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Abstract
Ametagenomic fosmid library from bovine rumen was used to identify clones with lipolytic

activity. One positive clone was isolated. The gene responsible for the observed phenotype

was identified by in vitro transposon mutagenesis and sequencing and was named est10.
The 367 amino acids sequence harbors a signal peptide, the conserved secondary struc-

ture arrangement of alpha/beta hydrolases, and a GHSQG pentapeptide which is character-

istic of esterases and lipases. Homology based 3D-modelling confirmed the conserved

spatial orientation of the serine in a nucleophilic elbow. By sequence comparison, Est10 is

related to hydrolases that are grouped into the non-specific Pfam family DUF3089 and to

other characterized esterases that were recently classified into the new family XV of lipolytic

enzymes. Est10 was heterologously expressed in Escherichia coli as a His-tagged fusion

protein, purified and biochemically characterized. Est10 showed maximum activity towards

C4 aliphatic chains and undetectable activity towards C10 and longer chains which

prompted its classification as an esterase. However, it was able to efficiently catalyze the

hydrolysis of aryl esters such as methyl phenylacetate and phenyl acetate. The optimum pH

of this enzyme is 9.0, which is uncommon for esterases, and it exhibits an optimal tempera-

ture at 40°C. The activity of Est10 was inhibited by metal ions, detergents, chelating agents

and additives. We have characterized an alkaline esterase produced by a still unidentified

bacterium belonging to a recently proposed new family of esterases.

Introduction
Lipolytic enzymes, such as carboxylesterases (EC 3.1.1.1) and triacylglycerol lipases (EC 3.1.1.3),
have been extensively used in the manufacturing and processing of detergents, foodstuffs, drugs,
paper, textiles, leathers, and fine chemicals, demonstrating their versatility for biotechnological
applications [1, 2]. Collectively, they are active over a broad range of substrates but, individually,
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they can be highly selective and even stereo-selective. In general, they do not require cofactors
and are stable in various organic solvents [3–8]. Lipolytic enzymes belong to the α/β-hydrolase
superfamily and contain a catalytic triad that usually consists of a nucleophilic serine in a
GXSXG pentapeptide motif and an acidic residue (aspartic acid or glutamic acid) that is hydro-
gen bonded to a histidine residue [9, 10]. The pentapeptide motif is usually located between a β-
strand and a α-helix, and assumes an extremely sharp turn called the nucleophilic elbow [11].

These enzymes were originally classified into only eight families (I-VIII) based on their
amino acid sequences and biological properties [12]. Later, more families were added (IX to
XVI) [7, 13–16]. Recently, a new classification was proposed by Lenfant et. al. in which all the
α/β-hydrolases deposited in the ESTHER database were divided into 148 families and super-
families subsequently grouped into blocks (C, H, L, and X) [17]. Some of these families are
comprised mostly of members that contain “Domains of Unknown Function” or DUFs, which
have not been characterized experimentally yet. More than 20% of all protein domains are an-
notated as DUFs in the Pfam database and about 2,700 DUFs are found in bacteria [18, 19].
One family of α/β-hydrolases is characterized by the domain DUF3089 which is shared by all
its 74 protein members. This family has been recently included in the ESTHER database classi-
fication and named family XV [17]. The first member of this family, EstD2, was characterized
in 2010 [7], and four other members, Est5S, EstGK1, EstZ3 and EstWSD, were characterized
later on [15, 16, 20]. All of them are enzymes that display esterase activities. The remaining 69
protein members have not been characterized yet and DUF 3089 is still classified as a family of
proteins with no known function.

The sheer volume of genomic information that is available has overwhelmed our ability to
explore functions of individual genes using conventional direct genetics and molecular biology
approaches. Similarly, sequence-based metagenomics has produced a wealth of information
but also faced the annotation hurdle [21]. In contrast, functional metagenomics turns the prob-
lem around by first identifying specific functions present in a microbial population and then
isolating the genes responsible for them [22, 23]. To date, numerous novel biocatalysts from
various microbial habitats, such as lipases, esterases, cellulases, proteases, amylases, lacasses,
were identified by functional metagenomic approaches [5, 7, 20, 24–26].

In this study, we describe the identification and biochemical characterization of Est10, a
novel esterase isolated from a bovine rumen metagenomic DNA library. According to sequence
analysis, Est10 is a member of the family XV. It is active on short-chain fatty acids esters and
some aromatic esters. It is active at alkaline pH which makes it attractive for
biotechnological applications.

Materials and Methods

Sample collection and processing
One hundred and fifty grams of fresh cow rumen digesta of a Holando bull (2 years old, 482
kg, pasture fed in southern Uruguay) was collected from a slaughterhouse. Immediately after
collection, the rumen sample was kept on ice and processed in the same day. The DNA extrac-
tion was based on a modification of a method described previously [27]. The liquid fraction or
Lq of digesta was obtained by compressing whole digesta between two layers of cheesecloth.
The cells were harvested from this fraction by centrifugation at 10.000×g for 20 min at room
temperature. The cells were suspended in 1 ml of PBS buffer pH 8.0.

Isolation of bacterial metagenomic DNA from the digesta fraction
Lq fraction was centrifuged in a 1:1 v/v Percoll gradient (Sigma-Aldrich). The gradient was
formed after 20 min centrifugation at 14.000×g and 4°C. The pellet was suspended in lysis
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buffer (700 mMNaCl, 50 mM Tris-HCl pH 8.0, 100 mM EDTA, 4% SDS) containing 250mg
of 0.1mm sterile zirconia beads (BioSpec Products). The cells were disrupted by vortexing dur-
ing 30 s at maximum speed. After that, the mixture was incubated for 15 min at 70°C, with
gently shaking by hand every 5 min and centrifuged for 5 min at 16.000×g and 4°C. The super-
natant was transferred to a fresh tube. 15 μl of Proteinase K (0.2 mg/ml) was added and the
mixture was further incubated for 1 h at 37°C. A solution of 10% CTAB in 0.7 M NaCl was im-
mediately added and the reaction was incubated for 10 min at 65°C. Two consecutive extrac-
tions with equal volumes of phenol were performed. The phases were separated by 10 min
centrifugation at 10.400×g and 4°C. The aqueous phase was removed and transferred to a fresh
tube. After two consecutive extractions with chloroform, the DNA was precipitated with 0.6
volumes of isopropanol and 0.1 volumes of 3 M sodium acetate pH 5.2 for 30 min on ice. DNA
was recovered by centrifugation, washed on 70% ethanol, air dried and re-suspended in water
with 20 μl of RNAse A (0.4 mg/ml). The purified DNA was resolved on a 0.8% agarose gel in
TAE buffer. Fragments with molecular weight higher than 20 kb were excised from the gel and
recovered from the agarose matrix using the QIAEX II Gel Extraction Kit (Qiagen).

Library construction and screening for lipolytic clones
The metagenomic DNA library was constructed using the CopyControl Fosmid Library Pro-
duction kit with the pCC1FOSVector (Epicentre) according to the manufacturer´s instruc-
tions. MaxPlaxLambda Packaging Extracts (Epicentre) were used for packaging and infection
of E. coli EPI300-T1R (Epicentre), the library host. Transformants were selected by growing in
Luria Bertani (LB) [28] agar medium supplemented with 12.5 μg/ml chloramphenicol
(LB-Cm) at 37°C for 16 h. The library was arranged in 96-wells microtiter plates with LB-Cm
liquid medium. After overnight growth at 37°C, 25% (v/v) glycerol was added and the cells
were stored at -20°C. For lipolytic activity screening, clones were replica plated with a 48-pin
array onto LB-Cm agar medium containing 1% (v/v) tributyrin (Sigma-Aldrich), 12.5 μg/ml
chloramphenicol and 0.01% (w/v) L-arabinose to increase the fosmid copy number. Cells were
grown at 30°C and periodically checked for enzymatic activity.

Clones expressing lipolytic activities were identified by the formation of clear halos sur-
rounding the colonies after 2 to 3 days. To confirm that the lipolytic activity was due to the
presence of the fosmid, plasmid DNA was isolated from the positive clones and electroporated
into fresh cells. The clones that did not replicate the observed phenotype on tributyrin media
were discarded. Tributyrin-positive clones were also tested on 1% tricaprylin (Sigma-Aldrich)
and 1% triolein (Sigma-Aldrich), which have longer fatty acid chains: C8 and C18, respectively.

In vitro transposon mutagenesis and DNA sequencing
Identification of the open reading frames (ORFs) responsible for the observed lipolytic activi-
ties was done by in vitro transposon mutagenesis using the EZ-Tn5<KAN-2> Insertion Kit
(Epicentre) according to the manufacturer’s instructions. The transformants were screened on
solid tributyrin media, as described above, containing 50 μg/mL kanamycin instead of chlor-
amphenicol. Loss-of-function mutants were analyzed for single insertion of the transposon by
restriction analysis as follows. Both wild-type and mutant fosmids were digested with BamHI
and XhoI. After comparing the fragments sizes between them, single insertion mutants were
selected because only one of the fragments from the wild-type was split into two smaller frag-
ments. Flanking DNA was sequenced by conventional Sanger method (Macrogen). ORFs were
called using getORF from the EMBOSS suite.
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Est10 cloning
Est10 coding sequence was amplified by PCR with primers 5'-AAAAACATATGATCAT
GAAAAAACAGAATTTCTTCG-3' containing a NdeI site shown in bold, and 5'-ATTAG
GATCCAATCAGTTCTCCATACGG-3' containing a BamHI site shown in bold. PCR was
performed using high fidelity Pfu DNA polymerase (recombinant) (Fermentas) according to
the manufacturer recommendations. The reactions were done using the following conditions:
an initial step of 5 min at 94°C, followed by 30 cycles of 95°C for 30 s, 50°C for 30 s and 72°C
for 110 s. The final extension was at 72°C for 5 min. PCR products were resolved on 1% (w/v)
agarose gel and fragments with expected product size of 1,100 bp were purified from the gel.
Est10 coding sequence was ligated into expression vector pET14b after digestion with NdeI
and BamHI, generating an N-terminal 6xHis-tag fusion. The ligation reaction was electropo-
rated into E.coli DH5α cells and the absence of unintended mutations on the resulting
pET14b-Est10 construct was verified by sequencing.

Overexpression and purification of Est10
E.coli BL21 (DE3) pLysS cells harboring pET14b-Est10 were inoculated into 1L of 2X YT media
(tryptone 16 g/l, yeast extract 10 g/l, NaCl 5 g/l, pH 7.0). When cells reached OD620 0.5–0.7, ex-
pression was induced with 1 mM IPTG (isopropyl β-D-1-thiogalactopyranoside) for 18 h at
20°C with shaking. After induction, the culture was stored on ice for 15 min and centrifuged at
1600×g for 30 min at 4°C. Cells were suspended in 15 ml of binding buffer (50 mM imidazole,
300 mMNaCl, 50 mMNaH2PO4 pH 8.0) and sonicated in an Ultrasonic Homogenizer (Cole-
Palmer Instrument. Co) during 6 pulses of 1 min each at 50% duty cycle. Extracts were clarified
by centrifugation at 12,000× g for 30 min. One ml of 50% Ni-NTA agarose resin (Invitrogen)
was used to purify the histidine tagged Est10 from 4 ml of clarified cell extract. Resin bound
Est10 was washed with increasing concentrations of imidazole (50–150 mM) in 300 mMNaCl
and 50 mMNaH2PO4 pH 8.0 and eluted with 250 mM imidazole on the same buffer. The eluted
protein was then dialyzed twice against the same buffer without imidazole and with the addition
of 10% (v/v) glycerol. The purity of the protein was tested on a sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE). The protein concentration was determined by the
bicinchoninic acid (BCA) method using bovine serum albumin (BSA) (Sigma) as a standard.

Determination of preferred chain length
Six p-nitrophenyl (pNP) esters of fatty acids with different chain lengths were obtained from
Sigma-Aldrich: pNP acetate (C2), pNP butyrate (C4), pNP decanoate (C10), pNP dodecanoate
(C12), pNP myristate (C14) and pNP palmitate (C16). Each enzymatic reaction contained 100
mM sodium phosphate buffer pH 8.0, 4 mg/ml Triton, 0.8 mM of each pNP ester dissolved in
acetonitrile:isopropanol mix (80:20 v/v) and 50 nM of purified Est10.

One unit of enzyme activity (U) was defined as the amount of enzyme required to release
1 μmol of p-nitrophenol per minute. The production of p-nitrophenol was continuously moni-
tored at 405 nm in a Varioskan Flash (Thermo Scientific) during 15 min at 40°C. The activity
of the enzyme was calculated by measuring the initial reaction rate. The data were collected in
triplicates and a blank reaction without enzyme was included for each substrate.

The effect of temperature on activity and thermostability
To investigate the effect of temperature on enzymatic activity, enzymatic assays were performed
in 100 mM sodium phosphate buffer pH 8.0, 0.3% Triton, 2 mM p-NP butyrate dissolved in
acetonitrile:isopropanol (80:20 v/v) and 50 nM of Est10. The production of p-nitrophenol was
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continuously monitored at 405 nm in a Varioskan Flash for 15 min at different temperatures
(30°C, 35°C, 40°C, 45°C, 50°C and 55°C).

Thermostability was determined by pre-incubating Est10 for 30 min at various tempera-
tures (30°C, 37°C, 40°C, 45°C, 55°C and 65°C) without substrate. The pre-incubated enzyme
was then added to the described reaction mix and the reaction was allowed to proceed for 15
min at 40°C. For both assays initial reaction rates were measured from independent triplicate
experiments and blank reactions without enzyme were included.

Effect of pH, cations, chelating agents and detergents on activity
To determine the effect of pH on Est10 activity, the enzymatic hydrolysis was performed using
a buffer mix of 25 mM acetic acid, 25mMMES and 50mM TRIS and pH adjusted between pH
3.6–9.5 [29]. The reactions were carried out in this buffer mix, 0.3% Triton X-100, 50 nM Est10
and 2 mM p-NP butyrate during 15 min at 40°C.

To test the effects of metal ions, detergents, inhibitors and chelating agents on the activity of
the esterase, the enzyme was incubated in their presence at a final concentration of 1 mM of
each one for 15 min at room temperature in a reaction mix containing 100 mM sodium phos-
phate buffer pH 8.0, 0.3% Triton X-100, 50 nM Est10 and 2 mM p-NP butyrate. Then the reac-
tion was incubated at 40°C for 15 min. The following additives were analyzed: salts (NiCl2,
CaCl2, Cu2SO4, MnCl2, FeCl3�6H2O, Cd(CH3CO2)2, ZnSO4, CoCl2�6H2O, MgCl2, AgNO3),
chelating agents (EDTA, EDDHA) or detergents (Tween20, Tween40, Tween60, SDS, CTAB)
and other additives such as PMSF, a serine hydrolases inhibitor, and DTT, a reducing agent.
Data were collected in triplicate by measuring the absorbance at 405 nm. A blank reaction
without enzyme was included.

Substrate selectivity using an ester library
To determine the substrate selectivity of Est10, we used a library containing the following esters
(all provided by Sigma-Aldrich): ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl octanoate,
ethyl decanoate, vinyl acetate, propyl acetate, butyl acetate, phenyl acetate, isopropyl acetate
and methyl phenyl acetate. p-nitrophenol was used as a pH indicator to monitor ester hydroly-
sis colorimetrically as previously described [30]. The reactions were carried out with 1 mM of
each substrate dissolved in 1% (v/v) acetonitrile, 10 μg Est10 and 0.44 mM p-nitrophenol on 1
mM sodium phosphate (pH 7.0). The reactions were monitored by measuring the initial rate of
decrease in absorbance at 405 nm during 1 hour at 40°C. Experiments were done in triplicates
and a blank reaction without enzyme was included for each substrate.

Phylogenetic analysis
BlastP [31] was used for homology search among selected protein sequences. Reciprocal score
values were used as input for clustering analysis, which was done using the Ward method with
Euclidean distance implemented in R programming language. Sequences that belong to Est10
cluster, family XV members (see below), were subsequently analyzed. Protein sequences were
aligned using different methods: E-INS-I strategy implemented in MAFFT [32], MUSCLE
[33], CLUSTALW2 [34] and PROBCONS [35] programs. Phylogenetic trees were inferred
using the Maximum likelihood method by means of PHYML version 3.1 [36]. The default SH-
like test was used to evaluate branch supports as recommended by Anisimova et al. [37]. Mod-
elGenerator version 0.85 [38] was used to find the most appropriate model of evolution of
amino acid sequences.
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Three dimensional modeling of Est10
Three dimensional (3D) homology modeling was performed by RaptorXWeb Server [39] and
SWISS-MODEL [40]. The catalytic domain model was built using the 3D structures 1K8Q
chain ‘A’ [41] and 1HLG chain ‘A’ [42] as templates. The quality of protein structural models
and estimated model error for the predicted position of each residue were estimated by the
same servers. Protein structure models were visualized with VMDv1.9.1 [43] available at
http://www.ks.uiuc.edu/Research/vmd/ and with JavaScript protein viewer PV from
SWISS-MODEL.

Nucleotide sequence accession number
The DNA sequence of est10 is available in the GenBank database under the accession number
KM042178.

Results

Metagenomic library construction and screening
To identify genes associated with lipolytic activity, a metagenomic library was generated using
DNA isolated from the non-associated bacteria present in the Lq or liquid fraction of cow
rumen. The library contained 27.500 clones with average insert size of 42 kbp. The quality and
size of inserts were verified by analyzing 40 randomly picked clones. The majority of analyzed
clones contained inserts of approximately 35–45 kbp. Restriction analysis revealed a high level
of diversity among the cloned DNA fragments (data not shown).

Fosmid clones encoding esterase activity were identified by their halo-forming ability on
agar plates containing tributyrin. A total of 3 clones were identified in these plates. None of
them showed similar activities in tricaprylin or triolein plates, suggesting that the encoded en-
zymes are not lipases.

Identification of lipolytic genes
In vitro transposon mutagenesis was used to identify the genes responsible for the observed li-
polytic activity from each fosmid. Loss-of-function mutants were isolated and the single inser-
tion of the transposon was verified by restriction analysis. The flanking regions were sequenced
from the transposon arms. The insertion site was mapped inside an ORF of 367 amino acids.
The putative gene, designated est10, was used to query the non-redundant GenBank protein
database using BlastP [31]. Est10 ORF shared 92% sequence identity with Est5S, an esterase
from an uncultured bacteria previously found in cow rumen [20]. Est5S was proposed as a
member of the novel family XV [17]. Est10 also showed similarity with two other esterases:
EstGK1 and EstZ3, 39% and 41% of identity, respectively, isolated from a metagenomic library
of sheep rumen [15]. Other related esterases were EstD2 (29% identity) [7], and EstWSD (29%
identity) [16] both isolated from soil metagenomes. Interestingly, all of them come from un-
identified bacteria (Fig 1).

Sequence analysis of Est10
The Est10 amino acid sequence contains the pentapeptide GHSQG (Fig 1), which corresponds
to the conserved GXSXG motif found on most bacterial and eukaryotic serine hydrolases, such
as lipases, esterases, serine proteinases, and β-lactamases [3]. Est10 exhibited the conserved do-
main DUF3089 and also the common α/β hydrolase domain [11, 44].

A putative signal peptide on Est10 was detected using SignalP [45], and it appears to encom-
pass the first 20 residues (Fig 1). The putative excision site was predicted between residues 33
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and 34 (data not showed). This suggests that Est10 can potentially be secreted into the extracel-
lular space explaining the presence of a halo of hydrolysis around the colony on solid media
containing tributyrin.

Phylogenetic analysis of Est10
BlastP results and clustering analysis suggested that the homology between protein members of
family XV and other esterases is low (S1 Fig). Two main clusters were identified using the clas-
sification of bacterial lipolytic enzymes [12], which is based on comparison of amino acid se-
quences. One of them is exclusively composed of esterases from family XV. Est10 also
clustered with esterases from family XV, such as EstD2 and EstWSD. We also analyzed the
phylogenetic distribution of the hydrolases comprising the family XV in order to properly
place Est10 within it (Fig 2 and S2 Fig). Cladograms based on different alignments showed

Fig 1. Sequence alignment of Est10 with its major closest homologs. The amino acid sequences correspond to Est10 (GI accession number
KM042178), EstZ3 (ADE28720.1, 41% identity with Est10), EstGK1 (ADE28720.1, 39% identity), Est5S (ABI17943.1, 92% identity), EstD2 (ADN26553, 29%
identity), and EstWSD (AFY63009, 29% identity). The conserved pentapeptide is shown with a rectangle. Residues that are 100% conserved are shadowed
in black, and those between 75% and 100% are shadowed grey. The residues that encompass the putative signal peptide on Est10 are marked with a
black line.

doi:10.1371/journal.pone.0126651.g001
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almost identical results (data not shown). The Maximum likelihood tree showed that Est10 is
closely related to Est5S, EstGK1 and EstZ3 with very high statistical support.

Determination of substrate specificity, effect of pH, temperature and
thermostability on Est10 activity
Est10 was expressed as a His-tagged fusion protein and purified by affinity chromatography
using a Ni2+ NTA resin (Fig 3). Despite Est10 having the potential to be secreted from its origi-
nal host, the His-tagged Est10 produced in E.coli was not detected in the extracellular liquid
media. Substrate specificity of the purified enzyme was initially assayed using fatty acids esters
of p-nitrophenol (Fig 4A). Est10 showed maximum activity towards pN butyrate (C4). Activity
against pNP dodecanoate (C12), pNP myristate (C14) and pNP palmitate (C16) was not de-
tected (data not shown). These results are in agreement with the observation that only short

Fig 2. Maximum Likelihood inference of the phylogenetic relationships betweenmembers of family XV based on amino acid sequences. Alignment
was obtained with MAFFT with the E-INS-I strategy [52]. The numbers of interior branches represent estimated SH-like support values. ESTHER database
accession numbers of the sequences used are included in the tree next to the genus of the organisms of origin. GI accession number is included when the
protein sequence was retrieved fromGenBank database. The position of Est10 is indicated with a black arrow, characterized members of family XV with
black circles, and characterized members of the domain family DUF3089 with white circles.

doi:10.1371/journal.pone.0126651.g002
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chain substrates, like tributyrin, were hydrolyzed by the original Est10 containing clone, and
confirm that Est10 is an esterase and not a lipase. The activity of Est10 was tested under buff-
ered conditions over the pH range 3.6 to 9.5, using pNP butyrate (C4) as substrate, at 40°C.
Est10 displayed highest levels of activity at pH 9.0 which is uncommon for an esterase (Fig 4B).
In order to test its thermostability the enzyme was pre-incubated at various temperatures

Fig 3. SDS-PAGE analysis of purified 6xHis-Est10 protein stained with Coomassie blue. Recombinant
6xHis-Est10 was purified by affinity chromatography on a Ni2+-NTAmatrix. Lane PM: protein molecular
weight marker. Lanes E1-4: consecutive eluted fractions with 250 mM of imidazol. The position of
recombinant Est10 is indicated by a black arrowhead. The calculated molecular weight of Est10 is 40.2 kDa.

doi:10.1371/journal.pone.0126651.g003

Fig 4. Characterization of Est10 esterase activity. (A) Determination of chain length specificity using pNP
esters of fatty acids: acetate (C2), butyrate (C4), and decanoate (C10. (B) Effect of the pH on esterase activity
of Est10. (C) Thermal stability of Est10. Est10 was pre-incubated for 30 min at temperatures ranging from
30°C to 65°C before determining its residual activity. The control was not pre-incubated. (D) Effect of the
temperature on the esterase activity of Est10. The reaction was carried at temperatures ranging from 30°C to
55°C. Except when noted, reactions were performed at 40°C using pNP butyrate as substrate. In all cases
averages of triplicate assays are shown and error bars represent standard deviation.

doi:10.1371/journal.pone.0126651.g004
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between 30°C and 65°C for 30 min and its residual activity was assayed. The enzyme activity
remained above 60% up to 45°C (Fig 4C). Pre-incubation at higher temperatures resulted in in-
activation of the enzyme. The effect of the reaction temperature on the activity of Est10 was de-
termined between 30°C and 55°C, using pNP butyrate as substrate. The maximal observed
activity for Est10 was at 40°C, but relatively high activities were observed within the 30°C–50°C
temperature range (Fig 4D).

Effects of cations, detergents, chelating agents and additives on Est10
activity
Est10 showed various degrees of inhibition by metal ions (Fig 5A). The enzymatic activity was
not significantly affected by NiCl2, was only partially inhibited by Cd(CH3CO2)2, FeCl3, CoCl2,
ZnSO4, and MnCl2. However, it was greatly inhibited by CaCl2, MgCl2, Cu2SO4, and AgNO3.
Nonionic detergents Tween20, Tween40 and Tween60 had little effect on Est10, while ionic de-
tergents SDS and CTAB were strong inhibitors. The reducing agent DTT had no effect on
Est10 activity while the serine hydrolases inhibitor PMSF completely abolished it. Chelating
agents EDTA and EDDHA only partially affected the enzymatic activity.

Substrate specificity using an ester library
A library of esters was used to evaluate the affinity of Est10 towards different chemical struc-
tures present on the ligand. We included ethyl esters of fatty acids of diverse chain lengths as
well as esters of alcohol substituents with different geometries. Est10 elicited detectable activi-
ties against all of them (Fig 5B). As previously observed, Est10 preferred shorter chains on the
fatty acid. The highest activity was obtained with ethyl butyrate (C4) followed by ethyl

Fig 5. Determination of Est10 substrate specificity and tolerance to metals, detergents, chelating
agents and additives. (A) Salts, detergents, chelating agents, and additives were added at a concentration
of 1mM to a reaction mix containing 50nM Est10 and 1mM pNP butyrate. Reactions were carried out at 40°C
during 15 min. (B) Est10 activity was determined with different esters as substrates. In all cases averages of
triplicate assays are shown and error bars represent standard deviation.

doi:10.1371/journal.pone.0126651.g005
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octanoate (C8). The enzyme retained 76% of its activity when assayed against methyl phenyla-
cetate which is a larger aryl ester. We also tested different alcohol substituents but the esterase
activity did not appear to be significantly affected by them.

Determination of kinetic parameters
The kinetic parameters of the purified Est10 were determined by measuring the hydrolysis of
pNP acetate (C2), pNP butyrate (C4) and pNP decanoate (C10) (Table 1). Kinetics parameters
were obtained by non-linear least squares implemented on the R package [46]. Est10 achieves
saturation at low concentrations of substrate which is characteristic for carboxylesterases. As
expected, Est10 elicited maximal specificity constant (kcat/KM) with pNP butyrate (C4).

Discussion
Enzymes are remarkable biocatalysts, accelerating the rates of a wide range of biochemical re-
actions and providing solutions for a variety of biotechnological applications. Metagenomic ap-
proaches provide access to the total microbiome of different environmental samples and have
been successfully employed in mining novel enzymes [26, 47, 48]. In this study, a metagenomic
library constructed from bovine rumen was screened for lipolytic genes by function-driven
analysis. Unlike an approach based on sequence information, activity-based approaches allow
the detection of genes of interest without any presumption about their sequences [23]. Using
this approach we were able to identify an esterase, named Est10, from the bacteria inhabiting
the liquid fraction of bovine rumen. The organism of origin was not identified and it is likely to
be uncultivable.

Est10 is predicted to be a secreted lipolytic enzyme. It was initially identified because of the
halo of hydrolysis formed around the colonies on trybutirin solid media. However, the His-
tagged Est10 was not detected in the extracellular liquid media. One alternative to explain this
discrepancy is that the presence of the 6xHis tag may interfere with the secretion mechanism
of the host. However, such an interference was previously observed only in the presence of Ni2
+ [49]. Another possibility is that the protein can be secreted from its original host but not
when expressed heterologously in E.coli [50]. If this is the case, the halo observed around the
colonies on solid media might correspond to protein leaked from senescent cells. Est10 also
displays a conserved domain belonging to the family DUF3089 [19]. This domain has un-
known function, but it shows the α/β fold characteristic of hydrolytic enzymes. To confirm the
lipolytic nature of Est10, it was expressed and purified as a His-tagged fusion protein in E. coli.
Biochemical assays showed that Est10 displays maximum activity towards C4 aliphatic chains
and undetectable activity towards C10 and longer chains (Fig 4A). This preference for short
length acyl chains confirmed its classification as an esterase rather than a lipase [12]. Similar re-
sults were obtained using ethyl esters of fatty acids (Fig 5B). The active site may not accommo-
date longer aliphatic chains but is still able to accept aryl esters, such as methyl phenylacetate
and phenyl acetate, and maintain a relatively high activity. The size of the alcohol substituent

Table 1. Kinetic parameters of Est10.

Substrate Specific activity(U/mg of protein)a KM(mM)a kcat (s
-1)a kcat/KM(s

-1 mM-1)a

C2 0.31 (0.04) 0.3 (0.1) 0.22 (0.03) 0.8 (0.4)

C4 4.4 (0.2) 0.16 (0.02) 3.1 (0.1) 19 (3)

C10 1.06 (0.06) 0.35 (0.06) 0.72 (0.04) 2.1 (0.5)

aStandard errors are indicated in parentheses.

doi:10.1371/journal.pone.0126651.t001
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of the ester did not appear to have much influence on the observed activity. For example, vinyl
acetate, ethyl acetate, and phenyl acetate displayed similar activities.

The chelating agents EDTA and EDDHA reduced the observed activity by 40% and 50%, re-
spectively (Fig 5A). These results suggest that some metal ions may be needed for optimal ac-
tivity which is not unexpected for lipolytic enzymes [2]. However, we were unable to identify
positive effects with a particular metal. In fact, Est10 activity was quite sensitive to divalent cat-
ions. Strong inhibition in the presence of Mg2+, Cu2+, and Ca2+ has been previously observed
in other esterases [4]. Regarding its stability in the presence of surfactants, Est10 retained most
of its activity in nonionic detergents while being inactivated in the presence of stronger
ionic ones.

The closest relative of Est10 is Est5S, an esterase also isolated from an uncultivable bacteria
from the bovine rumen [20]. Est10 and Est5S showed similar substrate specificities (Fig 4A)
and optimum temperatures (Fig 4D). However, Est10 has a more alkaline optimum pH than
Est5S (Fig 4B). Est10 optimum pH is 9.0 and the enzyme retains over 85% of its activity be-
tween pH 8 and 9.5. This is a remarkable fact of Est10. Only 13% of the carboxylesterases (EC
3.1.1.1) deposited in the BRENDA database display optimum pH above 9 [51].

Est10 optimum temperature of around 40°C allows its classification as a mesophilic esterase,
although it retains up to 60% of its activity at much lower temperatures (Fig 4D). Also, the en-
zyme is not thermostable at high temperatures (Fig 4C). Taken together, these data suggest
that Est10 preferred temperature of action is between 30° and 40°C which also happens to be
the temperature of the ruminal fluid.

Est10 obeys a Michaelis-Menten kinetics for the preferred C4 substrate but also for C2 and
C10 (Table 1). The KM and turnover values obtained (0.16–0.35 mM and 0.22–3.1 s-1, respec-
tively) are common among carboxylesterases according to the BRENDA database. The ratio
kcat/KM is maximal for pNP butyrate in agreement with the higher activity observed with buty-
rate esters (Figs 4A and 5B).

Multiple sequence alignment revealed that Est10 and its closest homologs, Est5S, EstZ3 and
EstGK1, contained the conserved pentapeptide GxSxG found in most lipolytic enzymes (Fig 1)
[12]. Both Est10 and Est5S have about 50 extra residues on their N-terminal ends. This region
encompasses putative signal peptides that are not present on EstZ3 and EstGK1 indicating that
the formers are more likely to be translocated for example via the Sec machinery or another
mechanism. Interestingly, all these four enzymes form a separate cluster, which is exclusively
composed of esterases isolated from metagenomic samples comprising a sub-family by them-
selves. The sister cluster is composed of esterases from very different origins, genus Dehalococ-
coides, Brachyspira and Eubacterium (Fig 2) but all of them, together with two more distant
esterases, EstD2 and EstWSD [7, 16], display the conserved domain DUF3089. This domain is
a common trait in members of family XV of α/β hydrolases of the ESTHER database [17]. The
phylogenetic distances observed in the maximum likelihood tree suggest that this group is
characterized by a high sequence diversity, in agreement with the high diversity of the phyla
that these sequences come from. On the basis of phylogenetic analysis, we propose that the
family XV should only comprise Est10 together with Est5S, EstZ3 and EstGK1. The remaining
proteins with a DUF3089 domain are too diverse to be included in the same family of esterases.
For example, EstD2 and EstWSD are distant proteins, both phylogenetically and functionally,
and may grant the creation of new families after other similar proteins were characterized.

[2, 4]Using automated modeling tools, we were able to locate the nucleophilic Ser on a short
loop between a highly conserved α-helix and a four-stranded parallel β-sheet (S2 Fig). This lo-
cation is expected for most α/β hydrolases. Unfortunately, even using different templates (data
not shown), we were not able to map into 3D-models the remaining putative residues of the
catalytic triad, His341 and Asp344 [15], because of very low target-to-template accuracy scores.
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Esterases and lipases are important tools for biotechnological applications. Here we have
characterized a new esterase produced by a still unidentified bacterium which displays high
level of activity in alkaline media. This work helps to better define a recently proposed family
of esterases. A better delimitation of this family may help to accurately annotate a large number
of related proteins whose functions are still unknown.

Supporting Information
S1 Fig. Hierarchical cluster analysis of esterases based on the scaled inverted pairwise
BlastP score. Squared Euclidean distance and the Ward’s method were used for this analysis.
The position of Est10 is indicated with a black arrow, while family XV cluster is indicated by
dashed lines. Families are indicated between brackets when previously reported, FB and FJ re-
fers to previously reported esterases unassigned to any family [15] and [53], respectively.
(TIF)

S2 Fig. Ribbon diagrams of the three-dimensional modeling of Est10 from residues 85 to
224. Est10 conserved domain, comprising residues 84 to 224, was modeled using the 3D struc-
ture of the human gastric lipase (PDB-ID: 1HLG chain ‘A’) as template [42] in SWISS-MODEL
[54]. The Global Model Quality Estimation (GMQE) was only 0.15 indicating that only a por-
tion of the model may be trustable. In fact, local QMEAN scores for the GHSQG pentapeptide
region were above 0.7 representing a high expected accuracy of the model in this region. Pre-
dicted 3D model of Est10 using human gastric lipase (PDB-ID: 1HLG chain ‘A’) as template
and the SWISS-MODEL algorithm. The catalytic Ser189 is depicted by sticks and indicated
with a black arrow. Regions of α-helices and β-strands are drawn. Colors represent model qual-
ity and are assigned using QMEAN scores where blue is highest reliability and red is lowest.
The estimated model error for the predicted position of each residue suggested that the highly
conserved pentapeptide, GHS189QG, is modeled with little error. Models were visualized using
the JavaScript protein viewer PV.
(TIF)
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