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Abstract

Background: There is currently much interest in pharmacogenetics: determining variation in genes that regulate
drug effects, with a particular emphasis on improving drug safety and efficacy. The ability to determine such
variation motivates the application of personalized drug therapies that utilize a patient’s genetic makeup to
determine a safe and effective drug at the correct dose. To ascertain whether a genotype-guided drug therapy
improves patient care, a personalized medicine intervention may be evaluated within the framework of a
randomized controlled trial. The statistical design of this type of personalized medicine intervention requires special
considerations: the distribution of relevant allelic variants in the study population; and whether the
pharmacogenetic intervention is equally effective across subpopulations defined by allelic variants.

Methods: The statistical design of the Clarification of Optimal Anticoagulation through Genetics (COAG) trial serves
as an illustrative example of a personalized medicine intervention that uses each subject’s genotype information.
The COAG trial is a multicenter, double blind, randomized clinical trial that will compare two approaches to
initiation of warfarin therapy: genotype-guided dosing, the initiation of warfarin therapy based on algorithms using
clinical information and genotypes for polymorphisms in CYP2C9 and VKORC1; and clinical-guided dosing, the
initiation of warfarin therapy based on algorithms using only clinical information.

Results: We determine an absolute minimum detectable difference of 5.49% based on an assumed 60%
population prevalence of zero or multiple genetic variants in either CYP2C9 or VKORC1 and an assumed 15%
relative effectiveness of genotype-guided warfarin initiation for those with zero or multiple genetic variants. Thus
we calculate a sample size of 1238 to achieve a power level of 80% for the primary outcome. We show that
reasonable departures from these assumptions may decrease statistical power to 65%.

Conclusions: In a personalized medicine intervention, the minimum detectable difference used in sample size
calculations is not a known quantity, but rather an unknown quantity that depends on the genetic makeup of the
subjects enrolled. Given the possible sensitivity of sample size and power calculations to these key assumptions,
we recommend that they be monitored during the conduct of a personalized medicine intervention.
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Background
Personalized Medicine Interventions
The recent availability of lower-cost genetic testing has
motivated medical researchers to determine whether
patient care and safety is improved by using a patient’s
genetic information to initiate and manage drug therapy
[1]. To evaluate scientific hypotheses regarding a perso-
nalized medicine intervention, a randomized clinical trial
can be used to contrast outcomes between subjects ran-
domized to receive genotype-guided drug therapy and
those randomized to receive an identical therapy without
reference to their genetic characteristics [2]. However,
because not all subjects may benefit from the pharmaco-
logic intervention due to their genetic makeup, genotype-
guided therapy may not benefit the entire study popula-
tion. Hence, any putative difference between treatment
groups will be attenuated, which may adversely impact
key components of the statistical design, such as sample
size and statistical power. Therefore, the primary statisti-
cal challenge of designing a personalized therapy inter-
vention is to accommodate the potential differential
effectiveness of genotype-guided therapy across subpopu-
lations defined by allelic variation.
Although interventions that use a subject’s clinical fac-

tors, gene expression profile, or perhaps other factors
can also be considered as personalized medicine, we
restrict our attention to interventions that use genotype.
In addition, personalized medicine interventions may be
evaluated using several different study designs. For
example, in a targeted design, frequently used to evalu-
ate genetic-based therapies for cancer, study eligibility
may be restricted to a marker-positive subset of the
population anticipated to benefit from therapy based on
their genetic characteristics [3]. We focus on untargeted
designs, such as those that have been used to evaluate
genotype-guided dosing of warfarin, in which all subjects
are enrolled regardless of their genetic characteristics.

Genotype-Guided Dosing of Warfarin
Warfarin sodium is the most common oral anticoagu-
lant used for the prevention and treatment of throm-
boembolism, the formation of a clot in a blood vessel or
cardiac chamber that may be carried by the blood
stream and obstruct another vessel. Initiation of warfarin
therapy is usually based on empiric dosing, which may
put patients at an increased risk for either major bleed-
ing complications due to over-anticoagulation or throm-
boembolic events due to under-anticoagulation.
Therefore, initiation of warfarin therapy at an improper
dose may be associated with increased costs and higher
morbidity [4].
Many patient-specific clinical factors impact warfarin

dose-response. In addition, two genes influence warfarin

dose: the cytochrome P-450 family 2 subfamily C poly-
peptide 9 enzyme (CYP2C9) gene effects pharmacoki-
netics, i.e., the effects of the body on the drug; and the
vitamin K epoxide reductase complex 1 (VKORC1) gene
effects pharmacodynamics, i.e., the effects of the drug
on the body. Thus, CYP2C9 variants alter S-warfarin
metabolism [5]; VKORC1 variants alter warfarin
response [6]. Both CYP2C9 and VKORC1 have proven
useful in algorithms to predict the ultimate maintenance
dose for optimal warfarin therapy [7]. However, they
have not yet been proven to be beneficial in choosing
the initial warfarin dose or to impact clinical outcomes.
The goal of this manuscript is to provide practical gui-

dance on the statistical design of a personalized medi-
cine intervention that uses each subject’s genotype
information in an untargeted design. The statistical
design of the COAG trial serves as an illustrative exam-
ple. We briefly summarize the clinical rationale and the
general study design for the COAG trial. We use power
and sample size calculations to illustrate the primary
statistical challenge of designing a personalized therapy
intervention: to accommodate the potential differential
effectiveness of genotype-guided therapy across subpo-
pulations defined by allelic variation. We provide a sen-
sitivity analysis to quantify the extent to which power
and sample size calculations may be sensitive to key
assumptions required in the statistical design of a perso-
nalized medicine intervention. We conclude with gen-
eral recommendations for the statistical design of
personalized medicine interventions.

Methods
The objective of the COAG trial (clinicaltrials.gov iden-
tifier: NCT00839657) is to conduct a multicenter, dou-
ble blind, randomized clinical trial that compares two
approaches to initiation of warfarin therapy:

• Genotype-guided dosing, the initiation of warfarin
therapy based on algorithms using clinical informa-
tion and genotypes for polymorphisms in two genes
known to influence warfarin response (CYP2C9 and
VKORC1); and
• Clinical-guided dosing, the initiation of warfarin
therapy based on algorithms using only clinical
information.

Both approaches will include a baseline dose-initiation
algorithm [8] and a dose-revision algorithm [9] applied
after four or five days of warfarin therapy. Subsequent
doses will be determined using a standard dose-titration
algorithm, which is identical for both groups. By com-
paring the efficacy of genotype-guided dosing to that of
clinical-guided dosing, the COAG trial will determine
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whether the incremental use of genetic information
improves stability of anticoagulation during the early
treatment period. Future studies could then determine
whether such an improvement leads to significantly
reduced costs and lower morbidity.
Eligible subjects will be recruited from at least 12 clin-

ical sites in the United States. Clinical and genotype
data will be collected on all subjects. Subjects will be
randomized to initiate warfarin therapy either using gen-
otype-guided or clinical-guided dosing. All subjects will
receive their warfarin on a standard-of-care schedule.
Study investigators, clinicians, and subjects will be
blinded to treatment assignment and warfarin dose for
the first four weeks of the trial. After four weeks of ther-
apy, subjects will be unblinded to dose and followed for
up to an additional five months. The Institutional
Review Board of all participating institutions approved
the COAG trial. Written informed consent will be
obtained from all patients who participate in the trial.
The primary outcome of the COAG trial is the per-

centage of time that participants spend within a thera-
peutic range for anticoagulation (PTTR) during the first
four weeks of therapy. The therapeutic range is defined
using the International Normalized Ratio (INR), which
reflects the ratio of a patient’s prothrombin time to that
for a control sample. An INR between 2.0 and 3.0,
inclusive, is typically considered to be within the thera-
peutic range. To calculate the PTTR for each subject,
we will use a standard interpolation method that
assumes a linear change in INR from one measurement

to the next [10]. Figure 1 illustrates the linear inter-
polation method for a hypothetical subject whose thera-
peutic INR range is between 2.0 and 3.0, with a
corresponding PTTR of 60%.
Analysis of the primary outcome will be by intention-

to-treat [11]. It will not be possible for subjects to
switch from their assigned treatment group, but there
might be crossovers due to the unavailability of genetic
information at the time that the initial dose is dispensed.
Every attempt will be made to determine a subject’s
genotype prior to administration of the initial dose.
Given recent technologies, same-day genotyping for
warfarin is now possible in practice. In the COAG trial,
clinical sites are using one of two genotyping platforms;
each has a rapid turnaround time. Both platforms have
been FDA approved, have high call and concordance
rates, very low failure rates, and the ability to genotype
the SNPs needed for the selected dosing algorithms.
For those subjects assigned to the genotype-guided

dosing group whose genetic information is not available
prior to the initial dose, the initial dose will be deter-
mined using the clinical dose-initiation algorithm. Once
genetic information becomes available, the dose for
these subjects will be determined using the genetic
dose-initiation and dose-revision algorithms. The geno-
type-guided dose-initiation algorithm on day one only
uses information on VKORC1 (not CYP2C9) [8]. There-
fore, we expect the dose differences on day one to be
small relative to the dose differences after the first day.
The genotype-guided dose-initiation algorithm on day
two, as well as the genotype-guided dose-revision algo-
rithm on days four and five [9], uses information from
both VKORC1 and CYP2C9, so that the availability of
genetic information by day two will allow the full use of
the subject’s genetic information to determine their dose
for days two through five. We fully expect genotype
information to be available on almost all subjects within
24 hours, and certainly by the time of the dose-revision
calculations on days four and five.

Randomization
To provide balance in treatment assignment within sites,
random assignment to either the genotype-guided or
clinical-guided dosing group will be stratified by clinical
site. Randomization will also be stratified by race
(African American versus not, including Caucasian and
Asian American) because race is associated with differ-
ential predictive ability of dosing algorithms, with lesser
accuracy in African Americans [8], and the dosing algo-
rithms used in the trial predict dose differently among
African Americans [9]. In addition, African-American
race is associated with the prevalence CYP2C9 and
VKORC1 variants and is associated with the prevalence
of other genetic variants that influence warfarin
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Figure 1 INR measurements (solid circles) and linear
interpolations (solid lines) for a hypothetical subject with 60%
of time within the therapeutic INR range (shaded region).
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dose-response. Finally, some clinical sites may recruit a
small number of African Americans due to the demo-
graphic makeup of their surrounding community.
We will use a block-randomized procedure to assign

the treatment groups. Blocking ensures that there will
be a balance in the number of patients in each treat-
ment group within each clinical site. Thus, we will use
permuted blocks with block sizes of four and six, ran-
domly chosen, which will minimize any imbalances in
treatment group assignment. The RANUNI function in
SAS 9.2 will be used to generate the randomization
numbers within each site for two strata [12].

Sample Size and Statistical Power
A critical element of the statistical design of a rando-
mized clinical trial is to determine a sample size so that
a statistical test has adequate power to detect a clinically
relevant difference in the primary outcome between
treatment groups. The parameters considered in the
estimation of sample size include: a minimum detectable
difference in the primary outcome between groups; an
assumed level of significance for the statistical test of
the primary outcome; a measure of variability for the
primary outcome in the study population; and the per-
centage of subjects, if any, expected to drop out of the
trial. The sample size parameters for a personalized
medicine intervention require additional considerations:
the distribution of relevant allelic variants in the study
population; and whether the intervention is equally
effective across subpopulations defined by allelic variants
(e.g., if patients with particular genotypes are not
expected to benefit from genotype-guided drug therapy,
as we illustrate for warfarin). Due to uncertainly in the
distribution of allelic variants and uncertainty in the
effectiveness of the intervention across subpopulations,
careful attention is required in the design of a persona-
lized medicine to ensure that the study will have ade-
quate power to detect a clinically relevant minimum
detectable difference.
In the statistical design of the COAG trial, we focused

on the difference in the relative effectiveness of geno-
type-guided across two genetic subpopulations: those
with a single genetic variant versus zero or multiple
genetic variants in either CYP2C9 or VKORC1. We
viewed the primary outcome of PTTR in each treatment
group as a weighted average of PTTR and the corre-
sponding treatment effect (Δ) across subpopulations
defined by 1 versus 0, > 1 variants, in which the weights
(w) are determined by the populations prevalences that
sum to 1:

PTTR PTTR PTTRC = × + ×> >w w1 1 0 1 0 1, , ; (1)

PTTR PTTR PTTRG = × × + × ×> > >w w1 1 1 0 1 0 1 0 1Δ Δ, , , ; (2)

where PTTRC and PTTRG denote the PTTR in the
clinical-guided and genotype-guided dosing groups,
respectively. It is straightforward to generalize this
approach to more than two subpopulations of interest.
Adding additional terms into the weighted average,
given the population prevalence and the anticipated
treatment effect in each subpopulation, could accommo-
date more than two subpopulations. Indeed, this
approach is generalizeable to any setting in which treat-
ment effects are expected to differ across any number of
subpopulations. Specific assumptions are discussed in
the following section.

Minimum Detectable Difference
We considered the distribution of CYP2C9 and
VKORC1 variants and whether genotype-guided dosing
of warfarin is equally effective across groups defined by
CYP2C9 and VKORC1 variants. Current evidence sug-
gests that there will be a subgroup with certain geno-
types that will not benefit from genotype-guided dosing
[13], most likely because their predicted dose from gen-
otype-guided dosing algorithms will not meaningfully
differ from predicted dosing with clinical dosing. We
based sample size estimates on the comparison of PTTR
between the genotype-guided and clinical-guided dosing
groups:

PTTR C = × + × =0 4 73 0 6 61 65 80. % . % . %; (3)

PTTR G = × × + × × =0 4 73 1 0 6 61 1 15 71 29. % . % . . %; (4)

where:

• The proportion in the population who possess a
single genetic variant (in either CYP2C9 or
VKORC1) and who possess zero or multiple variants
is assumed to be 0.4 and 0.6, respectively;
• A PTTR of 73% and 61% is assumed for those who
possess a single genetic variant and for those who
possess zero or multiple variants, respectively;
• A 0% relative difference in PTTR is assumed for
those with a single genetic variant; and
• A 15% relative difference in PTTR for those with
zero or multiple variants is assumed to be a clinically
relevant difference between the genotype-guided and
clinical-guided dosing groups [14].

We assumed that subjects who possess a single
genetic variant (in either CYP2C9 or VKORC1) would
not benefit from clinical-guided dosing because previous
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data suggest that the genotype-guided algorithm will
predict essentially the same dose as the clinical-guided
algorithm. These subjects are expected to attain the
same PTTR regardless of their treatment assignment
and thus attenuate the mean difference in PTTR
between the two groups. To wit, the assumed 15% rela-
tive difference in PTTR between the genotype-guided
and clinical-guided dosing groups is attenuated to an
absolute difference of 5.49% (PTTRG - PTTRC). There-
fore, we assumed an overall minimum detectable differ-
ence of 5.49% between groups in the full cohort for
sample size calculations. If we had ignored the fact that
the intervention is not equally effective across subpopu-
lations defined by genetic variants and assumed a mini-
mum detectable difference of 15%, then the trial would
have chosen an inadequately small sample size to
achieve adequate power.
The assumed proportion of 0.4 who possess a single

genetic variant is based on the Couma-Gen trial [13]
and the International Warfarin Pharmacogenetics Con-
sortium (IWPC) [15]. We considered the sensitivity of
sample size calculations to a range a population propor-
tions. The assumption that those who possess a single
genetic variant will not benefit from genotype-guided
dosing, while suggested by the Couma-Gen trial, was
not supported in another clinical trial in which all
patients benefited from dosing based on CYP2C9 [16].
In the latter study, the effect of a pharmacogenetic dos-
ing algorithm was similar regardless of the number of
CYP2C9 variants present. Therefore, we believe that our
assumptions are conservative.

Level of Significance
To determine the level of significance (a) for the statis-
tical test of PTTR between the genotype-guided and
clinical-guided dosing groups, we considered an alpha-
allocation approach [17-19]. In this approach, a portion
(aA) of the overall level of significance is used to test
the comparison in the full cohort; the remaining portion
(aS) is used to test the comparison in a pre-defined pri-
mary subgroup. The alpha-allocation approach facilitates
a traditional primary analysis to assess a statistically sig-
nificant difference between the treatment groups, as well
as a predefined primary subgroup analysis that is not
relegated to a secondary analysis, as in a traditional
analysis.
We defined the primary subgroup based on subjects

whose predicted initial dose employing the genetic and
clinical dose-initiation algorithms differs by ≥ 1.0 mg, a
factor known at the time of randomization and therefore
not a post-randomization selection. We posited that the
subgroup of participants with a larger difference
between the predicted initial doses should have a larger
separation in PTTR between the two groups. If the

improvement in PTTR is related to the magnitude of
difference in dosing between the genotype-guided and
clinical-guided dosing groups, then the primary sub-
group comparison should reflect a larger absolute differ-
ence than the 5.49% assumed for the full cohort
analysis. We assumed that a clinically relevant absolute
difference to detect in the primary subgroup is 9.15%,
from a PTTR of 61% to 70.15% in Equation (4), reflect-
ing a 15% relative difference.
We selected aA = 0.04 for the full cohort analysis and

aS = 0.01 for the primary subgroup analysis, for an
overall type-I error rate of a = 0.05. However, allocating
alpha so that sum of aA and aS is equal to a is a con-
servative Bonferroni-type correction, which may be
unnecessarily conservative if there is a positive correla-
tion between the tests in the full cohort and in the pri-
mary subgroup [20,21]. The correlation between the two
tests will be obtained under the null hypothesis when
the size of the primary subgroup is known. The correla-
tion will then be incorporated to obtain aS > a - aA

given that aA is fixed, so that the overall type-I error
rate is controlled at a.
Other assumptions in the computation of sample size

were the standard deviation of the PTTR in the study
population and the percentage of subjects expected to
drop out before reaching the primary endpoint. The
within-study variability of PTTR in the literature varied
across study designs and populations under study. How-
ever, there was a reasonable consistency of variability
for the genetic-guided and clinical-guided dosing groups
in the studies reviewed. We assumed a standard devia-
tion of 25% based on a study of dose-refinement algo-
rithms in which the standard deviation averaged 23%
[22]. We also assumed that 10% of subjects would drop
out before reaching the primary endpoint and increased
the sample size by dividing the calculated sample size by
the square of one minus the drop-out rate [23].

Primary Analysis
The null hypothesis for the primary outcome is that the
percent of time that subjects spend within the therapeu-
tic INR range (PTTR) during the first four weeks of
therapy is equal between the genotype-guided and clini-
cal-guided dosing groups. We will estimate the differ-
ence in mean PTTR between the genotype-guided and
clinical-guided dosing groups using a linear regression
model, both for the full cohort and for the primary sub-
group whose predicted initial dose employing the
genetic and clinical dose-initiation algorithms differs by
≥ 1 mg. Inference will be based on a Wald test with a
level of significance of 0.05 allocated between the full
cohort analysis and the primary subgroup analysis.
Because randomization will be stratified by site and
race, these variables will be included in the linear
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regression model. We will perform additional analyses in
subgroups defined a priori by allelic variation (zero ver-
sus a single versus multiple CYP2C9 or VKORC1 var-
iants) and by race (African American versus not).
Additional genetic factors may be considered in sec-

ondary analyses. Specifically, because CYP2C9 and
VKORC1 genotypes may not be the only genetic variants
that determine optimal warfarin dosing, it is possible
that more variants will be identified during the trial. To
adjust for additional genetic factors in secondary ana-
lyses, we will include them as covariates in a linear
regression model if their prevalence differs between the
clinical and genetic groups, and also consider possible
interactions with CYP2C9 and/or VKORC1.

Results
Table 1 provides the sample size required for the full
cohort analysis using a two-sample t-test with aA =
0.04 (two-sided), assuming various proportions with a
single genetic variant (0.4, 0.5, and 0.6), estimates for
the standard deviation of PTTR (20%, 25%, and 30%),
and power levels (80% and 90%), and drop-out rate
(10%). A sample size of 1140 would provide 90% power
to detect an absolute difference of 5.49% in the full
cohort, given that the proportion with a single genetic
variant is 0.4 and the standard deviation is 25%. We
selected a sample size of 1238 to protect against depar-
tures from the assumed proportion with a single genetic
variant, study drop-out rate, and standard deviation of
PTTR. For example, if the proportion with a single
genetic variant is 0.5 and the standard deviation is 25%,
then there is 80% power to detect an absolute difference
in PTTR of 4.58%. If the proportion with a single
genetic variant is 0.4 and standard deviation is 30%,
then there is 80% power to detect the assumed 5.49%
absolute difference.
A sample size of 1238 provides sufficient power for

the primary subgroup analysis using a two-sample t-test
with aS = 0.01 (two-sided). Recall that the size of the
primary subgroup is determined by the percentage of
subjects whose predicted initial dose employing the

genetic and clinical dose-initiation algorithms differs
by ≥ 1 mg. If the relative size of the primary subgroup
is 50% and the standard deviation of PTTR is 25%, then
there is 93.6% power to detect a 9.15% absolute
difference. In addition, if the relative size of the primary
subgroup is 60% and the standard deviation is 30%, then
there is 87.8% power. In fact, the power will be higher
because aS will be increased according to the correlation
between the tests in the full cohort and in the primary
subgroup.

Sensitivity Analysis
In the statistical design of the COAG trial, there was a
concern that the genotype-guided and clinical-guided
dosing algorithms may not produce sufficiently differen-
tiable doses between the treatment groups, which may
lead to an underestimation of the minimum detectable
difference in PTTR between groups. We assumed that
any difference between the two groups would arise from
the subgroup of patients with either zero or multiple
genetic variants. (Recall that the assumed relative differ-
ence in the genotype-guided dosing group was 15% for
those with zero or multiple variants.) For subjects in
this allelic subgroup, if the difference between the two
algorithm predictions is negligible or clinically irrelevant,
then it is reasonable to expect no difference in PTTR. In
this case the PTTR for the genotype-guided dosing
group can be expressed as:

PTTR G = × + × × + ×0 4 73 0 6 61 1 0 15. % . % [ ( . )],d (5)

where d is the proportion of subjects with zero or
multiple genetic variants in whom there is a clinically
meaningful difference between the predicted dose deter-
mined by the genotype-guided and clinical-guided dos-
ing algorithms. Hence the expected 15% difference
would be diluted by a factor d and it would be more dif-
ficult to detect a clinically relevant difference between
groups.
To explore the impact of dilution of the treatment

effect, we examined the distribution of the differences
between the predicted doses among groups defined by
allelic variation in the IWPC cohort [15] and calculated
the difference between the rounded predicted doses. An
absolute dose difference < 1.0 mg per day was defined
as the ‘same’ predicted dose; an absolute dose difference
of ≥ 1.0 mg per day was defined as a ‘different’ predicted
dose. The rationale for the 1.0 mg cut-point is that the
average initial dose is 5.0 milligrams; therefore, a 1.0 mg
absolute difference represents a clinically relevant 20%
difference, on average. Approximately 9% of IWPC par-
ticipants in the (0, >1) allelic variant group would have
received the ‘same’ initial dose, i.e., d = 0.91. With this
dilution of the treatment effect, in order to detect an

Table 1 Sample size estimates for the full cohort analysis;
p denotes the proportion with a single genetic variant
and Δ denotes the corresponding minimum detectable
difference

Standard Deviation of PTTR

20% 25% 30%

Power Power Power

p Δ 80% 90% 80% 90% 80% 90%

0.4 5.49% 550 730 860 1140 1238 1642

0.5 4.58% 792 1050 1238 1642 1782 2364

0.6 3.67% 1238 1642 1932 2564 2782 3692
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overall effect size of 5.49% in PTTR, the relative effect
size in the (0, > 1) group would need to be 16.5%.
Table 2 provides power estimates for the test of the

full cohort analysis for a range of diluted treatment
effects corresponding to the parameter d, the proportion
of subjects with zero or multiple genetic variants in
whom there is a difference between the predicted doses.
There is sufficient power when d > 0.9. We are not
highly confident in our estimate of how frequently the
predicted dose will differ between the two algorithms
and therefore have not taken this potential dilution
effect into account in our calculations for sample size
and power. However, given the potential impact of the
dilution effect on the sample size requirements of the
study seen in Table 2, we have planned to monitor this
factor during the operation of the trial.

Discussion
In this manuscript we provided practical guidance on
the statistical design of a personalized medicine inter-
vention that uses each subject’s genotype information in
an untargeted design. We used power and sample size
calculations to illustrate the primary statistical challenge
of designing this type of personalized therapy interven-
tion: to accommodate the potential differential effective-
ness of genotype-guided therapy across subpopulations
defined by allelic variation. To determine a minimum
detectable difference in PTTR between groups, we
assumed that 40% of enrolled subjects would have a sin-
gle genetic variant and would therefore not benefit from
genotype-guided warfarin therapy. Hence, the minimum
detectable difference used in sample size calculations is
not a known quantity, but rather an unknown quantity
that depends on the genetic makeup of the subjects
enrolled. In addition, the sample size for the primary
subgroup analysis depends on the proportion of subjects
whose predicted initial dose employing the genetic and
the clinical dose-initiation algorithms differs by ≥1.0 mg.
Due to the importance of these parameters for adequate
sample size and statistical power to detect a clinically
meaningful difference, they will be monitored during the
course of the trial.

As shown in Table 1, the sample size is sensitive to
the standard deviation of PTTR. The Data Safety and
Monitoring Board (DSMB) may suggest an ‘internal
pilot study’ in which an estimate of the standard devia-
tion will be obtained using the first half of the observed
data and the sample size calculations will be updated
based on the new estimate [24,25]. The pre-planned
sample size will be assumed to represent a minimum
sample size (i.e., the final sample size based on the
‘internal pilot study’ will not be less than the pre-
planned sample size). In this case, the ‘internal pilot
study’ is known as restricted. For restricted designs, the
disparity in the type-I error rate in testing the primary
hypothesis is negligible [26]. Therefore, it will not be
necessary to adjust the type-I error rate of any hypoth-
esis tests regarding the primary outcome. In assessing
the need for a sample size increase, data will neither be
unblinded nor assessed for the primary outcome. In
addition, a sample size adjustment will not impact the
overall design of the study. Because the DSMB will not
monitor efficacy during the conduct on the COAG trial,
there is no conflict between any interim sample size
adjustment and interim measures of efficacy.
In our sensitivity analysis, we examined the dilution of

the treatment effect due to a clinically irrelevant differ-
ence between the predicted doses (employing the
genetic and clinical dose-initiation algorithms) for sub-
jects with zero or multiple genetic variants. However,
we did not consider the impact of a clinically relevant
difference between the predicted doses for subjects with
a single variant. In this situation the PTTR for the geno-
type-guided dosing group can be expressed as:

PTTR G = × × + × + × × + ×0 4 73 1 0 15 0 6 61 1 0 15. % [ ( . ’)] . % [ ( . )],d d (6)

where d’ is the proportion of subjects with a single
genetic variant in whom there is a meaningful difference
between the predicted doses and d is defined in Equa-
tion (5). For example, in the IWPC cohort, approxi-
mately 26% of subjects with a single genetic variant
would have received a ‘different’ initial dose, i.e., d’ =
0.26. For these subjects, we expect that there would be a
difference in PTTR, which would increase the power of
the full cohort analysis. Because we were not highly con-
fident in this estimate, we did not examine the increase
in power associated with this allelic subgroup. There-
fore, our sensitivity analysis is conservative.
An individual’s genetic information could be used

prior to randomization to identify subjects who are
potentially unresponsive to either drug therapy or the
pharmacologic intervention, motivating researchers to
decide whether to include or exclude those subjects
from the trial [27]. For example, in a targeted design,
study eligibility may be restricted to subjects who, based

Table 2 Power estimates for the full cohort analysis in
which the treatment effect is diluted; d denotes the
proportion of subjects with zero or multiple genetic
variants in whom there is a difference between the
predicted initial doses

d Treatment Effect Power

0.7 3.84 65%

0.8 4.39 77%

0.9 4.94 86%

1.0 (Undiluted) 5.49 93%
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on their genetic characteristics, are predicted to be
responsive [28]. By excluding potentially unresponsive
individuals, a targeted design will require a smaller sam-
ple size to detect a statistically significant effect. Conver-
sely, in a traditional (untargeted) design, particularly of
an intervention designed to select dose, subjects for
whom genetic-based drug therapy is not effective are eli-
gible, because they would still receive drug treatment
regardless of their genetic makeup. For example, sub-
jects in the COAG trial would receive warfarin therapy
regardless of their CYP2C9 and VKORC1 variants. As
we have shown with the statistical design of the COAG
trial, by including potentially unresponsive subjects, a
larger sample size may be required. Cost-benefit consid-
erations regarding the cost of genetic screening for eligibil-
ity versus the cost of enrolling potentially unresponsive
subjects may be useful to determine which design is more
practical in specific applications.
For the COAG trial, we favored including all partici-

pants, regardless of their genetic variants. First, the
assumption that those who possess a single genetic var-
iant will not benefit from genotype-guided dosing, while
suggested by the Couma-Gen trial [13], was not sup-
ported in another clinical trial in which all patients
benefited from dosing based on CYP2C9 [16]. Therefore,
if we excluded subjects who may not benefit from geno-
type-guided dosing, we would be unable to evaluate our
assumptions. Second, all subjects are genotyped prior to
randomization, so that much of the cost is already
incurred in screening. Third, including subjects poten-
tially unresponsive to genotype-guided dosing allows the
results of the trial to be more generalizable. That is, if
the COAG trial indicates that genotype-guided dosing
provides increased efficacy compared to clinical-guided
dosing, then it motivates consideration of the policy
question of whether all patients prescribed warfarin
should be genotyped to predict the drug’s efficacy.
We recommend that the statistical design of a perso-

nalized medicine intervention that uses each subject’s
genotype information, within the framework of a rando-
mized clinical trial, consider the distribution of relevant
allelic variants in the study population and whether the
intervention is equally effective across subpopulations
defined by allelic variants. In the statistical design of the
COAG trial, we considered the distribution of CYP2C9
and VKORC1 variants and whether genotype-guided
dosing of warfarin therapy would provide an equal
improvement in efficacy across populations defined by
genetic variants. We assumed that subjects with a single
genetic variant would not benefit from genotype-guided
dosing, thus attenuating the postulated 15% relative dif-
ference between the two treatment groups to a 5.49%
absolute difference. In our sample size calculations, if
we ignored the fact that the genotype-guided dosing is

not equally effective across subpopulations defined by
genetic variants and assumed a minimum detectable dif-
ference of 15%, then the COAG trial would likely have
chosen an inadequately small sample size to achieve
adequate power. We also recommend that key assump-
tions regarding sample size and statistical power be
monitored during the conduct of the trial, to inform any
requisite increase in the sample size needed to detect a
clinically relevant difference in the primary outcome
between treatment groups. Further research is required
to determine whether an interim sample size adjustment
based on the observed proportion of allelic variants
increases the type-I error rate.

Conclusions
In summary, we found that sample size and power cal-
culations may be sensitive to key assumptions required
in the design of a personalized medicine intervention:
the distribution of relevant allelic variants in the study
population; and whether the pharmacogenetic interven-
tion is equally effective across subpopulations defined by
allelic variants. Given the novelty of pharmacogenetic
research, we recommend that these assumptions be
monitored during the conduct of a personalized medi-
cine intervention.
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