]
has been applied successfully to ruminant species,
although meta-analysis of 37 studies only identified a
weak positive correlation between maternal condition
and sex ratio [5]. Particular confusion relates to the term
'maternal body condition', which is based upon morpho-
logical assessment and often made without knowledge of
actual body fat deposition, food quality and/or intake.
Measures of maternal condition taken prior to conception
provide stronger evidence of a relationship with sex ratio,
than those that rely on morphological or physiological
measures of condition taken post-conception [1-5].

There have been surprisingly few controlled experiments
to determine whether maternal nutrition influences the
sex ratio of offspring [4]. Studies can be separated into
those focusing upon dietary restriction and its timing ver-
sus those concerned with dietary composition. In golden
hamsters [11] and house mice [12] diet restriction during
pregnancy leads to a reduction in the number of males
born. In contrast, alteration of the dietary composition,
specifically the content of oils and fat that increase the
caloric intake before pregnancy, can skew the offspring sex
towards males in opossum [13] and mice [14,15]. With
the exception of one report on fallow deer [16], where
females on a higher calorie intake produced more sons
than daughters, to the authors' knowledge, there have
been no experimental studies performed in livestock that
have examined whether nutrition of the mother can affect
sex ratio under controlled experimental conditions. Two

large retrospective studies of lactating dairy cows have
however found indirect measures of better nutrition to be
positively associated with a skewing of sex ratio towards
males [17,18]. Clearly, controlled studies performed to
determine how maternal diet influences sex of offspring
would be beneficial in livestock industries in which preg-
nancy outcome strongly influences the efficiency of pro-
ducing milk or meat [19].

Ruminants are problematic when it comes to studying the
effects of fat and oil supplementation on parameters such
as reproductive performance [20]. First, the fatty acid con-
tent of fats varies widely. Typically, unprocessed plant oils
are rich in long chain polyunsaturated fatty acids (PUFA),
while fats derived from animals contain mainly saturated
fats and a variable proportion of the C18:1 monounsatu-
rated fatty acid, oleic acid. Second, the majority of the
fatty acids consumed are utilized by rumen flora. Only in
monogastric species of mammals does blood composi-
tion reflect the fatty acid content of the diet [21]. In rumi-
nants, 70 to 90% of PUFA supplied become hydrogenated
before they reach the small intestine and are utilized [22-
24]. However, some sources of plant oils are more resist-
ant to the rumen flora than others [22], resulting in >25%
PUFA uptake. Recently, dietary supplements containing
essential fatty acids that are protected from lipolysis and
bio-hydrogenation in the rumen have become commer-
cially available, thereby allowing the effects of enhanced
PUFA uptake to be examined.

Evidence exists that alteration of the concentration and
ratio of n-6 and n-3 PUFAs in feed can influence several
reproductive parameters in ruminants, specifically n-6
PUFAs, which can be converted to longer chain gamma
linolenic and arachidonic acid, precursors of prostagland-
ins [21,22]. The manipulation of prostaglandin synthesis
and metabolism can be profound, with affects on follicle
development, ovulation, corpus luteum (CL) function
and hormone secretion being reported [21]. Therefore,
the hypothesis underpinning the present experiment was
that the fat composition of the diet, specifically the n-6
PUFA concentration, fed to ewes around the time of con-
ception would influence the sex ratio of offspring born.

Methods
Animals and diets
Non-parous Romanov crossbred ewes (n = 44) not more
than 30 months of age were divided into two weight
matched groups and assigned either a control (C) or a diet
rich in n-6 polyunsaturated fats (F) (Table 1). The C diet
was characteristic of the type of ration used in the sheep
industry for dry-lot managed ewes. The F diet differed pri-
marily only from the C diet in that it was supplemented
with fat. To ensure its effectiveness the fat component,
Neofat (Morgan Co.; Paris, IL), a hydrolyzed saponified
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derivative of soybean oil, was used to "protect" the fatty
acids from the rumen microflora and allow digestion and
absorption in the intestines. The diets formulated were
approximately isocaloric and isonitrogenous, as well as
isoenergetic in terms of energy distributed between the
different nutrient sources. Analysis of diets confirmed
their composition (Livestock Nutrition Laboratory Serv-
ices, Columbia, MO). Two weeks prior to starting the
experiment, both groups of ewes were managed in dry-
lots and offered twice daily the C diet to meet basal main-
tenance requirements (0.8 kg/ewe/day). Subsequently,
ewes were housed on average in pens of three. One group
was fed the C diet (Group A) and the other the F diet
(Group B) for 4 weeks prior to breeding and until day 13
post-estrus. Estrous cycles were synchronized via intra-
muscular administration of 30 mg, (two injections of 15
mg; 4 h apart) of the prostaglandin F2α analogue, Lutalyse
(Pharmacia & Upjohn Company, Kalamazoo, MI) nine
days apart. Estrus (d 0) was identified by the use of a
marker-harnessed vasectomized ram. Thereafter, ewes
were checked twice daily for estrus and bred at the follow-
ing natural estrus to at least two rams, each three times
successfully, twice a day until estrus concluded. Rams
were not fed either of the diets. On day 13 post-estrus each
uterine horn was surgically flushed with 37°C sterile
modified phosphate buffered saline (m-PBS; 30 ml) con-
taining 5.56 mM glucose to recover conceptuses as
described in previous studies from this laboratory [25,26].
The developmental stage (spherical or elongated), length
and width, as well as status (intact or fragmented) of each

conceptus was recorded prior to being individually cul-
tured. The number of CL was also recorded to determine
whether the value matched the number of conceptuses
recovered in the flush. Following surgery, ewes were
allowed to recover for six weeks while housed in dry-lots
and fed the C diet. In Phase 2, ewes in both Group A and
B were fed the F diet to account for the possibility of parity
order on sex ratio and to increase the sample size, since
feeding of the C diet in Phase 1 was undertaken to demon-
strate that, as identified by the literature, feeding a stand-
ard diet did not skew sex ratio. An identical schedule to
Phase 1 was followed, although on day 13 post-estrus ewes
were euthanized rather than being subjected to a second
surgery. Reproductive tracts were examined for the
number of CL present on the ovaries and flushed to
recover conceptuses.

Individual ewe weights and body condition scores (BCS)
were assessed weekly. BCS was assessed following indus-
try standard guides by 3 experienced assessors, specifically
by palpation of the thoracic and vertebral regions of the
spinal column (loin and rump), the ribs, the tuber sacrale
(hip bones), the tuber ischii (pin bones), the tail head and
the thigh region. BCS were calculated as the mean score of
three assessors throughout the study (August to January),
and dietary intake adjusted on an individual basis to
maintain weights and BCS between 3.0 to 3.5 (Scale: 1 =
emaciated to 5 = severely obese). Weekly blood samples
were collected via jugular venipuncture to determine the
concentration of metabolic parameters (glucose, insulin,

Table 1: Ingredient and nutrient compositions of the diets (Control and Fat) fed to dry-lot managed ewes

Diet

Ingredient Composition (% of diet dry matter) Control (C) Fat (F)

Cracked Corn 36.7 27.5
Soybean Meal 9.0 11.0

Dehydrated Alfalfa 5.2 5.2
Cottonseed hulls 43.6 50.9

Molasses 4.8 0.0
Neofat 0.0 4.6

Minerals 0.6 0.7
Vitamins 0.1 0.1

Total 100 100

Diet

Nutrient Composition Control (C) Fat (F)

Dry Matter (%) 88.2 91.6
Crude Fiber (% of dry matter) 31.9 29.2

Crude Protein (% of dry matter) 11.0 11.5
Crude Fat (% of dry matter) 1.9 4.8

Metabolizable Energy (Mcal/kg) 2.5 2.4
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IGF-I, leptin, and non-esterified fatty acids (NEFAs)).
Daily samples were also collected during pregnancy (d0–
d13) to ascertain progesterone concentrations. Plasma
was harvested from blood by centrifugation for 15 min at
1500 × g and stored at -20°C for subsequent hormone
analysis. The study was completed in accordance with
University of Missouri Animal Care and Use Committee
Protocol 3716.

Conceptus culture and IFNT measurement via antiviral 
assay
IFNT is generally regarded as the major signal for maternal
recognition of pregnancy in ruminant ungulates [27-29]
and its production is a useful indication of conceptus well
being. Accordingly, we measured the amount of IFNT
(assessed by its antiviral activity) released by conceptuses
into the medium during their culture in vitro subsequent
to their recovery from the uterus.

Conceptuses were thoroughly washed in m-PBS prior to
individual culture in 500 μl of Pig Minimum Essential
Medium (Pig MEM) [30], consisting of MEM (Gibco Lifes-
ciences; Rockville, MD) supplemented with 10% FBS
(Harlan BioProducts; Indianapolis, IN), 1% 100 × Non
essential amino acids (Sigma Chemical Co.; St. Louis,
MO), 16.68 mM D-Glucose (Sigma Chemical Co.; St.
Louis, MO) and 0.2 IU Insulin (Sigma Chemical Co.; St.
Louis, MO). Conceptuses were cultured for 24 h under 5%
O2 5% CO2 90% N2 at 39°C. Medium was collected at 4
h, replaced, and at the end of culture (24 h) again col-
lected to measure IFNT concentration. At 24 h a small por-
tion of each conceptus was removed for sex determination
via PCR.

Medium collected after 4 and 24 h culture was analyzed
for antiviral activity content via a cytopathic reduction
assay (n = 18) involving Madin-Darby Bovine Kidney
(MDBK) cells challenged with a vesicular stomatitis virus
[31]. The standard used was recombinant boIFNT1A of
known antiviral activity (7.5 × 107 IU mg-1) [32] that had
been standardized against human IFNA (PBL Biomedical
Laboratories; Piscataway, NJ). The assay protocol used has
previously been described in detail [33].

Sexing of conceptuses
Conceptus DNA was extracted in 5 μl of lysis buffer (20
mM Tris-HCl, 0.9% Tween-20, 0.9% NP-40), pH 7.5 with
Proteinase K (final concentration of 0.4 mg/ml) at 55°C
for 30 mins followed by 10 mins at 98°C. Sexing was per-
formed by PCR amplification of a Y-specific DNA
sequence [34]. As a control reaction, a non-sex specific
ovine autosomal sequence [35] was co-amplified to dem-
onstrate the presence of conceptus DNA. Ovine male and
female genomic DNA (20 pg), as well as water samples
were included as controls and treated exactly the same as

conceptus DNA. The PCR amplification (93°C for 30 sec
followed by 30 cycles of 93°C for 1 min, 61°C for 1 min
and 68°C for 1 min) was set up essentially as described by
Larson et al. [33], except with sheep autosomal primers at
2 pmol and Y-specific primers at 5 pmol. After amplifica-
tion, PCR products were visualized by electrophoresis on
a 4% agarose gel. The autosomal primers yielded a band
at 256 bp and the Y-specific primers a band at 301 bp.

Plasma assays
Progesterone and insulin concentrations were determined
via the use of a Coat-A-Count kit (DPC; Los Angeles, CA)
following the manufacturer's instructions. The assay sen-
sitivity for progesterone (n = 6) and insulin (n = 3) was 0.2
ng ml-1 and 4.6 μIU ml-1 with a specific binding of 55.2%
and 34.4% respectively. The intra- and inter-assay coeffi-
cients of variation were 3.6% and 5.9% for progesterone,
4.2% and 6.4% for insulin. Glucose concentrations were
determined by using a commercially available colormetric
assay kit (ThermoDMA; Louisville, CO) as described in
the manufacturer's instructions. Assay sensitivity (n = 44)
was 0.04 mmol L-1 with intra- and inter-assay coefficients
of variation of 6.3% and 12.4% respectively. NEFAs were
measured using the Wako NEFA C colormetric assay kit
(Wako Chemicals USA; Richmond, VA) as described [36].
Assay sensitivity (n = 31) was 0.01 mEq L-1 with intra- and
inter-assay coefficients of variation of 4.1% and 9.8%
respectively. Plasma leptin concentrations were deter-
mined via a double antibody radioimmunoassay as previ-
ously described [37]. Assay sensitivity (n = 6) was 0.8 ng
ml-1 and the specific binding 38.6%. The intra- and inter-
assay coefficients of variation were 7.6% and 11.7%
respectively. Plasma IGF-I concentrations were measured
after acidified extraction via a double antibody radioim-
munoassay [38]. Assay sensitivity (n = 3) was 8.6 ng ml-1

and the specific binding 41.8%. The intra- and inter-assay
coefficients of variation were 10.3% and 13.5% respec-
tively.

Statistical analysis
Maternal body weight, BCS and weekly plasma hormone
concentrations were calculated for two time periods.
Firstly, a mean value was determined that included the
whole experimental time period, 4 weeks prior to breed-
ing (start of diet) to uterine flushing (d13 post-estrus). A
second mean value was calculated from data collected
from the time of breeding to uterine flushing (d0 to d13).
Daily progesterone concentrations for each ewe were ana-
lyzed as area under the curve (AUC) d2 to d13 post-estrus
and AUC d2 to d5 post-estrus. In addition, linear regres-
sion analysis of progesterone concentrations between d2
and d5 allowed us to calculate the slope of the curve for
the increase in progesterone that occurs as the CL first
become functional. This variable was also included in the
statistical model. As with other studies investigating sex
Page 4 of 11
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2008, 6:21 http://www.rbej.com/content/6/1/21
ratio, the sex ratio (proportion male) was compared with
an expected 1:1 ratio by a corrected γ2 procedure as well as
by using Binominal analysis. These analyses were per-
formed for both the C and F diets. Sex ratio differences
between ewes on the C and F diets were assessed for Phase
1. All analyses were run by using the Proc Mix Glimmix
procedure of SAS software version 9.1 (SAS institute,
Cavy, NC). A general linear mixed model with appropri-
ate link functions for data with a Poissonian distribution
was used to investigate the effect of diet on the proportion
of male conceptuses and on plasma hormone concentra-
tions. The Phase of the experiment (Phase 1 or Phase 2) was
treated as a repeated measure. Average weight, weight
change, average BCS, change in BCS, pregnancy status,
conceptus and corpora lutea (CL) number were included
in the model and all interactions between the main effects
were analyzed.

Conceptuses were classified as either intact or not after
recovery. The majority of conceptuses identified as non-
intact had only minimal damage to the trophectoderm.
However, since there was some tissue loss from damaged
embryos only data from conceptuses deemed to be intact
at recovery were included in the analysis, since their true
dimensions were unknown and IFN production could
potentially have been affected. IFNT antiviral values were
log-transformed, as the distribution of the raw data was
skewed. A linear mixed model was employed with hour (4
or 24 h) and Phase as repeated measures. The length,
width, calculated area ([length × 2] width) and sex of the
conceptus were included as covariates. Phase, maternal
diet, progesterone concentration, average weight, weight

change, average BCS and BCS change were also included
in the model. Results are presented as the least squared
mean ± SEM unless otherwise stated.

Results
Weight, BCS, pregnancy rates and embryo recovery
BCS did not differ (P > 0.1) between ewes on the C and F
diets (Table 2). Nor was there any significant change in
BCS scores in either group over the course of the experi-
ment. The mean weight of the ewes was also the same (P
> 0.1) in the two dietary groups, and ewe weights
remained relatively constant over the five months of the
study (see Table 2).

Ewes were bred twice, in October 2003 and January 2004.
Fertility and breeding rates of the ewes were high in each
of the two phases of the study. In Phase 1, 43 of the 44
ewes (98%) demonstrated estrus and were bred success-
fully. On d13 post-breeding, 33 ewes (77%) had at least
one conceptus in their uterine flushings. In total, 43 intact
(including 10 spherical) and 12 largely intact (slightly
damaged trophectoderm) conceptuses were recovered. In
Phase 2, one ewe was euthanized after complications post-
surgery and, of the remaining 43 ewes, 41 (95%) were
bred successfully. One ewe did not demonstrate estrus
throughout the whole study and was excluded from all
analyses. Of the 41 ewes bred in Phase 2, 37 (90%) were
determined as pregnant (44 intact and 30 largely intact
conceptuses). Tract abnormalities from the first surgery
were evident in two of the four non-pregnant ewes. In
total, 129 conceptuses (87 intact and 42 largely intact)
were recovered in the two phases of the study. Overall the

Table 2: Mean physical, metabolic and hormonal measures of ewes shown by diet (Control or Fat)

Diet Fed to Ewes

Physical, Metabolic or Hormonal Ewe Measures Control (Diet C) Fat (Diet F)

Mean weight (kg) 54.7 ± 1.0 56.9 ± 1.4
Change in weight (kg) 0.9 ± 1.1 1.6 ± 0.8

Mean BCS 3.2 ± 0.1 3.3 ± 0.1
Change in BCS 0.1 ± 0.05 0.1 ± 0.1

Average plasma glucose (mmol L-1) 3.40 ± 0.1 3.91 ± 0.2
Breeding plasma glucose (mmol L-1) 3.32 ± 0.2 3.64 ± 0.2

Average plasma leptin (ng ml-1) 14.0 ± 1.0 13.7 ± 0.9
Breeding plasma leptin (ng ml-1) 14.5 ± 1.2 14.1 ± 1.2
Average plasma IGF-I (ng ml-1) 148.2 ± 9.4 141.4 ± 8.4
Breeding plasma IGF-I (ng ml-1) 140.4 ± 8.4 136.5 ± 7.4

Average plasma insulin (μIU ml-1) 74.1 ± 6.3 63.1 ± 7.4
Breeding plasma insulin (μIU ml-1) 76.8 ± 7.9 64.8 ± 7.7
Average plasma NEFA (mEq L-1) 0.21 ± 0.01 0.24 ± 0.03*
Breeding plasma NEFA (mEq L-1) 0.170 ± 0.02 0.181 ± 0.02

Plasma progesterone (ng ml-1) AUC d2 to d5† 5.5 ± 0.3 4.6 ± 0.3 *
Plasma progesterone (ng ml-1) AUC d2 to d13† 56.1 ± 2.7 50.0 ± 2.0*

Plasma progesterone (ng ml -1 day -1) Slope d2 to d5† 1.3 ± 0.1 1.6 ± 0.1**

AUC = Area under the curve. †Data from Phase 1 only. Superscripts indicate values are significantly different within rows * (P < 0.05), ** (P < 0.01).
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mean number of conceptuses per ewe (1.8 ± 0.1), as well
as the mean number of CL (2.5 ± 0.1), were not different
(P > 0.1) between Phases or diets. In addition, no differ-
ences with respect to these parameters were identified
when only data from pregnant ewes were analyzed: mean
number of conceptuses per ewe (1.8 ± 0.1; Diet C 1.6 ±
0.1, Diet F 1.8 ± 0.1) and CL (2.5 ± 0.1; Diet C 2.5 ± 0.1,
Diet F 2.5 ± 0.1).

Conceptus dimensions and sex
Intact conceptuses recovered in Phase 2, which was con-
ducted later in the breeding season (January), were larger
(P < 0.001) than those in Phase 1, which were recovered in
October at the beginning of the season. Conceptus length
(Phase 1, 3.9 ± 0.6 mm; Phase 2, 18.3 ± 3.0 mm), width
(Phase 1, 0.9 ± 0.03 mm; Phase 2, 1.1 ± 0.04 mm) and area
(Phase 1, 6.9 ± 1.1 mm2; Phase 2, 43.4 ± 8.8 mm2) all dif-
fered between Phases. Accordingly, we only used data from
Phase 1 to determine whether there was an effect of mater-
nal diet on the size of intact conceptuses. Maternal diet
did not affect (P > 0.1) the length, width or the calculated
surface area of the recovered conceptuses.

Conceptus sex was analyzed by PCR (Table 3). The com-
plete data set (n = 129) included all intact conceptuses,
plus those that were minimally damaged, and from ewes
where the number of CL matched the number of whole
and minimally damaged conceptuses recovered from a
ewe. In ewes fed the F diet, the sex ratio (proportion male)
was skewed towards males (69%; deviation from antici-
pated 0.5 value P < 0.001). Although the number of
female conceptuses was numerically greater than the
number of male conceptuses for ewes on the C diet, the
fraction was not significantly different from the expected
0.5 value, i.e. the control diet did not cause sex ratio skew-
ing.

Differences in intact conceptus size between sexes were
analyzed within phase. No differences in length (Phase 1,
Females 4.07 ± 1.02 mm vs. Males 2.81 ± 0.53 mm; Phase
2, Females 22.81 ± 5.52 mm vs. Males 15.73 ± 3.89 mm)
or width (Phase 1, Females 0.82 ± 0.05 mm vs. Males 0.88
± 0.04 mm; Phase 2, Females 1.20 ± 0.09 mm vs. Males
1.05 ± 0.04 mm) measurements were identified.

IFNT anti-viral activity of culture media (4 and 24 h)
IFNT production by intact conceptuses was significantly
less (P < 0.001) in Phase 1 (287,016 ± 50,275 U) than in
Phase 2 (3,635,217 ± 1,431,133 U) of the study, an antic-
ipated result since the conceptuses in Phase 1 were
smaller. Not unexpectedly, the amount of IFNT activity
recovered after 4 h of culture was less than that recovered
in the subsequent 20 h of culture (Phase 1, 68,308.6 ±
14,727.1 U and 287,015.9 ± 50,274.3 U, respectively: Fig.
1.).

Maternal diet had no affect (P > 0.1) on IFNT production.
Conceptus sex did, however, influence IFNT content of
the medium, with female conceptuses producing more (P
< 0.05) IFNT by 4 h than male conceptuses. It is unclear
whether these differences could be attributed to the
slightly larger (but statistically insignificant) size of the
female conceptuses (see previous section) However, no
differences in IFNT production was found between sexes
at 24 h (Fig. 1).

The production of IFNT was positively correlated with
conceptus size (area and length; both P < 0.01), and, inter-
estingly, with maternal BCS (P < 0.05, Fig. 2.).

Metabolic and hormone concentrations in plasma of ewes
The effects of diet on the concentration of maternal circu-
lating metabolites and hormones concentrations on the
weekly blood samples from all ewes throughout the study

Table 3: The sex of the total number and (intact number) of conceptuses recovered on day 13 post-estrus shown by individual phase 
and maternal diet (Control vs. Fat)

Ewes Conceptus Sex

Phase Ewe group Maternal diet Bred Pregnant Female Male Male ratio

1 A Control 21 13 (12) 13 (11) 8 (8) 0.38
1 B Fat 22 20 (17) † 14 (9) 20 (15) 0.58
2 A Fat 21 19 (14) 12 (9) 26 (14) 0.68*
2 B Fat 20 18 (13) 7 (7) 29 (14) 0.81**

Control 21 13 (12) 13 (11) 8 (8) 0.38

Combined Fat 63 57 (44) 33 (25) 75 (43) 0.69**

The number of ewes in parentheses identifies the number from which intact conceptuses were recovered.
†Conceptuses recovered from one ewe were dropped at surgery and unable to be sexed. Male ratio with superscripts are different from the 
expected 0.50 ratio * (P < 0.05), ** (P < 0.001).
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(average concentration), as well as samples collected daily
in the period from breeding to recovery on d13 (breeding
concentration) are summarized (Table 2).

Diet did not significantly affect either average or breeding
plasma glucose concentrations. There was however a
slight increase in circulating glucose in the heavier ewes (P
< 0.05) and in those ewes where there was an increase in
BCS from breeding to embryo recovery (P < 0.07). Simi-
larly, diet had no influence on plasma concentrations of
leptin. As anticipated, average concentrations of leptin
were greater in heavier than in lighter ewes (P < 0.05).
Breeding leptin concentrations were also greater in ewes
that increased their BCS (P < 0.01) during the experiment.
Neither average plasma insulin nor IGF-I concentrations
differed in relation to diet, ewe weight, or BCS. Ewes on

the F diet had greater (P < 0.05) plasma NEFA concentra-
tions relative to the controls. Average and breeding NEFA
concentrations were also correlated with a positive change
in ewe BCS (P < 0.01) and weight (P < 0.05).

Plasma progesterone in Phase 1 (mean overall 53.0 ± 1.8
ng ml-1) were lower than in Phase 2 (mean overall 59.8 ±
1.3 ng ml-1). Ewes on the F diet had lower overall proges-
terone concentrations (P < 0.05) than those fed the C diet
in the period between breeding and conceptus recovery
(Table 2) as well as in the earliest stages of pregnancy (d2
to d5 period). Paradoxically, the early rise in progesterone
concentrations (slope of the curve from d2 to d5 post-
estrus), which is a reflection of the onset of CL function,
was greater in ewes on the F diet than in those on the C

Scatter diagram showing the range in interferon-tau (IFNT) content of the medium (U per conceptus) between A) 4 and 24 h of culture (n = 41), B) between male (n = 23) and female (n = 18) intact conceptuses after 4 and 24 h cultureFigure 1
Scatter diagram showing the range in interferon-tau (IFNT) 
content of the medium (U per conceptus) between A) 4 and 
24 h of culture (n = 41), B) between male (n = 23) and female 
(n = 18) intact conceptuses after 4 and 24 h culture. Mean 
values are indicated by horizontal lines. * P < 0.05, *** P < 
0.001, ns = not significant (P > 0.1).
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Linear regression analysis of average maternal body condition score (BCS; scale 1 = emaciated to 5 = obese) and inter-feron-tau (IFNT) content of the medium (U per conceptus) of intact conceptuses at A) 4 h (P < 0.01, r2 = 0.12) and B) 24 h (P < 0.01, r2 = 0.18) of culture (n = 41)Figure 2
Linear regression analysis of average maternal body condition 
score (BCS; scale 1 = emaciated to 5 = obese) and inter-
feron-tau (IFNT) content of the medium (U per conceptus) 
of intact conceptuses at A) 4 h (P < 0.01, r2 = 0.12) and B) 24 
h (P < 0.01, r2 = 0.18) of culture (n = 41).
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diet (C diet 1.3 ± 0.1 ng ml-1 day-1; F diet 1.6 ± 0.1 ng ml-

1 day-1). Taken together, these results provide evidence
that ewes fed the F diet were slower in initiating a proges-
terone rise, but when they did, the rise was more rapid,
although overall progesterone production by their CL was
never as great as those ewes fed the C diet.

Discussion
Numerous types of fat including tallow [39], flaked fat
[40], calcium soaps of fat [41], free fatty acids [42] and
fish oils [43] have been added to the standard diets of
ruminant farm species in order to increase energy intake
during lactation and around breeding. Unfortunately,
none of the numerous trials conducted to evaluate the
value of fat supplementation have reported the sex ratio of
offspring born to the animals in the studies. Conse-
quently, it is not clear whether sex ratios were unchanged
or whether any skewing was overlooked. Here, we show
that a diet enriched in the quantity of rumen-protected
PUFA, when provided to ewes for a limited period prior to
breeding and over the first two weeks of pregnancy, had a
marked ability to bias the normal 1:1 sex ratio of concep-
tuses toward males on day 13 post-breeding.

The diets (C and F) were isocaloric and were balanced in
terms of protein, minerals, and vitamins, with both diets
having a similar fatty acid composition. The F diet differed
primarily from the C diet in that it contained approxi-
mately 2.5 times as much crude fat, largely in the form of
PUFAs, the majority of which was protected from metab-
olism by rumen bacteria and hence absorbable through
the ileum [24]. Since at least two-thirds of the fatty acids
in the C diet would be hydrogenated by rumen microflora
[22,44], the real difference in absorbable PUFA content in
the F diet was probably at least five-fold greater than in the
C diet. The increased plasma NEFA concentrations in the
ewes fed the F diet suggested that the feeding of rumen-
protected fat elicited a systemic response. There are other
reports consistent with our data in ewes where cattle fed
supplemented fat exhibited elevated concentrations of
NEFA with generally no change in plasma glucose concen-
trations [20,45]. Hence the main difference between the
two groups of ewes was in the amount of PUFA con-
sumed, suggesting that PUFAs were the component of the
diet that that led to the skewing of the sex ratio towards
males. An increase in PUFA intake may have also altered
the relative proportion of individual fatty acids within the
total NEFA concentration measured. In addition, the con-
centration of plasma volatile fatty acids may have been
changed.

The proportion of male conceptuses determined in the
ewes on the F diet was significantly (P < 0.001) higher
(0.69) compared to the approximate 0.5 value normally
encountered in flocks [46] but this figure is comparable to

some values noted for fawns born to dominant red deer
hinds in good body condition [47,48]. Previously pub-
lished data showing some skewing towards female lambs
in twin pregnancies according to the breeding season
[46,49] were not evident in our study. However, our study
in ewes ruled out BCS, ewe weight, parity order, time of
breeding, and likely dominance as the bases of the sex
ratio skewing. Rather, it was the composition of the diet
consumed in the peri-conception period that appeared to
be responsible for the effect. It seems likely that these
results can be extended to wild populations of ruminants
where the availability and kind of fats in forage at the time
of breeding might be the major factors that influence
whether a female conceives a son or daughter. Lack of
knowledge of dietary composition during this period may
also help to explain the ambiguity surrounding BCS and
its positive correlation with an increased number of male
offspring [3,48-54].

In theory, skewed sex ratios could result from mecha-
nisms that occur either prior to fertilization, i.e. through
modulating the ability of either X or Y sperm to reach or
penetrate the oocyte, or after fertilization via selective loss
of conceptuses of one sex relative to the other [4]. Our
experiments were not particularly informative about how
increased PUFA intake altered sex ratio. They do show that
skewing towards males occurred within the first 13 days of
pregnancy, but not precisely when within this period the
process was initiated. The biochemical analyses revealed
no apparent mechanisms to explain the effect of diet on
sex ratio. One favoured explanation for preferential loss of
female conceptuses is their increased sensitivity to glucose
[2,33,55-58]. However, circulating glucose concentrations
in our experiments, although quite variable, were not sig-
nificantly different between the two diets, although it is
still conceivable that local concentrations within the
reproductive tract differ according to diet [59,60].

In addition to the lack of strong evidence for a glucose
effect, it was clear that male conceptuses did not produce
more IFNT than females and did not, therefore, have a
post-conception advantage by signaling their presence
more robustly to the mother. On the contrary, female con-
ceptuses from ewes on both diets displayed a slight advan-
tage in IFNT production, which agrees with previous
reports of sexual dimorphic production of IFNT in early
developing bovine embryos [33,58,61]. In addition to
conceptus sex, and consistent with other studies [62-64],
IFNT production was positively associated with conceptus
size. A positive correlation between IFNT production and
maternal BCS, irrespective of conceptus sex, was another
novel finding of the current study and partially supports
the importance of BCS as described by Trivers and Willard
[1] but only so far as mothers in better condition, close to
optimum, potentially increase their chances of maintain-
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ing a pregnancy than ones with a poor BCS. Finally, there
were no differences observed in the plasma concentra-
tions of IGF-I, insulin or leptin between ewes on the C and
F diets, which would suggest only a subtle effect, if any, of
these hormones and their downstream target pathways on
sex ratio values. As with glucose, however, we cannot rule
out that local rather than plasma concentrations of these
hormones favor the development of conceptuses of one
sex over the other.

It is possible, that PUFAs, rather than causing changes in
metabolic parameters, have a more direct role in govern-
ing sex ratio. For example, PUFAs have been proposed to
have a positive effect on fertility by causing alterations in
follicle growth, ovulation rate, oocyte quality, progester-
one synthesis, as well as prostaglandin synthesis and
metabolism [20,21,65-69]. One interesting difference
between the ewes on the two diets was a lower average cir-
culating progesterone concentration and a delayed,
though more rapid, rise in progesterone in ewes fed the F
diet. Others have noted a similar delay in progesterone
production in dairy cows fed fat-supplements [20,70]. In
addition, a PUFA-supplement caused the development of
larger dominant follicles in cows and a delay in ovulation
relative to the LH surge [66]. One possibility, therefore, is
that PUFA supplementation, through its effects on follic-
ular maturation, delays oocyte maturation and the time of
ovulation, and these late maturing oocytes, for reasons
that are unclear, are more likely to be fertilized by Y-
sperm. In a recent study, oocytes that were matured in vitro
for longer periods than usual and then fertilized, gave rise
to more male than female embryos, although the basis of
the phenomenon was unclear [71]. Interestingly, delaying
breeding relative to the maturation of the dominant folli-
cle may provide more male conceptuses in several species
[4], including deer and sheep [71-75] and possibly cattle
[76]. Although there was no indication that fertilization
was delayed in our experiments, it is intriguing to propose
that oocytes from the F group of ewes were advanced in
terms of their maturity and had reached a state that they
were more likely to be penetrated by Y-bearing sperm.

The increased proportion of linoleic acid (LA 18:2 n-6) in
the diet may not only alter the timing of oocyte matura-
tion and ovulation but also the physical properties and
signalling ability of the oocyte [69,77]. LA is one of the
most abundant fatty acids in ruminant oocytes and
embryos [69,78], and is present at two-fold higher con-
centrations than in human embryos [79]. Recently n-6
PUFAs, which are precursors of eicosanoid signalling mol-
ecules, have been shown to play a dominant role in con-
trolling directional sperm motility in the reproductive
tract of Caenorhabditis elegans [80]. One possibility is that
in ewes and related ruminants dietary supplementation of

n-6 PUFAs and their accumulation in the oocyte leads to
preferential recruitment of Y-bearing spermatozoa.

Conclusion
In conclusion, the results of the current study suggest that
although a greater maternal BCS aids pregnancy establish-
ment it is in fact maternal diet, specifically increased die-
tary protected PUFA content, which alters sex ratio in
favor of males on day 13 post-breeding. Even though the
mechanism for sex ratio skewing remains unclear, these
data may have considerable practical implications to the
livestock industry and to wild life management. Increas-
ing the amount of rumen-protected PUFA and total fat in
feed during the breeding period could provide a means of
controlling sex ratio of offspring born in the herd or flock.
Clearly, however, large-scale breeding trials are needed to
determine whether these data can be translated to com-
mercial livestock operations.
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