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Abstract
Genome-wide association studies have identified thousands of significant associations between genetic variants and com-
plex traits. Inferring biological insights from these associations has been challenging. One approach attempted has been to 
examine the effects of individual variants in cellular models. Here, I demonstrate the feasibility of examining the aggregate 
effect of many variants on cellular phenotypes. I examine the effects of polygenic scores for cross-psychiatric disorder risk, 
schizophrenia, body mass index and height on cellular morphology, using 1.5 million induced pluripotent stem cells (iPSC) 
from 60 European-ancestry donors from the Human iPSC Initiative dataset. I show that measuring multiple cells per donor 
provides sufficient power for polygenic score analyses, and that cross-psychiatric disorder risk is associated with cell area 
(p = 0.004). Combined with emerging methods of high-throughput iPSC phenotyping, cellular polygenic scoring is a promis-
ing method for understanding potential biological effects of the polygenic component of complex traits.
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Introduction

Genome-wide association studies (GWAS) have successfully 
identified statistical associations with common genetic vari-
ants, with over 325,000 variant–trait associations listed in 
the NHGRI-EBI GWAS catalog as of January 2022 (Bun-
iello et al. 2019). In comparison with earlier methods such 
as genome-wide linkage analysis, GWAS have been effective 
in implicating variants associated with complex traits, and in 
highlighting their polygenic component (Cannon and Keller 
2006; Visscher et al. 2017).

Gaining insights into the biology of complex traits has 
been a main motivator for GWAS. However, the promise of 
new biology has been slow to emerge (Visscher et al. 2017). 

Some of these limitations are inherent to GWAS, such as the 
difficulty of determining which of the numerous correlated 
variants associated with a trait at a given locus contribute to 
causality. Others reflect the limits of model systems. Animal 
models are useful for understanding the function of con-
served genes within a living organism. In contrast, they are 
less useful when seeking to translate the effects of variants, 
because causal variants are poorly conserved across spe-
cies (Flint and Mackay 2009). Studying certain phenotypes 
introduces further limitations. Perhaps the clearest example 
of this is the study of behaviour, where the brain is the focus 
of biological interest (Sullivan and Geschwind 2019). There 
are obvious ethical and logistical impediments to access-
ing living human brain tissue, which largely prevent direct 
functional experiments that would provide vital context for 
understanding and validating behavioural GWAS results.

Efforts to address these limitations of biological context 
are emerging, such as through the work of the PsychEN-
CODE consortium in developing large datasets of bio-
logical annotations from post-mortem human brains (Psy-
chENCODE Consortium 2018). A further promising area 
is the increasing diversity in neuron types derived from 
human-induced pluripotent stem cells (iPSCs; reviewed 
in (Fernando et  al. 2020)). Mature human cells can be 
reprogrammed to a pluripotent state (iPSCs) by controlled 
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exposure to specific transcription factors (Ebben et al. 2011). 
Self-renewing iPSCs can be maintained under standardised 
conditions (Efthymiou et al. 2014). Further treatment can 
direct the subsequent differentiation of the iPSCs down 
specific developmental pathways. For example, highly pure 
populations of all major neuron types in the human brain can 
now be derived from iPSCs (Fernando et al. 2020). Human 
iPSCs are a valuable model system when directly studying 
relevant tissue is challenging, as they enable the assessment 
of living human cell types. Derived cells only approximate 
the cell types they model; for example, derived neurons are 
developmentally immature, resembling foetal developmental 
stages (Fernando et al. 2020). In vivo cells reflect the devel-
opmental history of the organism (including the effects of 
intrinsic and extrinsic environments), a history that is not 
transferred to iPSCs when they are generated. However, for 
the purposes of modelling diseases, these approximations 
can be useful simplifications (Fernando et al. 2020).

As such, iPSCs can be a valuable model system in 
studying complex behavioural traits. To date, most genetic 
research using iPSCs in behavioural phenotypes has 
focussed on the effects of single variants of moderate effect, 
primarily in schizophrenia and autism spectrum disorder, 
where such effects have been shown to have an important 
contribution (Sullivan and Geschwind 2019; Vadodaria et al. 
2020). However, most of the genetic contribution to behav-
ioural traits is polygenic. It would be valuable to also be able 
to use iPSCs to examine polygenic components. Polygenic 
effects can be assessed through polygenic scoring, wherein 
multiple genetic variants are used to create a single score 
in an individual as a weighted sum of the alleles they carry 
(Lande and Thompson 1990; International Schizophrenia 
Consortium et al. 2009). Typically, the weights for polygenic 
scoring are derived from a base GWAS of a trait of interest, 
providing a means by which to assess the shared genetic var-
iance between the trait of interest from the base GWAS and 
a phenotype in a target genotyped cohort (Choi et al. 2020). 
Polygenic scores have been widely applied at the population 
level in humans and in livestock (Wray et al. 2019), but have 
not yet been widely applied to examine genetic effects on 
cellular phenotypes.

In this exploratory paper, I aim to demonstrate the fea-
sibility of polygenic scoring in iPSCs. I first use power 
calculations to assess the number of cell donors required 
for ≥ 80% power to detect plausible levels of genetic covari-
ance between a GWAS and a cellular phenotype. I then test 
the association of polygenic scores from GWAS of complex 
traits with iPSC cell morphology. These GWAS are the most 
powerful available studies of a single psychiatric disorder 
[schizophrenia; (Pardiñas et al. 2018)], of shared genetic 
effects on psychiatric disorders (Cross-Disorder Group of 
the Psychiatric Genomics Consortium et al. 2019), and of 
other complex traits, one partially behavioural (body mass 

index; (Yengo et al. 2018)) and one without a behavioural 
aetiology (height; (Yengo et al. 2018)).

Donor number is among the principal limitations of 
polygenic analyses in iPSCs and their derivatives. Poly-
genic scores in complex traits typically capture only a small 
amount of variance, and so usually require hundreds of par-
ticipants for sufficient power (Choi et al. 2020). I address 
this in two ways. I use data from the Human Pluripotent 
Stem Cell Initiative (HipSci), an openly-accessible, large 
collection of iPSCs generated with a standardised pipeline, 
with extensive phenotypic and genetic data (Kilpinen et al. 
2017). I also use mixed linear models to analyse numerous 
cells from each donor. Although these technical replicates 
do not provide as much power as new donors, they provide 
some increase because they limit the impact of measurement 
error (Blainey et al. 2014).

I focus my analyses on the morphology of iPSC cells, 
due to the availability of sufficient data on these cells com-
pared to their neuronal derivatives. It also is feasible that the 
polygenic components studied may affect the morphology of 
iPSCs directly. Previous analyses of the HipSci dataset have 
shown that cell-to-cell variation in morphology is attrib-
utable both to cell-extrinsic effects (such as the culturing 
environment) and to intrinsic effects, which may include the 
action of genetic variation between different cell lines (Vigi-
lante et al. 2019). In this analysis, I aim to examine whether 
these intrinsic effects partly reflect specific polygenic com-
ponents associated with variation in organismal-level biolog-
ical processes, including body shape and behaviour. Genes 
involved in neuronal morphology have been implicated in 
numerous GWAS of psychiatric disorders (Wray et al. 2018; 
Cross-Disorder Group of the Psychiatric Genomics Consor-
tium et al. 2019; Trubetskoy et al. 2022; Mullins et al. 2021), 
as have pathways involved in general cell morphology, such 
as cell–cell adhesion (Levey et al. 2021). While strongest 
in neurons, these effects may also be apparent in general 
cellular morphology, and particularly in iPSCs, whose cel-
lular fate is undetermined. As such, investigating the role 
of complex trait polygenic scores in cell morphology is 
both a pragmatic demonstration of the broader promise of 
polygenic scoring in cells, and a question with biological 
relevance of its own.

Materials and methods

Human‑induced pluripotent stem cell initiative 
(HipSci)

This paper consists of secondary analyses of existing data 
from HipSci. Full descriptions of the generation of these 
data are provided elsewhere (Leha et al. 2016; Kilpinen et al. 
2017; Vigilante et al. 2019). I used data on genome-wide 
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genotyping and cellular microscopy phenotyping from the 
HipSci project. HipSci comprises several disease cohorts, 
as well as a cohort of unaffected donors comprised of con-
sented research volunteers from the National Institute of 
Health and Care Research Cambridge Bioresource. Data 
from unaffected donors were used in this study. Broader phe-
notypic information (such as height, BMI or mental health 
phenotyping, which would be relevant to the polygenic score 
analyses) was not available on these donors. Following qual-
ity control (described below), data from 103 iPSC cell lines 
from 60 donors were included in the final analysis (Sup-
plementary Table 1, Supplementary Figure 1). All but two 
cell lines were included in a previous publication (Vigilante 
et al. 2019).

Cellular phenotyping

Cellular phenotyping data were available for all analysed 
cell lines, and is described in detail elsewhere (Leha et al. 
2016; Vigilante et al. 2019), and in brief in the Supplemen-
tary Methods. Three morphological phenotypes were deter-
mined from cell image data gathered by an Operetta (Perkin 
Elmer) high content device: cell area, roundness, and width-
to-length ratio (Vigilante et al. 2019). Cell width-to-length 
ratio was defined as the length (the longest line that could 
be drawn within the cell) divided by the width (the longest 
line perpendicular to the length that could be drawn within 
the cell). Cell roundness was defined from Harmony image 
analysis using the equation below, where area and perimeter 
are defined analytically from cell images (Leha et al. 2016; 
Vigilante et al. 2019):

Genome‑wide genotype data

Genome-wide genotype data were available for all analysed 
cell lines from the Illumina HumanCoreExome-12 v1 Bead-
Chip, imputed to Haplotype Reference Consortium panel 
release 1.1. Full details of genotype quality control and 
imputation are provided in the Supplementary Materials. 
In summary, I retained a single cell line for each of the 60 
donors for polygenic risk scoring. All donors were unrelated 
(pi-hat < 0.125, where pi-hat is a measure of genetic related-
ness, and 0.125 is the relatedness between first cousins), well 
genotyped (call rate ≥ 0.99), and from European ancestries. I 
retained variants with MAF ≥ 0.05 that were directly geno-
typed or imputed with INFO ≥ 0.9.

Roundness = 3.544 ×

√

area − (perimeter∕2)

perimeter − 0.1
.

Polygenic scoring

I generated polygenic scores using PRSice v2.3.1e (Choi 
and O’Reilly 2019). I obtained summary statistics for height 
and BMI GWAS (Yengo et al. 2018) from the GIANT con-
sortium, and for schizophrenia (Pardiñas et al. 2018) and 
cross-psychiatric disorder GWAS (Cross-Disorder Group 
of the Psychiatric Genomics Consortium et al. 2019) from 
the Psychiatric Genomics Consortium. The cross-psychiatric 
disorder GWAS captures shared genetic effects from GWAS 
of schizophrenia, bipolar disorder, major depression, autism 
spectrum disorder, attention-deficit hyperactivity disorder, 
obsessive–compulsive disorder, anorexia nervosa, and Tou-
rette’s syndrome. The method used in the cross-psychiatric 
disorder GWAS results in equal contributions from each 
disorder, despite differences in power between the GWAS 
included.

For each base GWAS, I calculated polygenic scores limit-
ing to autosomal variants in common between each set of 
summary statistics, the HipSci data, and the non-Finnish 
European participants in 1000 Genomes (1000 Genomes 
Project Consortium et al. 2015). I removed variants in link-
age disequilibrium (r2 > 0.1) with a variant with a lower 
p-value within 250 kilobases. The HipSci cohort is small 
for polygenic score analysis, so I estimated the linkage dis-
equilibrium structure from the 404 non-Finnish European 
participants in 1000 Genomes (1000 Genomes Project Con-
sortium et al. 2015; Choi et al. 2020). Exploratory polygenic 
scoring is typically performed using multiple scores made 
up of variants with a p value in the base GWAS smaller 
than a given threshold. For example, the PRSice software 
generates eight scores by default, at p < 0.001, 0.05, 0.1, 
0.2, 0.3, 0.4, 0.5, and 1. For each base GWAS, I generated 
a polygenic score at the threshold capturing the greatest 
proportion of variance in leave-one-sample-out polygenic 
scoring from the initial publications (see Supplementary 
Methods for a description of the calculation of the propor-
tion of variance). For schizophrenia, the threshold at which 
the most variance was captured was p < 0.05 (which cap-
tured 5–6% of variance in the original publication; Pardiñas 
et al. 2018). For height and BMI, the threshold at which the 
most variance was captured was p < 0.001 for both pheno-
types (capturing 24% and 10% of variance respectively in 
the original publication; Yengo et al. 2018). I also gener-
ated a polygenic score at p < 1 to capture the effects of all 
variants (at the expense of including noise from variants 
not truly associated with the trait). Leave-one-sample-out 
polygenic scoring was not reported in the original cross-
psychiatric disorder publication. Accordingly, I generated 
three polygenic scores for the cross-psychiatric disorder 
data: (1) including data from 23andME, limited to 10,000 
variants in linkage equilibrium with p < 0.001; (2) exclud-
ing 23andME and limiting to p < 0.001 for comparison; and 
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(3) excluding 23andME and including all variants (p < 1). 
Polygenic scores are referenced in the format  TraitThreshold, 
for example  Schizophrenia0.05 (Table 1).

Power analyses

To assess the current power for polygenic score analyses 
in iPSCs, I performed a series of power analyses in R ver-
sion 3.6, using the AVENGEME package (Supplementary 
Methods) (Core Team and Others 2013; Palla and Dud-
bridge 2015). I performed power analyses for each of the 
full polygenic scores (that is, those including all variants, 
p < 1) used in this paper, assessing the power of analyses 
assuming iPSCs from 60 donors. These analyses do not take 
account of the multiple phenotypic measurements made for 
each donor, and so underestimate power. Taking into account 
the multiple phenotypic measurements results in an effective 
N of 850–2435 (Supplementary Methods; Supplementary 
Table 2). I ran additional power analyses using these two 
values.

I defined parameters for power analysis from the GWAS 
from which each polygenic score originated (Supplementary 
Methods; Supplementary Table 3). I estimated the power of 
polygenic score analysis for a hypothetical cellular pheno-
type, varying the covariance between the polygenic score 
trait and the phenotype. Covariance can be described as a 
function of the common genetic contribution to the poly-
genic score trait (vg1, which is fixed), the common genetic 
contribution to the phenotype (vg2, which I varied), and the 
genetic correlation between the polygenic score trait and the 
phenotype (which I varied):

Statistical analysis

I ran all analysis in R version 3.6 (Core Team and Others 
2013). I restricted the data for analyses to 103 cell lines 
(from 60 donors) for which cell morphological data and 
polygenic scores were available (Supplementary Table 1, 
Supplementary Figure 1). Cell morphological phenotype 
data were available for 1,543,624 individual cells in 2484 
plate wells. I also considered the effect of the fibronectin 
concentration (coded as an ordinal variable of 1, 5, 25) of 
the wells on which cells were plated as a variable of interest, 
as this has been shown to contribute importantly to cell mor-
phology (Vigilante et al. 2019). I controlled for continuous 
variables of four genomic principal components (to control 
for population stratification), and the number of cells in each 
clump, as well as for factors assessing the origin cell for the 
iPSC (fibroblasts or peripheral blood mononuclear cells), the 

Covariance = Correlation ∗
√

vg1 × vg2.

method of iPSC reprogramming (episomal DNA or Sendai 
vector), and whether or not the origin cell was maintained on 
a feeder. All of these may affect cell morphology.

Data were drawn from different, nested levels of analy-
sis (Fig. 1). Accordingly, I calculated associations between 
polygenic scores and cell shape phenotypes using mixed 
linear models from the lmerTest package (Kuznetsova et al. 
2017). I included all variables described above as fixed 
effects, alongside a random intercept term of plate well 
nested within donor. As each well contains only cells from a 
single cell line, the random effect of well also captures vari-
ance between cell lines from the same donor. This allows for 
all observations to be included while controlling for pseu-
doreplication resulting from measuring multiple cells from 
each donor.

I performed analyses with and without assessing the inter-
action between the variables of interest (polygenic score 
and fibronectin concentration). In analyses including this 
interaction, I included additional interaction terms between 
each of the variables of interest and all covariates (Yzerbyt 
et al. 2004; Keller 2014). I fit all mixed linear models using 
REML and calculated the significance of coefficients using 
Satterthwaite's approximation for degrees of freedom. I visu-
alised interaction models using the R packages ggplot2 and 
interactions (Wickham 2016; Long 2019).

I standardised all continuous variables within-cohort 
prior to analysis. I included all other variables as binary 
factors. As such, the effect size (B) for polygenic scores can 
be interpreted as the change in standard deviations in the 
phenotype for one standard deviation change in the poly-
genic score. The effect size for fibronectin concentration can 
be interpreted as the change in standard deviations in the 
phenotype when comparing the tested conditions (either 5 
or 25 μg/mL concentration) to the baseline condition (1 μg/
mL).

Sensitivity analyses

I performed several sensitivity analyses to assess the robust-
ness of the model. First, I assessed the significance of the 
polygenic score effects as a likelihood ratio test comparing 
the mixed linear models (fit with maximum likelihood) with 
and without the polygenic score. For the models including 
polygenic score-by-fibronectin concentration interaction 
terms, I compared models with and without these interaction 
terms (but including the main effects of polygenic score and 
fibronectin concentration). Second, to assess the contribu-
tion of individual donors to the observed associations, I ran 
leave-one-donor-out models for all models without interac-
tion terms. Finally, I assessed the importance of the analyti-
cal choices made in coding and including certain covariates 
on the statistically significant finding reported. Specifically, 
I varied the number of genomic principal components in 
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the model (comparing models with 2 principal components 
and 10 principal components), and I separately recoded the 
number of cells in each clump as an ordinal variable [1 cell 
(single, reference), 2 or 3 cells (multiple, no cells surrounded 
by other cells), 4 or more cells (multiple, cells surrounded 
by other cells)].

Multiple testing correction

In total, I assessed the association of nine non-independent 
polygenic scores with three non-independent phenotypes. 
To assess the effective number of tests incurred, I per-
formed principal component analysis on the pairwise cor-
relation matrices of the polygenic scores and the phenotypes 

separately. I defined the effective number of tests incurred 
as the number of principal components required to account 
for 99.5% of the variance in the correlation matrices. This 
resulted in 12 effective tests in total (6 effectively independ-
ent polygenic scores, 2 effectively independent phenotypes; 
Supplementary Table 4). As such, statistical significance was 
set at p < 4.16 ×  10–3 (i.e., 0.05/12).

Results

Power analyses

Power analyses examined the power of different numbers 
of donors to detect significant associations between a hypo-
thetical cellular phenotype and the polygenic scores used 
in this analysis. Polygenic scores are referenced in the for-
mat  TraitThreshold, for example  Schizophrenia0.05 (Table 1). 
Results for the cross-psychiatric polygenic score using all 
variants with p < 1 (Cross-psychiatric1) are described here 
(Fig. 2, Supplementary Table 3). Results for other polygenic 
scores are described in the Supplementary Results (Supple-
mentary Table 3, Supplementary Figures 2–4).

At the current donor number (n = 60), analyses only 
have ≥ 80% power when the genetic covariance between 
Cross-psychiatric1 and the cellular phenotype was ≥ 0.26. 
This could correspond to a genetic correlation ≥ 0.7 when 
the cellular phenotype has a SNP-based heritability ≥ 0.55 
(Fig. 2a). Note that these values of SNP-based heritabil-
ity and genetic correlation (as well as others given below) 
are example values that would correspond to this value 
of genetic covariance—alternative examples can be seen 

Fig. 1   Source of variables for analysis, and sample size at each level 
of analysis

Table 1  Main effects of polygenic scores on cellular phenotypes

Polygenic scores are referenced as  TraitThreshold. Betas are on the scale of standard deviation changes in phenotype for one standard deviation 
change in polygenic score. Significant associations shown in bold (p < 0.00416). All values drawn from multiple linear regressions, full models 
in Supplementary Table 5.

Polygenic 
score

Area beta Area SE Area P Roundness 
beta

Roundness SE Roundness P Width:length 
beta

Width:length 
SE

Width:length P

Cross-psychi-
atric0.001

0.0068 0.0281 0.810 −0.0261 0.0345 0.454 −0.0210 0.0212 0.327

Cross-psychi-
atric1

0.0845 0.0277 0.00359 −0.1026 0.0345 0.00441 −0.0425 0.0223 0.0617

Cross-psychi-
atric23andMe

0.0100 0.0297 0.737 −0.0305 0.0365 0.407 −0.0218 0.0224 0.335

Schizophre-
nia0.05

−0.0131 0.0295 0.660 0.0171 0.0364 0.640 −0.0128 0.0224 0.572

Schizophre-
nia1

−0.0008 0.0263 0.975 0.0099 0.0323 0.761 −0.0140 0.0199 0.486

BMI0.001 −0.0186 0.0330 0.577 0.0033 0.0408 0.935 −0.00198 0.0252 0.938
BMI1 −0.0222 0.0299 0.461 −0.0331 0.0367 0.372 −0.0377 0.0223 0.0972
Height0.001 0.0644 0.0301 0.0371 −0.0592 0.0379 0.124 −0.0323 0.0236 0.176
Height1 0.0467 0.0293 0.116 −0.0585 0.0361 0.111 −0.0185 0.0227 0.419
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in Supplementary Table 3. A genetic covariance ≥ 0.26 
between the cellular phenotypes and organism-level complex 
traits being examined herein is unrealistically high, suggest-
ing that analyses are underpowered when setting n as the 
donor number.

However, setting n as the donor number does not take into 
account the potential power gain from measuring multiple 
cells from the same donor. Taking this into account yields 
estimates of effective n ranging 850–2435. At these sample 
sizes, analyses have ≥ 80% power when the genetic covari-
ance between Cross-psychiatric1 and the cellular phenotype 

was ≥ 0.04–0.07. This could correspond to a genetic cor-
relation ≥ 0.15–0.2 when the cellular phenotype has a SNP-
based heritability ≥ 0.55, or a genetic correlation ≥ 0.3–0.5 
when the SNP-based heritability is ≥ 0.1 (Fig. 2b, 2c).

Analyses without interactions

I assessed the association of each polygenic score with mor-
phological variability between cells, assessing cell area, 
cell roundness, and cell width-to-length ratio. Across 27 
analyses, one polygenic score was significantly associated 

Fig. 2  Power (y axis) to detect a genetic relationship between Cross-
psychiatric1 and a cellular phenotype with a common genetic com-
ponent of varying size (coloured lines) at different values of genetic 

correlation (x-axis), for differing values of N: a 60 [not accounting 
for multiple measurements], b 850 [lower estimate of effective N], c 
2435 [higher estimate of effective N]
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(p < 4.16 ×  10–3) with a cell morphological phenotype 
(Cross-psychiatric1 associated with cell area, B = 0.085, 
p = 3.59 ×  10–3; Table  1; full models in Supplementary 
Table 5). This association persisted in all sensitivity analy-
ses (Supplementary Results; Supplementary Table 5). As 
expected, fibronectin concentration had a strong effect on 
all cell morphological phenotypes (absolute B 0.124–0.744, 
p <  10–10; Supplementary Table 5). P values obtained from 
the likelihood ratio test were consistent with those using Sat-
terthwaite's approximation (Supplementary Table 5). 

Analyses with interactions between polygenic 
scores and fibronectin concentration

I then assessed how each polygenic score altered the known 
effect of fibronectin concentration on cellular morphol-
ogy. Four significant interaction terms were observed 
between fibronectin concentration and polygenic scores 
(Fig. 3; Table 2; Supplementary Table 6). Of most interest 
is the interaction between Cross-psychiatric1 and fibronec-
tin concentration of 5  μg/mL on cell area (B = 0.052, 
p = 5.61 ×  10–4; Fig. 3a). This suggests the effect of Cross-
psychiatric1 should be interpreted in the context of differing 
fibronectin concentrations. Specifically, the effect of plat-
ing cells on 5 μg/mL fibronectin (compared to a suboptimal 
concentration of 1 μg/mL) on increased cell area is greater 
in cells with higher Cross-psychiatric1 polygenic scores. 
Further significant interactions were seen in the analysis of 
cell width-to-length ratio, between a fibronectin concentra-
tion of 25 μg/mL and  BMI1 (B = −0.037, p = 2.70 ×  10–3; 
Fig. 3b),  Height0.01 (B = 0.057, p = 5.65 ×  10–6; Fig. 3c), and 
 Height1 (B = 0.050, p = 3.70 ×  10–5; Fig. 3d) respectively. In 
the absence of a main effect of these polygenic scores on cell 
width-to-length ratio, and the weaker effect of fibronectin 
on cell width-to-length ratio compared to cell area, these 
results are harder to interpret than the interaction described 
above. P values obtained from the likelihood ratio test were 
consistent with those using Satterthwaite's approximation 
(Supplementary Table 6).

Discussion

Understanding the biological effects of the polygenic com-
ponent of complex disorders will be a challenging but nec-
essary step in understanding their aetiology. Human iPSCs 
offer a potentially valuable model for studying such effects. 
In this paper, I have shown that applying polygenic scores 
to databases of iPSCs is feasible but requires overcoming 
several technical challenges. I discuss each of these chal-
lenges below.

The primary challenge is donor number. The power analy-
ses I present show that measuring multiple cells from the 

same donor provides sufficient power for informative poly-
genic analyses, despite the small number of donors assessed. 
The power gain will vary between datasets and phenotypes, 
dependent on the average correlation between multiple 
measurements from the same donor (Faes et al. 2009). In 
these analyses, I estimate that measuring approximately 
25,000 cells per donor on average increased the power of 
polygenic score analyses by a factor of 14–40 relative to the 
donor number alone. This increase in power is sufficient to 
provide 80% power for plausible values of both the heritabil-
ity of the cellular phenotype and of the genetic correlation 
with complex traits. For example, the Cross-psychiatric phe-
notype examined in this paper has a genetic correlation with 
brain putamen volume (SNP-based heritability = 0.36) of 
0.2—a cellular phenotype of similar heritability and genetic 
correlation would be powered for analyses in the HipSci 
dataset (assuming an effective N = 2435) (Cross-Disorder 
Group of the Psychiatric Genomics Consortium et al. 2019). 
Currently available iPSC datasets are, therefore, powered for 
the polygenic exploration of complex trait phenotypes, for 
cellular phenotypes with a sufficiently strong genetic basis.

The power analyses presented are generalisable to poly-
genic score analyses examining any repeated measure from 
the same individual, not just measures of cell morphol-
ogy. They are also generalisable to other model systems, 
including iPSC-derived neurons, which are better models 
for behavioural phenotypes. The genetic covariance between 
behavioural polygenic scores and neuronal phenotypes is 
likely to be small, but the power analyses suggest that a 
dataset of 10 s–100 s of donors, with 1000 s of neurons per 
donor, would be a practical target for analyses.

The HipSci dataset was intended as a community 
resource, and its creation required multiple laboratories 
and considerable time and investment (Streeter et al. 2017). 
Creating similarly sized and measured datasets will be a 
major undertaking. However, high-throughput methods for 
the rapid assessment of cellular phenotypes are being devel-
oped. For example, the Census-seq cell village approach 
allows cells from multiple donors to be plated and assayed 
together on a single dish (Mitchell et al. 2020). In addition 
to enabling large-scale cell-level analyses, individual donor 
genetic associations with cellular phenotypes can be inferred 
computationally using this method, enabling polygenic score 
analyses. Building large-scale cell datasets is therefore tech-
nically feasible, and further technical developments may 
reduce the time and costs required.

In this paper, higher Cross-psychiatric1 polygenic scores 
were significantly associated with greater cell area in iPSCs 
(The association with cell roundness was also sizable, and 
close to statistical significance). This association was robust 
to sensitivity analyses, suggesting it was not an artefact of 
the analytical method. The Cross-psychiatric1–fibronectin 
interaction was also significantly associated with cell area. 



1118 Molecular Genetics and Genomics (2022) 297:1111–1122

1 3

Fibronectin is an extracellular matrix protein, the concentra-
tion of which influences how well the cell can adhere to the 
plate surface, and therefore affects the cell area (Vigilante 
et al. 2019). The effect of plating on an optimal concentra-
tion of fibronectin (compared to a suboptimal concentration) 

was greater in cells with a high polygenic score than in cells 
with a low polygenic score. As such, the polygenic score may 
(in part) be capturing variability in cell-extracellular matrix 
adhesion. Cell-extracellular matrix adhesion is fundamental 
to cell crawling and axon guidance (Letourneau et al. 1992; 

Fig. 3  Significant interactions between polygenic scores and fibronec-
tin concentrations. Lines reflect the relationship between each poly-
genic score and the phenotype from the relevant model. Points reflect 
the fitted value of the phenotype from the relevant model, averaged 
for each value of the polygenic score (that is, for all cells from a given 
donor). a Cross-psychiatric1 and fibronectin concentration of 5 μg/mL 

on cell area, b  BMI1 and fibronectin concentration of 25 μg/mL on 
cell width-to-length ratio, c  height0.01 and fibronectin concentration of 
25 μg/mL on cell width-to-length ratio, d  height1 and fibronectin con-
centration of 25 μg/mL on cell width-to-length ratio. PGS polygenic 
score, BMI body mass index
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Walsh and Doherty 1997; Long and Huttner 2019), which 
has also been implicated in psychiatric disorders (Wray et al. 
2018; Cross-Disorder Group of the Psychiatric Genomics 
Consortium et al. 2019;  Trubetskoy et al. 2022; Mullins 
et al. 2021). The composition of the extracellular matrix, and 
increased adhesion of cells to the matrix, has been shown 
to increase neurite extension in neurons (Letourneau et al. 
1992; Long and Huttner 2019), to stimulate gyrification in 
the developing human neocortex (Long et al. 2018), and 
to promote branching and migration of neurons (Chai et al. 
2015; Long and Huttner 2019), among other roles (Long 
and Huttner 2019).

Variability in cell-extracellular matrix adhesion affect-
ing neuron migration may be one among many general 
mechanisms influencing the neurobiology of psychiatric 
disorders. This might explain why there was no significant 
association between schizophrenia polygenic scores and cell 
area. There may have been no association with the schizo-
phrenia polygenic score because it is dominated by other 
(potentially schizophrenia specific) mechanisms. This fits 
with the results of the latest schizophrenia GWAS from the 
Psychiatric Genomics Consortium, where genes associated 
with schizophrenia were not enriched for a role in neuron 
migration, unlike genes associated with cross-psychiatric 
disorder risk in the cross-psychiatric disorder GWAS (Cross-
Disorder Group of the Psychiatric Genomics Consortium 
et al. 2019; Trubetskoy et al. 2022). The association with 
cell area was seen only with the full polygenic score (p < 1) 
for cross-psychiatric disorder risk, not the score limited to 
variants with stronger evidence for association (p < 0.001). 
One explanation for this may be that individual genetic asso-
ciations with cross-psychiatric disorder risk that act through 
effects on cell-extracellular matrix adhesion are likely to be 
very small. Accordingly, they may not be estimated accu-
rately enough to be enriched in the more limited score from 
the cross-psychiatric disorder GWAS, and so the associa-
tion between cross-psychiatric disorder risk and cell area 
is only observed in the full score (Cross-Disorder Group of 
the Psychiatric Genomics Consortium et al. 2019; Sullivan 
and Geschwind 2019).

Even when only considering the baseline fibronec-
tin concentration (1 μg/mL), there was still an effect of 
the cross-psychiatric disorder polygenic score on cell 
area, suggesting the effect cannot be purely driven by 
cell–extracellular matrix interactions. Other possibili-
ties may include an effect on cell morphogenic processes 
within the cell, such as altering the action or composi-
tion of the cytoskeleton (Courtot et al. 2014; Närvä et al. 
2017). However, given that the association between the 
cross-psychiatric disorder polygenic score and cell area 
is close to the threshold for statistical significance, I can-
not conclude strongly it is stable and generalisable. As 

sufficiently sized iPSC datasets emerge, it would be of 
interest to replicate this finding.

Certain limitations of this work should be taken into 
account. Foremost among these is that iPSCs are not 
in vivo cells, but rather in vitro models. As such, they are 
abstracted from the biological context of in vivo cells, 
and are affected by the environment of the laboratory and 
of cell culture in a way that in vivo cells are not affected. 
However, previous analyses in this dataset have shown 
that iPSC morphology is affected both by extrinsic fac-
tors (such as fibronectin concentration), and by factors 
intrinsic to the cell (Vigilante et al. 2019). These intrinsic 
factors are likely reflect to molecular mechanisms of cell 
shape more generally, which would apply to cells within 
their in vivo context. Furthermore, iPSC cells share the 
genome of their donor, and as such reflect genetic varia-
tion between donors. If genetic variation between donors 
is correlated with iPSC cell phenotypic variation, this sup-
ports a role for genetic variation in molecular mechanisms 
affecting cell morphology in general.

A further limitation is that broad phenotypic information 
on the donors was not available. As such, I cannot exclude 
that donors may have been phenotypic outliers for the poly-
genic score traits. For example, if a donor had schizophre-
nia, they may have a higher polygenic score for psychiatric 
disorders than the population average. Similarly, because 
the donors are anonymous, it is not known whether they 
contributed to the GWAS from which the polygenic scores 
were derived. Sample overlap would severely bias the results 
of the study (Choi et al. 2020). However, the results were 
stable in leave-one-donor out analyses, suggesting no single 
donor (such as one that was a phenotypic outlier, or who 
might have participated in one of the GWAS) strongly influ-
enced the results. An unmitigated limitation is that the study 
was restricted only to donors of European ancestries, due to 
the availability of cell data. Results from polygenic scores 
are often poorly translated across different ancestries, which 
limits the broader generalisability of these findings (Martin 
et al. 2019). Including donors from diverse ancestries should 
be a key consideration in generating new cellular datasets.

In summary, I have demonstrated that polygenic score 
analysis is feasible in existing datasets of iPSCs, and that 
this holds considerable promise for examining the polygenic 
effects of complex disorders in cellular models. Emergent 
cell biology techniques such as the Census-seq approach 
provide a mechanism to achieve the sample sizes needed 
for the analyses described in this paper. Coupled with fur-
ther advances in the derivation of diverse cell types from 
iPSCs, polygenic scoring in cell lines has the potential to be 
a powerful technique for the assessment of cellular proxies 
of complex traits.
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