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Abstract: Numerous observational studies and meta-analyses have suggested that combination
therapy consisting of piperacillin–tazobactam (TZP) and vancomycin (VAN) augments acute kidney
injury (AKI) risk when compared to viable alternatives, such as cefepime–vancomycin (FEP–VAN)
and meropenem–VAN. However, the exact pathophysiological mechanisms of this phenomenon
are still unclear. One major limitation of the existing studies is the utilization of serum creatinine
to quantify AKI since serum creatinine is not a sufficiently sensitive and specific biomarker to truly
define the causal relationship between TZP–VAN exposure and nephrotoxicity. Even so, some
preventive measures can be taken to reduce the risk of AKI when TZP–VAN is preferred. These
measures include limiting the administration of TZP–VAN to 72 h, choosing FEP–VAN in place of
TZP–VAN in appropriate cases, monitoring the VAN area under the curve level rather than the VAN
trough level, avoiding exposure to other nephrotoxic agents, and minimizing the prescription of
TZP–VAN for patients with a high risk of AKI. More data are needed to comment on the beneficial
impact of the extended-infusion regimen of TZP on nephrotoxicity. Additionally, TZP and teicoplanin
can be reasonable alternatives to TZP–VAN for the purpose of lowering AKI risk. However, the data
are scarce to advocate this practice convincingly.

Keywords: piperacillin–tazobactam; vancomycin; teicoplanin; acute kidney injury; KDIGO

1. Introduction

Acute kidney injury (AKI) has been observed in up to a quarter of hospitalized
patients and is associated with excess mortality and morbidity [1]. As a risk factor for the
development of AKI in these patients, antibiotics undoubtedly play a critical role with the
main offending agents, such as acyclovir, amphotericin B, aminoglycosides, colistin, and
vancomycin (VAN) [2,3]. The relationship between AKI and VAN exposure has been known
for a long time and was initially the result of impurities in early formulations. Owing to the
technical developments in drug manufacturing, the increased nephrotoxicity risk related
to early VAN formulations was eventually eliminated [4]. Nevertheless, nephrotoxicity
may be augmented with several drug combinations, including piperacillin–tazobactam
(TZP) plus VAN for which the incidence of AKI has been reported within a range of 5.5% to
46.0% [5]. Besides a TZP–VAN combination regimen, high VAN trough levels, concurrent
exposures to other nephrotoxic medications, long duration of VAN therapy (>7 days), the
severity of illness, underlying kidney dysfunction, obesity, and ICU admission are other
relevant risk factors for VAN-related AKI [6]. From a pathophysiological point of view,
VAN-associated AKI can be mediated by proximal tubular injury, interstitial nephritis, and
cast nephropathy [7,8]. However, the mechanisms underlying the synergistic nephrotoxic
interaction between TZP and VAN are still unclear.

Many retrospective cohort studies and meta-analyses have demonstrated that TZP plus
VAN is associated with a higher risk of AKI than those of other VAN plus β-lactam combi-
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nations [9–12]. In a meta-analysis that included 14 observational studies, concomitant use of
VAN and TZP was reported as a risk factor for increased AKI (p = 0.001). Intriguingly, a higher
risk of AKI was detected only in those studies in which the ratio of patients receiving antibiotic
therapy in ICUs was <50% (in adjusted analysis OR, 3.04; 95% CI, 1.49–6.22; p = 0.002) [13].
Similarly, another recent systematic review and network meta-analysis reported that the TZP–
VAN combination was significantly more nephrotoxic than VAN alone or VAN in combination
with meropenem (MER) or cefepime (FEP) [12].

As another parenteral glycopeptide antibiotic, teicoplanin (TEI) can well be used in
place of VAN in many indications and it is widely available worldwide, including in Europe,
the Middle East, and Asia-Pacific, but not in the US [14]. Previous studies comparing TEI
and VAN usually indicated a safer nephrotoxicity profile with the former antibiotic [15].
In a Cochrane systematic review and meta-analysis, 24 randomized controlled trials that
included 2610 patients with proven or suspected Gram-positive infections, TEI had a
lower risk of nephrotoxicity than VAN (RR, 0.66; 95% CI, 0.48–0.90; I2 = 10%) and no
patient required dialysis in either TEI or VAN group. Furthermore, clinical cure and
microbiological eradication rates were similar to TEI and VAN (RR, 1.03; 95% CI, 0.98–1.08;
I2 = 0%). However, the randomized controlled trials included in this meta-analysis were
small and most of the studies had methodological problems. Therefore, the quality of
the evidence regarding the risk of AKI of TEI compared to that of VAN was assessed as
moderate according to the GRADE system [16].

In preparation for this article, a literature review was conducted by using PubMed/Medline,
Web of Science, and Scopus databases without any date restriction. The search was undertaken
until May 2022 and only articles published in English were included. It was aimed to overview
contemporary data regarding the epidemiology of TZP plus VAN-associated AKI, its potential
pathobiological mechanisms, and the nephrotoxicity risk of TZP–VAN as compared with that
of TZP–TEI.

2. Epidemiology of TZP Plus VAN-Associated AKI

For the first time in the literature, the risk of AKI related with the TZP–VAN combi-
nation regimen was reported in 2011 [17]. Since then, contemporary literature has been
inundated with a deluge of observational studies comparing the AKI risk of TZP–VAN with
either those of VAN alone or VAN plus other antipseudomonal β-lactam agents. The TZP
plus VAN combination provides a wide spectrum of activity against methicillin-resistant
Staphylococcus aureus (MRSA), Enterobacterales, Enterococcus spp., Pseudomonas aeruginosa,
and anaerobes; thus, the combination is typically used as empirical therapy in patients
who are at risk of infections caused by these pathogens. TZP can be substituted with other
antipseudomonal β-lactams, including meropenem for the same indications. In this regard,
a large number of observational studies have been published comparing the rates of AKI
seen in patients receiving TZP–VAN and those treated with FEP–VAN or MER–VAN. It
should be noted that these studies minimize the confounding by indication that is typical
when the comparator group comprises patients receiving VAN monotherapy. The results
of the studies are summarized in Table 1 [9,10,18–41]. According to these studies, patients
treated to the TZP–VAN combination regimen are 1.2–9.5 times more likely to develop AKI
compared to those receiving FEP–VAN or MER–VAN combinations. However, these results
should be cautiously evaluated due to following reasons: (I) the presence of significant het-
erogeneity between the comparison groups in terms of baseline characteristics of recruited
patients, (II) differences in criteria used to define AKI, (III) different comparison groups (e.g.,
TZP–VAN vs. FEP–VAN), (IV) variations in the level of VAN exposure, (V) percentage of
critically ill patients in the whole cohort, (VI) number of other nephrotoxic agents received,
(VII) sample size of the studies, (VIII) statistical methodologies being used, (IX) percentage
of patients with baseline kidney dysfunction within the entire cohort. In addition, although
some studies performed multivariate analyses and propensity score–matched analyses,
the impacts of other confounding factors not taken into account and selection bias could
not be eliminated completely. Moreover, in the vast majority of the studies, since the
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data collections were done retrospectively and extracted in a nonblinded manner from the
electronic patient records in single institutions, no causal relationships can be established.
In some studies, the details of the patients’ records do not allow for evaluation of each
potential risk factor for AKI, such as the Acute Physiology and Chronic Health Evaluation
II (APACHE II) score, hypovolemia, hypoalbuminemia, VAN serum level, and hypotension.
Moreover, the impacts of multiple generic products of antibiotics on the AKI risk should
not be underestimated. Because of the retrospective nature of the studies, urine output
could not be assessed for the AKI definition, which may affect the rates of AKI. Finally, in
some studies, the nephrotoxic potentials of the agents were thought to be the same, but
this is not true. Furthermore, the dual representation of nephrotoxic exposure does not
explain the duration and dose of agents taken over the course of treatment. Therefore, this
approach cannot reflect the actual exposure to other nephrotoxic agents.

Considering the absence of randomized controlled trials comparing the risk of AKI
with TZP–VAN and FEP–VAN or MER–VAN, meta-analyses evaluating the same pool of
observational studies may only serve to amplify bias. Nevertheless, seven meta-analyses
have been reported to address the relationship between TZP–VAN and AKI as depicted
in Table 2 [5,12,13,42–45]. Hammond et al. conducted a meta-analysis that included
14 observational studies and showed that TZP–VAN was significantly associated with a
higher rate of AKI compared to FEP–VAN or MER–VAN in adults (the adjusted odds ratio
(OR, 3.15; 95% CI, 1.72–5.76) [13]. However, it is noteworthy that substantial statistical
heterogeneity was found among the studies (I2 = 78.1%). In another meta-analysis, Giuliano
et al. evaluated 15 observational studies, 7 of which overlapped with the studies included
in the meta-analysis by Hammond et al. [5]. The authors demonstrated considerable risk for
AKI with TZP–VAN compared to vancomycin with or without another β-lactam (OR, 3.649;
95% CI, 2.157–6.174; I2 = 83.5%; p < 0.001) [5]. Furthermore, this association remained
significant when the TZP–VAN combination was compared to VAN alone (OR, 3.980;
95% CI, 2.749–5.763; I2 = 31.4%; p < 0.001). In a recent meta-analysis (47 cohort studies
with a total of 56,984 adult and pediatric patients), TZP–VAN was significantly associated
with higher odds of AKI than vancomycin monotherapy (OR, 2.05; 95% CI, 1.17–3.46) and
its concomitant use with meropenem (OR, 1.84; 95% CI, 1.02–3.10) or cefepime (OR, 1.80;
95% CI, 1.13–2.77) [12]. On the other hand, all secondary outcomes, including the severity of
AKI, time to AKI, duration of kidney injury, the need for renal replacement therapy, length
of hospitalization, and mortality were similar between the comparison groups. In this
meta-analysis, the level of evidence was interpreted to be moderate, mainly because of the
presence of inter-study heterogeneity as a consequence of the methodological differences
of the included studies. The power of the outcomes was strengthened by performing a
sensitivity analysis, which indicated that TZP–VAN was the most nephrotoxic combination
regimen when only studies at low risk of bias were analyzed.
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Table 1. Studies comparing the rate of AKI with piperacillin–tazobactam plus vancomycin and meropenem or cefepime plus vancomycin.

Authors and Type Year Country Population Definition
of AKI *

ICU
Residence

and/or
Critically Ill,

%

Sample Size,
n

Exposure to
Other

Nephrotox-
ins,
%

Mean or
Initial VAN

Trough
Level

(mg/dl)

Treatment
Duration,

Days

Comparison
Groups Rate of AKI

Moenster RP, et al.
R, SC, [18] 2014 USA

Adult
patients with

or without
renal

dysfunction

RIFLE Not
provided 139

Yes,
percentage
unknown

15.8 vs. 14.5 14.7 vs. 11.3 TZP–VAN vs.
FEP–VAN

29.3% vs.
13.3%;

OR, 3.45
(0.96–12.4);

p: 0.05

Gomes DM, et al.
R, SC, [19] 2014 USA

Adult
patients

without renal
dysfunction

AKIN 34.8 vs. 53.6 224
Yes,

percentage
unknown

14.1 vs. 13.06 7.1 vs. 6.7 TZP–VAN vs.
FEP–VAN

34.8% vs.
12.5%; OR,

3.74
(1.89–7.39);
p: <0.001

Hammond DA,
et al. R, SC, [20] 2016 USA

Adult
patients

without renal
dysfunction

AKIN 100 122
Yes,

percentage
unknown

17.9 vs. 15.1 Not
provided

TZP–VAN vs.
FEP–VAN

32.7% vs.
28.8%; p: 0.76

Al Yami MS, et al.
R, MC, [21] 2017 Saudi Arabia

and USA

Adult
patients

without renal
dysfunction

KDIGO 17.6 vs. 17.3 183 62.9 vs. 46.6 15.7 vs. 16.9 4.3 vs. 5.4 TZP–VAN vs.
MER–VAN

7.4% vs.
5.3%; p: 0.4

Rutter WC, et al.
R, SC, [9] 2017 USA

Adult
patients with

or without
renal

dysfunction

RIFLE Not
provided 4193 60.7 vs. 59.4

Percentage
of >20 mg/L

30.4% vs.
27.4%

3.0 vs. 4.0 TZP–VAN vs.
FEP–VAN

21.4% vs.
12.5%; OR,

2.18
(1.64–2.94);
p: < 0.001

Jeon N, et al. R,
SC, [22] 2017 USA

Adult
patients with

or without
renal

dysfunction

KDIGO 14.09 vs.
18.75 5335

Yes,
percentage
unknown

Percentage
of >20 mg/L

2.5% vs.
1.9%

5.0 vs. 5.0 TZP–VAN vs.
FEP–VAN

19.6% vs.
16.2%; aHR,

1.25
(1.11–1.42);

p: < 0.05
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Table 1. Cont.

Authors and Type Year Country Population Definition
of AKI *

ICU
Residence

and/or
Critically Ill,

%

Sample Size,
n

Exposure to
Other

Nephrotox-
ins,
%

Mean or
Initial VAN

Trough
Level

(mg/dl)

Treatment
Duration,

Days

Comparison
Groups Rate of AKI

Navalkele B, et al.
R, SC, [23] 2017 USA

Adult
patients

without renal
dysfunction

RIFLE and
AKIN 21 vs. 23 558

Yes,
percentage
unknown

17.3 vs. 17.7 Not
provided

TZP–VAN vs.
FEP–VAN

29% vs. 11%;
HR, 4.27

(2.73–6.68);
p: <0.001

Peyko V, et al. P,
SC, [24] 2017 USA

Adult
patients with

or without
renal

dysfunction

KDIGO Not
provided 85 33.9 vs. 38.5 16.6 vs. 18.3 Not

provided

TZP–VAN vs.
MER–VAN

or FEP–VAN

37.3% vs.
7.7%; p: 0.005

Cannon JM, et al.
R, SC, [25] 2017 USA

Adult
patients

without renal
dysfunction

RIFLE 15.8 vs. 31.1 366
Yes,

percentage
unknown

Percentage
of >20 mg/L

21.9% vs.
28.4%

Not
provided

TZP–VAN vs.
MER–VAN

25.3% vs.
9.5%; p: 0.008

Clemmons AB,
et al. R, SC, [26] 2018 Georgia

Adult
patients with

or without
renal

dysfunction

KDIGO Not
provided 170 Not

provided

Percentage
of >20 mg/L

42.9% vs.
31.6%

4.0 vs. 4.0 TZP–VAN vs.
FEP–VAN

68% vs. 27%;
OR, 5.1

(2.5–10.5);
p: < 0.001

Mullins BP, et al. P,
MC, [27] 2018 USA

Adult
patients

without renal
dysfunction

RIFLE 34 vs. 41 242
Yes,

percentage
unknown

16.3 vs. 15.2 5.4 vs. 6.4
TZP–VAN vs.
MER–VAN

or FEP–VAN

29.8% vs.
8.8%; OR, 6.6

(2.8–15.8),
p: <0.001

Robertson AD,
et al. R, SC, [28] 2018 USA

Adult
patients

without renal
dysfunction

RIFLE 0 169 81.2 vs. 83.3

Percentage
of >20 mg/L

21.2% vs.
19.0%

4.6 vs. 4.7 TZP–VAN vs.
MER–VAN

16.5% vs.
3.6%; OR, 6.8

(1.5–0.9);
p: 0.009
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Table 1. Cont.

Authors and Type Year Country Population Definition
of AKI *

ICU
Residence

and/or
Critically Ill,

%

Sample Size,
n

Exposure to
Other

Nephrotox-
ins,
%

Mean or
Initial VAN

Trough
Level

(mg/dl)

Treatment
Duration,

Days

Comparison
Groups Rate of AKI

Balcı C, et al. R,
SC, [29] 2018 Turkey

Adult
patients with

or without
renal

dysfunction

AKIN Not
provided 132 52.8 vs. 65.2 Not

provided
Not

provided
TZP–VAN vs.
MER–VAN

41.3% vs.
10.1%; OR,

0.33
(0.21–0.77);
p: <0.001

Buckley MS, et al.
R, SC, [30] 2018 USA

Adult
patients with

or without
renal

dysfunction

RIFLE 100 333
Yes,

percentage
unknown

13.5 vs. 13.1 5.1 vs. 5.8 TZP–VAN vs.
FEP–VAN

19.5% vs.
17.3%; OR,

0.86
(0.49–1.53);

p: 0.6

Rutter WC, et al.
R, SC, [10] 2018 USA

Adult
patients with

or without
renal

dysfunction

RIFLE Not
provided 10,236

Yes,
percentage
unknown

Not
provided 5.0 vs. 5.0 TZP–VAN vs.

MER–VAN

27.4% vs.
15.4 %; OR,

2.53
(1.82–3.52);
p: < 0.001

Ide N, et al. R, SC,
[31] 2019 Japan

Adult
patients with

or without
renal

dysfunction

KDIGO 0 82
Yes,

percentage
unknown

Percentage
of >15 mg/L

52.0% vs.
50.0%

Not
provided

TZP–VAN vs.
MER–VAN

33.3% vs.
9.1%; p: 0.015

Schreier DJ, et al.
R, SC, [32] 2019 USA

Adult
patients with

or without
renal

dysfunction

AKIN 100 3299
Yes,

percentage
unknown

Not
provided

All patients
received
24-72 h

combination
therapy

TZP–VAN vs.
MER–VAN

vs.
FEP–VAN

1.04
(0.71–1.42);

p: 0.84
1.11

(0.85–1.45);
p: 0.44
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Table 1. Cont.

Authors and Type Year Country Population Definition
of AKI *

ICU
Residence

and/or
Critically Ill,

%

Sample Size,
n

Exposure to
Other

Nephrotox-
ins,
%

Mean or
Initial VAN

Trough
Level

(mg/dl)

Treatment
Duration,

Days

Comparison
Groups Rate of AKI

Blevins AM, et al.
R, SC, [33] 2019 USA

Adult
patients with

or without
renal

dysfunction

KDIGO 100 2492 76.0 vs. 82.7
vs. 78.0

12.0 vs. 12.0
vs. 11.6

4.0 vs. 3.0 vs.
3.0

TZP–VAN vs.
MER–VAN

vs.
FEP–VAN

39.3% vs.
23.5% vs.

24.2%; OR,
2.16

(1.62–2.88);
p: < 0.001

Kang S, et al. R,
SC, [34] 2019 South Korea

Adult
patients with

or without
renal

dysfunction

KDIGO 100 340
Yes,

percentage
unknown

Not
provided

6.5 vs. 8.0 vs.
8.0

TZP–VAN vs.
MER–VAN

vs. VAN

52.7% vs.
27.7% vs.

25.7%;
p: <0.001

Molina KC, et al.
R, SC, [35] 2019 USA

Adult
patients

without renal
dysfunction

AKIN 100 394
Yes,

percentage
unknown

11.2 vs. 11.0 3.3 vs. 3.7 TZP–VAN vs.
FEP–VAN

28.7% vs.
21.3%; OR,

1.50
(0.88–2.57);

p: 0.13

Haruki Y, et al. R,
SC, [36] 2020 Japan

Adult
patients

without renal
dysfunction

RIFLE 25.0 vs. 28.3 272 68.5 vs. 67.8 13.3 vs. 13.4 6.0 vs. 7.0
TZP–VAN vs.
VAN-Other
β-lactams

25.0% vs.
12.2%; OR,

2.40
(1.20–4.78);

p: 0.01

O’ Callaghan K
et al. R, SC, [37] 2020 Australia

Adult
patients with

or without
renal

dysfunction

AKIN 100 260
Yes,

percentage
unknown

Not
provided 4.0 vs. 5.0

TZP–VAN vs.
MER–VAN

or FEP–VAN

RRR, 2.2
(1.0–4.9);

p: 0.05
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Table 1. Cont.

Authors and Type Year Country Population Definition
of AKI *

ICU
Residence

and/or
Critically Ill,

%

Sample Size,
n

Exposure to
Other

Nephrotox-
ins,
%

Mean or
Initial VAN

Trough
Level

(mg/dl)

Treatment
Duration,

Days

Comparison
Groups Rate of AKI

Yabes JM, et al. R,
SC, [38] 2021 USA

Adult
patients

without renal
dysfunction

RIFLE and
AKIN 88.5 vs. 93.7 268

Yes,
percentage
unknown

9.4 vs. 10.9 Not
provided

TZP–VAN vs.
VAN-Other
β-lactams

13.1% vs.
9.7%; OR,

1.72
(1.02–2.76);

p: 0.04

Aslan AT, et al. R,
SC, [39] 2021 Turkey

Adult
patients with

or without
renal

dysfunction

RIFLE 32.0 vs. 34.6 154
Yes,

percentage
unknown

Not
provided 5.0 vs. 9.0 TZP–VAN vs.

MER–VAN

40.0% vs.
24.0%; aOR,

2.28
(1.01–5.18);

p: 0.048

Tookhi RF, et al. R,
SC, [40] 2021 Saudi Arabia

Adult
patients

without renal
dysfunction

KDIGO 18.2 vs. 30.9 158 49.4 vs. 51.9 Not
provided

Not
provided

TZP–VAN vs.
MER–VAN

10.4% vs.
21.0%; p: 0.07

Elliott BP, et al. R,
SC, [41] 2022 USA

Adult
patients with

sepsis
KDIGO 100 418

Yes,
percentage
unknown

Not
provided

Not
provided

TZP–VAN vs.
FEP–VAN

15.2% vs.
11.0%; p: 0.44

Abbreviations: R, retrospective; SC, single-center; P, prospective; MC, multi-center; AKI, acute kidney injury; n, number; ICU, intensive care unit; VAN, vancomycin; TZP, piperacillin–
tazobactam; FEP, cefepime; MER, meropenem; OR, odds ratio; aOR, adjusted odds ratio; HR, hazard ration; aHR, adjusted hazard ratio; RRR, relative risk reduction. * For definitions of
AKI, please see text.
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Table 2. Meta-analyses evaluating the relationship between piperacillin–tazobactam plus vancomycin and higher nephrotoxicity risk.

Authors Year Total Number of
Studies, n

Total Number
of Patients

Deadline for
Inclusion of Studies Comparison Groups The Risk of AKI Additional or

Secondary Results

Giuliano et al., [5] 2016
15 (only

studies including
adult patients)

3258 1 June 2016

TZP–VAN vs. VAN
alone

TZP–VAN vs. VAN+
β-lactam

TZP–VAN vs. VAN
alone or VAN+

another antibiotic

TZP–VAN vs. VAN
± β-lactam: OR, 3.65;
95% CI, 2.15–6.17; I2

= 83.5%, p < 0.001

Abstracts were
removed: OR, 3.498;
95% CI 1.747–7.003,

I2 = 82.3%, p < 0.001)
Low-quality studies
were removed: OR,

4.596; 95% CI
2.929–7.212; I2 = 0%,

p < 0.001).

Hammond DM, et al., [13] 2017
14 (11 included only
adults and 3 included

only children)
3549 October 2016

TZP–VAN vs. VAN
alone

TZP–VAN vs.
FEP–VAN

TZP–VAN vs. VAN+
β-lactam

In adults: aOR, 3.15;
95% CI, 1.72–5.76

In children: OR, 4.55;
95% CI, 2.71–10.21

<50% of patients
received care in an

ICU: aOR, 3.04; 95%
CI, 1.49–6.22

≥50% of patients
received care in an

ICU: aOR, 2.83; 95%
CI, 0.74–10.85

Chen et al., [42] 2018
8 (7 included only

adults and 1 included
only children)

10,727 April 2017

TZP–VAN vs. VAN+
β-lactam

TZP–VAN vs.
FEP–VAN

TZP–VAN vs. VAN

TZP–VAN vs. VAN+
β-lactam: OR, 1.57;

95% CI, 1.13–2.01; I2

= 76.4%, p < 0.001

TZP–VAN vs.
FEP–VAN: OR, 1.50;
95% CI, 1.07–1.93; I2

= 80.5%, p < 0.001
TZP–VAN vs. VAN:

OR, 1.49; 95% CI,
1.06–1.92; I2 = 84.1%,

p < 0.001

Luther et al., [43] 2018
32 (Only

studies including
adult patients)

24,799 April 2017

TZP–VAN vs. VAN
alone

TZP–VAN vs.
FEP–VAN or

carbapenem-VAN
TZP–VAN vs. TZP

TZP–VAN vs. FEP or
carbapenem-VAN:
OR, 2.68; 95% CI,

1.83–3.91
TZP–VAN vs. VAN:

OR, 3.40; 95% CI,
2.57–4.50

Time to AKI for
TZP–VAN vs.
FEP–VAN or

carbapenem: mean
difference, −1.30;
95% CI, −3.00 to

0.41 d).



Healthcare 2022, 10, 1582 10 of 21

Table 2. Cont.

Authors Year Total Number of
Studies, n

Total Number
of Patients

Deadline for
Inclusion of Studies Comparison Groups The Risk of AKI Additional or

Secondary Results

Ciarambino T, et al., [44] 2020
6 (Only

studies including
adult patients)

9672 2 June 2019 TZP–VAN vs. VAN
alone

OR, 2.77 (95% CI 1.94,
3.96); p < 0.0001 Not provided

Bellos I, et al., [12] 2020

47 (37 included only
adults and

10 included
only children)

56,984 20 August 2019

TZP–VAN vs. VAN
alone

TZP–VAN vs.
FEP–VAN

TZP–VAN vs.
MER–VAN

TZP–VAN vs. VAN:
OR, 2.05; 95% CI,

1.17–3.46
TZP–VAN vs.

MER–VAN: OR, 1.84;
95% CI, 1.02–3.10

TZP–VAN vs.
FEP–VAN: OR, 1.80;

95% CI, 1.13–2.77

TZP–VAN
insignificantly

increased risk of
severe AKI and

requirement of RRT.
Time to AKI,

duration of AKI,
recovery from AKI,

length of
hospitalization and

mortality were
similar between the
comparison groups.

Alshehri AM, et al., [45] 2022
12 (Only

studies including
adult patients)

14,511 November 2021 TZP–VAN vs.
MER–VAN

TZP–VAN vs.
MER–VAN: OR, 2.31;

95%CI, 1.69–3.15

The secondary
outcomes, including

hospital length of
stay, RRT, or

mortality were
similar between the

two groups

Abbreviations: n, number; AKI, acute kidney injury; ICU, intensive care unit; VAN, vancomycin; TZP, piperacillin–tazobactam; FEP, cefepime; MER, meropenem; OR, odds ratio; CI,
confidence interval; RRT, renal replacement therapy.
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The definition used to define AKI varies significantly between the studies. Some
studies use acute kidney injury network (AKIN) and kidney disease improving global
outcomes (KDIGO) criteria, which include more AKI cases with smaller serum creatinine
elevations (>0.3 mg/dl) than the RIFLE (risk, injury, failure, loss of kidney function, and
end-stage kidney disease) criteria, which require at least ≥50% increment in the serum
creatinine level to quantify the presence of AKI. Therefore, selected AKI definition criteria
seem to impact the incidence of stage 1 AKI without affecting the frequency of stage II
or III AKI [46]. It is important to underline that TZP–VAN-associated AKI is generally
mild in severity (stage I AKI or risk class of the RIFLE criteria). The incidence of severe
AKI requiring renal replacement therapy is not significantly higher in the TZP–VAN
group compared to other groups [27,39]. Similarly, studies that included ICU patients
indicated that there was no incremental risk of either persistent kidney dysfunction or
requirement of renal replacement therapy for patients receiving TZP–VAN over those
receiving FEP–VAN or MER–VAN [12,21]. Although the TZP–VAN combination does not
seem to increase the risk of severe AKI (stage II or stage III AKI or requirement of RRT)
over other comparators, even stage I AKI can dramatically reduce long-term survival rates,
increase morbidity, prolong hospitalizations, and ramp up healthcare-related costs [47,48].
Taken together, the TZP–VAN combination appears to be frequently associated with mild
(stage 1) AKI in critically and non-critically ill patients. The clinical importance of stage I
AKI should not be underestimated as it is significantly associated with adverse clinical and
economic consequences.

3. Epidemiology of TZP Plus VAN-Associated AKI in ICU Patients

Although many observational studies have included ICU patients as part of the entire
cohort, eight studies have investigated the risk of AKI only in ICU patients receiving TZP–
VAN compared to patients receiving FEP–VAN or those receiving FEP–VAN or MER–VAN.
All these studies have retrospective single-center designs with sample sizes ranging from
122 to 3299. Except for two studies (one from South Korea and the other from Australia),
all were published in the USA. Among them, Blevins et al. reported that the AKI rates
were 39.3% for TZP–VAN patients, 24.2% for FEP–VAN patients, and 23.5% for MER–
VAN patients (p < 0.0001 for both comparisons). Similarly, the frequencies of stage II and
stage III AKI were also significantly higher for TZP–VAN patients than for other patients
receiving MER–VAN or FEP–VAN (15% and 6.6% for TZP–VAN patients, 5.8% and 1.8%
for FEP–VAN patients, and 6.6% and 1.3% for MER–VAN patients, p < 0.0001 for both
comparisons). In a multivariate analysis, utilization of TZP–VAN was found to be an
independent risk factor of AKI (OR, 2.161; 95% CI, 1.62–2.88) [33]. In line with these results,
Kang et al. revealed an increased risk of AKI in the TZP–VAN group in comparison with
the FEP–VAN group (52.7% vs. 27.7%, p < 0.001) in 340 ICU patients [34]. In other studies
(n = 6), although the incidences of AKI were higher in the TZP–VAN patients than in
the comparison groups numerically, these differences were not able to attain statistical
significance [20,30,32,35,37,41]. Similarly, in a meta-analysis, Hammond et al. showed
that a higher risk of AKI was not observed in the TZP–VAN group when the studies with
≥50% of patients receiving antibiotic therapy in ICUs were included in the analysis alone
(in adjusted analysis OR, 2.83; 95% CI, 0.74–10.85) [13]. In another meta-analysis, Luther
et al. conducted a subanalysis of critically ill patients (n = 968) and the odds of AKI in
the TZP–VAN group were not significantly different from those of the FEP–VAN or MER–
VAN groups (odds ratio, 1.43; 95% CI, 0.83–2.47) [43]. Consistently, Bellos et al. indicated
that concomitant administration of TZP and VAN had the highest probability of AKI as
compared to other groups in a separate analysis of ICU patients (i.e., VAN monotherapy,
FEP–VAN, and MER–VAN). However, the results did not reach statistical significance
when compared with other combinations [12]. It is unclear why a statistically significant
difference in AKI risk could not be obtained in ICU patients in those receiving TZP–VAN
compared to other comparison groups. Nevertheless, some specific risk factors prevailingly
seen in ICU patients, such as critical illness, hypotension, and exposure to vasopressors,
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may have precluded us to uncover the real impact of TZP–VAN exposure on the risk of
AKI. More data are needed to clarify the precise pathophysiological mechanism(s) for the
reasons of the non-significant association between TZP–VAN exposure and AKI compared
to VAN plus FEP or MER in ICU patients.

4. How Can We Reduce the Risk of AKI due to TZP–VAN Exposure?

In many countries, vancomycin is overly prescribed for inappropriate indications, es-
pecially community-acquired infections [49]. Similarly, antipseudomonal β-lactam agents,
particularly TZP, are given frequently in nosocomial infections with inadequate assess-
ments of risk factors for multidrug-resistant Gram-negative microorganisms [50]. The
risks and benefits must be interpreted carefully when choosing empirical antimicrobial
therapy and minimizing unnecessary utilization of broad-spectrum antibiotics. A wide
range of strategies has been suggested to alleviate AKI risk following TZP–VAN admin-
istration. In addition to classical measures, including close monitoring of renal function,
adequate hydration, avoidance of other nephrotoxic agents, and limiting the administration
of empirical VAN therapy by excluding MRSA nasal colonization via polymerase chain
reaction testing, some additional measures can be advocated to reduce the risk of AKI from
TZP–VAN exposure.

4.1. Restricting the Use of TZP–VAN Combination Therapy for More Than 72 h

Rapid onset of AKI in response to TZP–VAN vs. other comparators can be considered
as a parameter-strengthening specific association of TZP–VAN with nephrotoxicity. In
a retrospective single-center study, Navalkele et al. showed that the onset of AKI was
more rapid in patients receiving TZP–VAN (median duration 3 days, interquartile range
[IQR], 2–5 days) as compared to those treated with FEP–VAN (median duration 5 days,
IQR, 3–7 days) [23]. Another study demonstrated the highest daily incidence of AKI
occurred on day 5 of TZP–VAN therapy [46]. Therefore, it seems reasonable that one
way to mitigate the risk of nephrotoxicity caused by TZP–VAN combination therapy is
early and regular assessment of the regimen with a goal of rapid de-escalation. However,
studies demonstrating nephroprotective effects of early antibiotic discontinuation were
scarce, since those receiving the investigated treatment regimens concurrently for <48 h
were typically excluded from the vast majority of studies. Nevertheless, Lorentz et al.
suggested that the implementation of a 72-h restriction program for administration of
TZP significantly shortened the exposure time to this antibiotic, thus resulting in reduced
rates of TZP–VAN-associated AKI [51]. In line with this study, Schreier et al. compared
the risk of AKI with a brief course of TZP–VAN (24–72 h) with the risk associated with
other antipseudomonal β-lactam plus VAN combinations in a single-center retrospective
cohort study that included 3299 ICU patients [32]. As a result, the authors demonstrated
that a short course of TZP–VAN therapy did not confer a higher risk of stage II or III AKI
after adjustment for relevant confounders (adjusted odds ratio [95% confidence interval]
TZP–VAN vs. FEP–VAN, 1.11 [0.85–1.45]; TZP–VAN vs. MER–VAN, 1.04 [0.71–1.42]).
Similarly, a retrospective single-center cohort study indicated that a short-course TZP–VAN
regimen (24–60 h) was significantly associated with a lower risk of AKI as compared with
extended-course TZP–VAN (>72 h) therapy [52]. Consequently, antimicrobial stewardship
practices minimizing administration of TZP–VAN beyond 72 h seem to be plausible.

4.2. Administration of TZP as an Extended Infusion Regimen

In the literature, some recent investigations have pointed out the potential benefit
of extended infusion of TZP to obtain more favorable clinical outcomes, especially in the
setting of sepsis and febrile neutropenia [53–55]. In contrast, the findings of the meta-
analysis by Bellos et al. indicated an insignificant propensity of vancomycin combined
with extended-infusion TZP towards lower nephrotoxicity risk (SUCRA: 51.5% vs. 79%);
statistical significance was not attained and, thus, the renoprotective effect of this strategy
was not assured [12]. Similarly, several retrospective cohort studies did not show any
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difference in AKI rates between patients receiving extended-infusion TZP plus VAN and
patients treated with standard infusion TZP plus VAN [47,56,57]. Nevertheless, given the
superior clinical outcomes related to the TZP extended-infusion regimen and the findings
of the meta-analysis by Bellos et al., the administration of extended-infusion TZP might be
suggested to reduce the incidence of AKI until randomized controlled trials show otherwise.

4.3. Application of Area under Curve (AUC)-Guided VAN Dosing

Several retrospective studies have attempted to elucidate the link between VAN
exposure and the probability of AKI [58,59]. The existing studies suggest that the trough
concentration of VAN above 15 to 20 mg/L significantly increases the risk of AKI [60]. In
parallel with this finding, some recent studies indicated that the risk of AKI augments
along the vancomycin AUC continuum, particularly when the daily AUC is more than
650 mg·h/L [58,59,61]. Moreover, animal studies went a step further and showed that
elevated vancomycin AUC rather than the trough concentration is a more reliable predictor
of AKI [62,63]. In a retrospective cohort study, patients with AUC values between 600 and
800 mg·h/L were more likely to develop AKI as compared to those having AUC levels
between 400 and 600 mg·h/L (p = 0.014) [58]. Similarly, Lodise et al. showed that the
probability of AKI increased 2.5-fold in patients with daily AUC levels above 1300 mg·h/L
compared to those with lower values (30.8% vs. 13.1%, p = 0.02) [59]. Furthermore,
the researchers investigated which AUC-guided and trough-guided vancomycin dosing
might better predict the risk of AKI. In a large-scale retrospective, quasi-experimental
study, Finch et al. looked at the incidence of AKI in patients monitored by individualized
AUC vs. trough concentrations. In this study, AUC-guided VAN dosing was reported
as an independent protective factor for AKI (odds ratio [OR], 0.52; 95% CI, 0.34–0.80;
p = 0.003) [64]. According to contemporary literature, daily vancomycin AUC values
should be kept between 400 and 600 mg·h/L to minimize the risk of nephrotoxicity. On
the other hand, it is not well-known what the safe vancomycin AUC threshold should
be in case of concomitant exposure to TZP. A single-center, retrospective, pre–post-quasi-
experimental study showed no significant difference in the incidence of AKI between
patients receiving TZP–VAN based on trough-guided VAN dosing and those receiving
TZP–VAN with AUC-guided VAN dosing (17.8% vs. 13.6%; p = 0.371) [65]. In conclusion,
future studies should investigate what the optimal threshold for the AUC-guided VAN
dosing strategy should be in patients receiving TZP–VAN combination therapy.

5. Pathophysiological Mechanisms of TZP Plus VAN-Associated AKI

Even though many observational studies and seven meta-analyses supported the
association between TZP–VAN and the increased risk of AKI, to date, none of these studies
has proved biological plausibility. The first issue is that all studies have relied on serum
creatinine rise to define AKI. However, it is well known that changes in serum creatinine
levels are not sufficiently sensitive and specific for defining AKI and may also lead to
misdiagnoses [66]. For instance, glomerular filtration rates can diminish up to 50% before
elevations in creatinine are observed [67]. As the serum creatinine level is determined
by tubular secretion and the reabsorption capacity of the kidney, competitive drug–drug
interactions can interfere with tubular secretion of creatinine and may result in an increase
of the serum creatinine level despite the absence of an actual renal injury. As seen in patients
receiving trimethoprim–sulfamethoxazole, an increase in serum creatinine does not always
indicate the presence of real kidney damage [68,69]. Since creatinine is a typical surrogate
marker of glomerular filtration, alterations in the secretory and reabsorption functions of
glomeruli can change the serum concentration of creatinine while renal function remains
stable. TZP–VAN-mediated increase in serum creatinine could potentially be related to
a mechanism involving specific anion transporters in the renal tubules. TZP is a potent
substrate for specific organic anion transporters (e.g., OAT1 and OAT3) [70,71]. The same
transporters also mediate creatinine transit [72]. On the other hand, VAN inhibits messenger
RNA expressions of OAT1 and OAT3 [73]. The synergistic interaction between TZP and
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VAN for serum creatinine rise may stem from a decrease in the number of available
pumps and competition of creatinine and TZP at the organic anion transporter level
(Figure 1). For correct quantification of kidney injuries in patients with TZP–VAN exposure,
monitoring the urine output and evaluating other indicators of kidney functioning can
be recommended.

Healthcare 2022, 10, x  11 of 18 
 

 

is a potent substrate for specific organic anion transporters (e.g., OAT1 and OAT3) [70,71]. 
The same transporters also mediate creatinine transit [72]. On the other hand, VAN inhib-
its messenger RNA expressions of OAT1 and OAT3 [73]. The synergistic interaction be-
tween TZP and VAN for serum creatinine rise may stem from a decrease in the number 
of available pumps and competition of creatinine and TZP at the organic anion transporter 
level (Figure 1). For correct quantification of kidney injuries in patients with TZP–VAN 
exposure, monitoring the urine output and evaluating other indicators of kidney func-
tioning can be recommended. 

 
Figure 1. Possible mechanism of the increase in serum creatinine associated with piperacillin–tazo-
bactam and vancomycin combination. Secretion of creatinine into the tubular lumen is partially me-
diated by OAT1–OAT3 and OCT2–OCT3 transporters and MATE1–MATE2K. Piperacillin–tazobac-
tam has a significant binding affinity for OAT1 and OAT3 and limits the transport of creatinine into 
the tubular cell. Vancomycin inhibits the expression of mRNA involved in OAT1–OAT3 externali-
zation. Abbreviations: MATE, multidrug and toxin extrusion; OAT, organic anion transporter; OCT, 
organic cation transporter. 

Given the limitations of serum creatinine, several biomarkers are recommended over 
serum creatinine by regulatory agencies to better understand both renal injury and func-
tion. Of these biomarkers, kidney injury molecule 1 (KIM-1) and osteopontin were sup-
ported by both the US Food and Drug Administration (FDA) and the European Medicines 
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Figure 1. Possible mechanism of the increase in serum creatinine associated with piperacillin–
tazobactam and vancomycin combination. Secretion of creatinine into the tubular lumen is par-
tially mediated by OAT1–OAT3 and OCT2–OCT3 transporters and MATE1–MATE2K. Piperacillin–
tazobactam has a significant binding affinity for OAT1 and OAT3 and limits the transport of creatinine
into the tubular cell. Vancomycin inhibits the expression of mRNA involved in OAT1–OAT3 external-
ization. Abbreviations: MATE, multidrug and toxin extrusion; OAT, organic anion transporter; OCT,
organic cation transporter.

Given the limitations of serum creatinine, several biomarkers are recommended over
serum creatinine by regulatory agencies to better understand both renal injury and function.
Of these biomarkers, kidney injury molecule 1 (KIM-1) and osteopontin were supported by
both the US Food and Drug Administration (FDA) and the European Medicines Agency
(EMA). In addition, urinary KIM-1 and clusterin were demonstrated as reliable biomark-
ers of drug-induced AKI [74]. These biomarkers are highly sensitive and can predict
histopathological changes in renal parenchyma very rapidly [75]. Vaidya et al. showed
that KIM-1 could begin to increase hours after mild tubular injury, reach a maximum at
24 h, and remain elevated for 120 h from the time of AKI [76]. In a recent study that



Healthcare 2022, 10, 1582 15 of 21

included critically ill patients, renal stress was evaluated using urinary biomarkers [77].
The kinetics of urinary metalloproteinase 2 (TIMP-2) and insulin growth factor–binding
protein 7 (IGFPB7) were compared in vancomycin alone, TZP alone, and TZP–VAN groups.
It was revealed that patients receiving TZP–VAN released AKI biomarkers significantly
higher than those treated by TZP or VAN monotherapy. Nevertheless, the results of this
study should be evaluated cautiously since the patients receiving TZP–VAN were more
critically ill as compared with both TZP and VAN monotherapy groups.

Based on another hypothesis, AKI may be derived from subclinical interstitial nephritis
caused by TZP that is magnified by the oxidative stress (reactive oxygen species produc-
tion) induced by VAN [78,79]. In fact, it is well known that VAN induces mitochondrial
dysfunction, proinflammatory oxidative stress, and tubular cell apoptosis [6]. Consistently,
VAN-related tubular injury was confirmed by elevations in NGAL and other biomarkers in
several animal and human models [7,80]. In contrast, animal or human models demonstrat-
ing TZP–VAN-associated AKI using urinary biomarkers or histopathological examination
are scarce in the literature. Nevertheless, in a case report form, a 16-year-old patient with
acute leukemia was treated with TZP–VAN, and a biopsy specimen taken 23 days after the
onset of hemodialysis support showed the presence of tubulointerstitial nephritis, tubular
damage, and interstitial edema [81]. There are two more case reports demonstrating acute
interstitial nephritis and acute tubular necrosis in the TZP–VAN-receiving patients [82,83].
On the other hand, it should be underscored that interstitial nephritis is an extremely
rare event in our daily practice. Therefore, given the high frequency of AKI seen after
TZP–VAN exposure, it is unlikely that a significant increase in serum creatinine occurs after
exposure to TZP–VAN combination therapy through an interstitial nephritis-associated
mechanism [43]. Another theory is that TZP might hamper the effective clearance of VAN
and, thereby, lead to VAN accumulation in the nephron [84]. However, there is no adequate
evidence to support this hypothesis.

In animal models investigating TZP–VAN-related AKI, a combination regimen was
not found worse than VAN alone [85]. Pais et al. showed that histopathological kidney
injury score is similar in the TZP alone group and TZP–VAN group (p = 0.76) but rats
receiving VAN monotherapy had elevated scores as compared with the TZP alone group
(p = 0.044). These authors also demonstrated that the level of urinary biomarkers started
to increase 24 h after VAN exposure but it did not increase in the TZP–VAN group until
day 3 [85]. In the same study, in NRK-52E cells, VAN resulted in cell death with high doses
(IC50 48.76 mg/mL) but TZP did not, and TZP–VAN was similar to VAN alone.

In summary, we need more studies to determine the causality of TZP–VAN exposure
for the increased risk of AKI. The pathophysiological mechanism of TZP–VAN-associated
AKI, if any, remains elusive. Furthermore, relying on serum creatinine as a surrogate of
glomerular function may be associated with misleading results.

6. Comparison of TZP–TEI and TZP–VAN Regimens in Terms of AKI Risk

Given the increasing risk of AKI with TZP–VAN combination therapy, some authors
explored the regimens containing an antipseudomonal β-lactam plus VAN combinations
(e.g., FEP–VAN and MER–VAN) as alternatives to TZP–VAN. In these studies, TZP–VAN
was found to be consistently associated with a higher incidence of AKI as compared
with FEP–VAN and MER–VAN in non-critically ill patients. In critically ill patients, the
results are conflicting. As another alternative to TZP–VAN combination therapy, the
authors from some European and Asian countries looked at the risk of AKI with TZP–TEI
combination regimen compared to either TEI monotherapy or TZP–VAN combination
therapy. Considering the potent anti-MRSA activity of TEI, TZP–TEI can be a reasonable
alternative to TZP–VAN if the incidence of AKI is lower with this regimen. With respect
to this point of view, we compared the rates of AKI, 7-day and 30-day mortalities, and
resolution of AKI at discharge in patients receiving TZP–TEI vs. TZP–VAN in a single-center,
retrospective cohort study [39]. The AKI was defined per RIFLE criteria. In a multivariate
analysis of the entire cohort, TZP–VAN was found to be associated with a significantly
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higher rate of AKI as compared with TZP–TEI (aOR: 3.21, 95% CI, 1.36–7.57; p = 0.008)
or with MER–VAN (aOR: 2.28, 95% CI, 1.008–5.18; p = 0.048). In a multivariate analysis
of the matched cohort, TZP–VAN had 3.96 odds of AKI (95% CI, 1.48–10.63, p = 0.006) as
compared with TZP–TEI. Seven-day and thirty-day mortalities and resolution rates of AKI
were similar in both groups [39]. In contrast, Shao et al. compared TZP–VAN (n = 211) and
TZP–TEI (n = 211) in terms of AKI risk in a 1:1 propensity score–matched analysis. In this
study, the risk of AKI in the TZP–TEI group was similar to that in the TZP–VAN group
(12.3% vs. 11.4%; HR, 1.25 [0.72–2.18]; p: 0.44) [86]. Nevertheless, TZP–TEI may increase
the risk of AKI compared to TEI alone or TZP alone. In a study from the Netherlands,
among 4202 patients, 3188 (75.9%) were treated with TZP alone, 791 (18.8%) received TEI
monotherapy, and 223 (5.3%) received a TZP–TEI combination regimen [87]. The incidence
of AKI was 5.4% for TZP alone, 3.4% for TEI, and 11.7% for TZP–TEI (p < 0.001). After
correcting for confounding factors via a multiple logistic regression analysis, the same
pattern remained unchanged. Additionally, mean serum creatinine tested at 48–72 h of
initiation of therapy was slightly higher in the TZP–TEI group as compared with the
baseline [+1.61% (95% CI −2.25 to 5.70)], indicating only a slight increase in the serum
creatinine level [87]. According to these results, although TZP–TEI is associated with a higher
prevalence of AKI compared with either TZP or TEI monotherapy, the overall increment
in the serum creatinine level with TZP–TEI is very small. In another study from Taiwan,
Tai et al. conducted a 1:3 propensity score–matched analysis involving 954 patients (243 pairs
in total) receiving either TZP–TEI or TEI plus another antipseudomonal β-lactam [88]. The
patients receiving TZP–TEI did not differ significantly from those treated with TEI plus
another antipseudomonal β-lactam in terms of AKI risk (14.8% versus 14.2%; p = 0.815).
However, the time to AKI was significantly shorter in the TZP–TEI group (4.64 ± 2.33 versus
6.29 ± 4.72 days; p = 0.039) [88].

Since the existing literature is highly heterogenous and only a few retrospective single-
center cohort studies have compared TZP–VAN and TZP–TEI in the context of AKI, we
started to enroll patients in a prospective multicenter multinational cohort study entitled
‘Comparison of piperacillin–tazobactam and vancomycin with piperacillin–tazobactam
and teicoplanin for the risk of acute kidney injury (CONCOMITANT)’. In this study, we
not only compare the risk of AKI in both groups but also analyze the impact of TZP
dose, VAN dose, VAN AUC level, TEI serum trough level, and extended infusion TZP
regimen on AKI risk by a multivariate analysis and propensity score–matched analysis.
The primary outcome is to compare the rate of AKI occurring between the first day of
antibiotic treatment and the third day after completing therapy according to KDIGO criteria.
The secondary outcomes are as follows: 7-day mortality, 30-day mortality, renal function
status at discharge (resolved, the injury still present, the requirement of renal replacement
therapy), and time to AKI. Patients are being included in the study if they are ≥18 years of
age, have a baseline serum creatinine level measured within one week of antibiotic initiation
and receive antibiotic combinations in the investigation for at least 48 h concomitantly, and
have the two antibiotics initiated within 48 h of each another. For patients who receive
multiple courses of antibiotic therapy during hospitalization, only the initial course is
included. Patients are excluded if they are receiving renal replacement therapy (RRT),
are pregnant or breastfeeding, and are in palliative care at the time of antibiotic initiation.
Other reasons for exclusion are receiving antibiotic therapies for less than 48 h, receiving
antibiotics at separate times, having a baseline GFR < 60 mL/min or serum creatinine level
>1.2 mg/dl, developing AKI, or undergoing dialysis prior to commencement of TZP–TEI or
TZP–VAN, having incomplete data from either their hospital admission or from the follow-
up period, and having a diagnosis of cystic fibrosis. In this study, the patient recruitment
process will be continued up until 1 August 2023.

7. Conclusions

A large number of observational studies and meta-analyses have supported the link
between nephrotoxicity and the concurrent use of TZP and VAN as compared with VAN
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alone and VAN plus other antipseudomonal β-lactam antibiotics. However, the pathophys-
iological mechanisms of AKI caused by the TZP–VAN combination therapy have not been
clearly revealed yet. In addition, using a potentially flawed marker of AKI (e.g., serum
creatinine) may have led to incorrect findings. It is clear that human and animal data are
needed to confirm the causality between TZP–VAN and AKI using more reliable kidney
injury biomarkers and histopathological examinations. Although it is uncertain whether
TZP–VAN truly increases the risk of AKI, some specific measures can be taken to reduce
the nephrotoxicity risk. Additionally, we need more reliable data to recommend TZP–TEI
over TZP–VAN for the purpose of declining the frequency of AKI.
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