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Histological grading of breast cancer on needle core biopsy: the role of immunohistochemical
assessment of proliferation

Aims: Histological grade assessed on needle core biopsy
(NCB) moderately concurs with the grade in the
surgical excision specimen (SES) (j-values between
0.35 and 0.65). A major cause of the discrepancy is
underestimation of mitoses in the NCB specimen. The
aim was to determine the best method of assessing
proliferation on NCB.
Methods and results: Proliferative activity of 101 inva-
sive carcinomas of the breast on NCB and SES was
assessed using mitotic counts on routine haematoxylin
and eosin (H&E) sections and immunohistochemical
markers Mib-1 and phosphorylated histone H3 (PPH3).
H&E mitotic count in SES was considered as the gold

standard. H&E mitotic count was found to be under-
estimated on NCB when compared with that in SES
(P < 0.001), but no significant difference was detected
between NCB and SES regarding Mib-1 (P = 0.13) or
PPH3 (P = 0.073). Using receiver–operating charac-
teristic curve, Mib-1 on NCB was found to agree with
the gold standard significantly better than routine H&E
on NCB.
Conclusions: Immunohistochemical markers in NCB
showed better concordance with H&E mitotic count
in SES (gold standard) than routine H&E mitotic count
in NCB. Further refinement of cut-offs and scoring
methods is needed.

Keywords: breast neoplasm, histological grading, needle core biopsy

Abbreviations: AUC, area under the curve; FFPE, formalin-fixed paraffin-embedded; H&E, haematoxylin and eosin;
HPF, high-power field; MF, mitotic figure; NCB, needle core biopsy; PPH3, phosphorylated histone H3;
ROC, receiver–operating characteristic; SES, surgical excision specimen(s)

Introduction

Needle core biopsy (NCB) is routinely used for the
preoperative diagnosis of breast lesions. It can also
provide prognostic and predictive information.1 NCB
may be the only pretreatment sample for patients
showing complete pathological response to neoadjuvant
therapy,2,3 which is increasingly used to reduce

micrometastatic disease and down-stage primary
tumours, allowing conservative surgery to be performed.4

Histological grade is a powerful independent prog-
nostic factor based on assessment of tubule formation,
nuclear pleomorphism, and mitotic count.5 Histological
grade assessed in NCB moderately concurs with the
grade in the surgical excision specimen (SES) (j-values
between 0.35 and 0.65).2,6–13 Core biopsy grade tends
to be lower, particularly due to underestimation of
mitotic count.7–12 This may potentially exclude pa-
tients that would benefit from neoadjuvant therapy.14

Moreover, cell proliferation determines clinical
outcome in breast cancer,15 predicting response to
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chemotherapy.16,17 Most tumour microarray gene
expression studies have found cell cycle regulation
genes to be highly expressed in breast cancer with poor
outcome.18 These emphasize the importance of prolif-
eration assessment in breast cancer, not only on SES
but also on NCB.

Thus, there is a need for a rapid, objective, repro-
ducible and perhaps automated NCB proliferation
marker. Several candidates have been proposed.

Ki67, a cell proliferation-related human nuclear anti-
gen,19 is expressed in cycling cells from G1 to M phase, but
not in quiescent G0 phase. Monoclonal antibody Mib-119

targets recombinant fragments of the Ki67 antigen gene,
allowing growth fraction to be determined in formalin-
fixed paraffin-embedded (FFPE) specimens. Some report
that Mib-1 growth fraction is superior to routine
haematoxylin and eosin (H&E)-based mitotic counting,
the histopathology gold standard.20 However, others
argue that Mib-1 immunopositive cells may undergo
apoptosis before entering mitosis.21,22

Another proliferation biomarker is histone H3. The
phosphorylation of histone H3 occurs exclusively during
mitosis, and is required for initiating and coordinating
chromosome condensation and decondensation.23,24

H&E mitotic counting correlates well with mitotic
counting using anti-phosphorylated histone H3
(PPH3) immunohistochemistry.25 Some suggest PPH3
detection is prognostically superior to H&E,26,27 but
insufficient studies exist to achieve consensus.

This study assessed the proliferative activity of breast
cancer on NCB using H&E, and immunohistochemistry
for Mib-1 and PPH3. The results were compared with
H&E mitotic count in SES as the proliferation assess-
ment gold standard to determine the accuracy of these
proliferation markers on NCB. Our aims were to explore
methods of improving breast cancer proliferation
assessment on NCB.

Materials and methods

patient selection

One hundred and fifty-five cases were reviewed
(A.H.S.L.) from consecutive patients attending the
Breast Unit at Nottingham City Hospital. Included in
this study were 101 consecutive patients who satisfied
the following criteria: at least 10 high-power fields
(HPF) of invasive carcinoma in both NCB and SES
(·400, field diameter 0.61 mm) and <2 months’ dura-
tion between NCB and the SES procedure to exclude any
patients receiving neoadjuvant systemic therapy.

On average, two core biopsy specimens (range 1–
5 cores) were taken using a 14-G needle automated

core biopsy gun, except for one patient who was
biopsied using a mammotome. Eighty-nine NCBs were
ultrasound guided, three used stereotactic instrumen-
tation and three were obtained freehand, while no
information was available for the remaining six NCBs.

The median patient age was 61 years (range 35–88).
The median tumour size was 15 mm (range 2.5–60).
The tumours were of the following histological types: no
special type (n = 61), lobular (n = 11), tubular (n = 3),
mucinous (n = 2), medullary-like (n = 2), cribriform
(n = 1) and mixed (n = 21). This study was approved
by the Nottingham Research Ethics Committee.

All the NCB specimens and SES were managed
according to the UK National Health Service Breast
Screening Programme 2005 guidelines.28 NCB speci-
mens were fixed directly in formalin for at least 8 h, while
in the SES a cruciate incision was made on the posterior
aspect of the tumour immediately on arrival in the
department before fixation to ensure adequate fixation of
tumour tissue. The SES was then fixed in sufficient
volume of formalin for 48 h. Samples were routinely
processed and embedded in paraffin wax (FFPE).

mitotic counts

Mitotic counts were assessed in 2 lm H&E-stained FFPE
sections. The highest count in 10 HPF (·400, field
diameter 0.61 mm) was recorded in both NCB and SES,
as part of the routine reporting, by experienced breast
pathologists. The mitotic counts were divided into three
mitotic scores: mitotic score 1 for 0–10 mitoses ⁄
10 HPF, mitotic score 2 for 11–21 mitoses ⁄ 10 HPF
and mitotic score 3 for ‡22 mitoses ⁄ 10 HPF,

immunohistochemistry

Tissue sections (4 lm) were dewaxed in xylene and
rehydrated before microwave antigen retrieval in
0.01 m sodium citrate buffer at pH 6. Sections were
stained using Mib-1 (DakoCytomation, Carpinteria, CA,
USA; M7240) and PPH3 (Upstate Biotechnology,
Billerica, MA, USA; 06-570) antibodies. For both SES
and NCB 1:50 Mib-1 dilution was used; 1:400 PPH3
dilution was used for SES while 1:500 PPH3 dilution
was used for NCB due to denser PPH3 immunoreac-
tivity in NCB. A labelled streptavidin–biotin technique
on a Dako Techmate� 500 Plus automated immuno-
stainer (Dako Ltd, Ely, UK) was used with diam-
inobenzidine as chromagen, as previously detailed,29,30

was used. For negative control, the primary antibody
was substituted with antibody diluent. Normal breast
tissue within sections was used as the internal positive
control.
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scoring

Mib-1 and PPH3 immunoreactivity in NCB and SES
was scored (T.C.K.) in a blinded manner using a
semiquantitative scoring system as previously pub-
lished.31,32 The Mib-1 and PPH3 scoring system was
different as both antibodies stained nuclei at different
cell cycle phases. However, for both systems, only
invasive tumour was scored, avoiding inflamed or
necrotic regions.

Mib-1 scoring
At ·10 objectives, the area of greatest density of Mib-1
stained cancer cells was identified. Using a 10 · 10
eye-piece graticule, 1000 invasive breast cancer cells
were counted using HPF (·400). Consecutive fields
were used if >1 HPF was needed to count 1000
tumour cells. The Mib-1 growth fraction was calculated
as the percentage of the 1000 breast cancer cells that
were stained by Mib-1 irrespective of the intensity of
immunoreactivity.31

PPH3 scoring
Sections were screened to identify the area of greatest
mitotic activity using ·10 objectives. The number of
PPH3-stained mitotic figures was counted in 10
consecutive HPFs (·400).26,27,32 Mitotic figures (MFs)
included in the scoring were those with morphological
features resembling normal mitosis phases (i.e. pro-
phase, metaphase, anaphase and telophase) and
abnormal mitoses, such as tripolar mitotic figures.
PPH3-stained nuclei with fine granular staining or
intact nuclear membrane were excluded as they are
not in mitosis (Figure 1).

statistical analysis

Statistical analysis was performed using SPSS software
version 15.0 for Windows (SPSS Inc., Chicago, IL,
USA). Bland and Altman analysis33 was used to

quantify numerically the mean difference and spread
of the intra-observer reproducibility of the Mib-1 and
PPH3 scoring methods. For each of the three prolifer-
ation measures (H&E, Mib-1 and PPH3), Bland and
Altman analysis and Wilcoxon signed rank test (non-
parametric t-test) were used to reveal any differences
between the NCB scores and SES scores.

Two receiver–operating characteristic (ROC) analy-
ses were used to assess the concordance of each of the
three NCB proliferation measures with the gold stan-
dard. To achieve this, a non-parametric approach was
used to compare the area under the two ROC curves
(AUC)34 with a P-value of 0.05 used to denote
statistical significance. The larger the AUC, the better
the concordance with the gold standard. In the first
ROC analysis, a cut-off of H&E mitotic score in SES
(gold standard) of 1 was used (i.e. yes = grade 1;
no = grade 2 and 3) to determine the NCB proliferation
measure that best agreed with the gold standard in
identifying low mitotic score breast cancers. The second
ROC analysis used the cut-off of H&E mitotic score in
SES of grade 3 (i.e. yes = grade 3; no = grade 1 and 2)
to determine the NCB proliferation marker that best
identified high-grade breast cancers.

Results

h & e mitotic counts

The H&E mitotic scores in the NCB and SES agreed in
64 of 101 tumours (63%; j-value = 0.25) (Table 1).
The corresponding levels of agreement for tubule
formation, nuclear pleomorphism and histological
grade were 78, 79 and 65% with j-values of 0.52,
0.59 and 0.47, respectively.

immunohistochemical proliferation markers

Mib-1 immunoreactivity was confined to the nucleus
with varying intensity of reactivity (Figure 2) and high

A
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Figure 1. Photomicrographs showing PPH3 stained bona fide (A) and non-mitotic figures (B) (P, Prophase; M, Metaphase; A, Anaphase;

T, Telophase; Tri, Tripolar mitotic figure; F, fine granular staining; N, intact nuclear membrane).
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expression at the invasive tumour periphery. PPH3
staining was confined to the nucleus with strong,
discrete, contrast-rich brown immunoreactivity of
chromatin clumps (Figure 1).

Adequate intra-observer reproducibility was found in
scoring both Mib-1 (mean difference of Mib-1 growth
fraction of 2.1%; 95% limits of agreement between
)8.4% and 12.6%) (Figure 3A) and PPH3 (mean

difference of PPH3 mitotic count of 8 MFs; 95% limits
of agreement between )40.5 MFs and 56.5 MFs)
(Figure 3B).

comparison between proliferation measures

Wilcoxon signed rank test found H&E mitotic count in
NCB to be (range 0–43 MFs ⁄ 10 HPF, mean = 5 MFs,
median = 3 MFs) significantly lower (z = )6.18,
P < 0.001, n = 101) than in SES (range 0–
102 MFs ⁄ 10 HPF, mean = 14 MFs, median = 5 MFs).
A ratio of mean difference of 2.8 (95% limits of
agreement between )4.3 and 10.0) was found between
H&E mitotic count in NCB and SES (Figure 4A). How-
ever, on Wilcoxon signed rank test no significant
difference was found (z = )1.50, P = 0.13, n = 101)
between Mib-1 in NCB (range 1.6–70.1%, mean =
23.6%, median = 18.4%) and Mib-1 in SES (range
2.0–76.8%, mean = 21.2%, median = 17.1%) with a
ratio of mean difference of 1.1 (95% limits of agreement
between )0.5 and 2.7) (Figure 4B). No significant
difference was found either (z = )1.79, P = 0.073, n =
101) between PPH3 in NCB (range 0–94 MFs ⁄ 10 HPF,
mean = 22 MFs, median = 13 MFs) and PPH3 in SES
(range 0–216 MFs ⁄ 10 HPF, mean = 29 MFs, med-
ian = 13 MFs) with a ratio of mean difference of 1.9
(95% limits of agreement between )2.7 and 6.6)
(Figure 4C).

In the first ROC analysis (cut-off of H&E mitotic grade
1 in SES) (Figure 5A), the AUC for both Mib-1 (AUC =
0.884 ± 0.034) and PPH3 (AUC = 0.845 ± 0.041) in
NCB was larger than AUC for conventional H&E mitotic
count (AUC = 0.780 ± 0.051). However, only the
AUC comparison between Mib-1 and H&E achieved
statistical significance (P = 0.019), unlike the AUC
comparison between PPH3 and H&E (P = 0.114).

In the second ROC analysis (cut-off of H&E mitotic
grade 3 in SES) (Figure 5B), a similar situation was
found. AUC for Mib-1 (AUC = 0.910 ± 0.029) and
PPH3 (AUC = 0.892 ± 0.031) was larger than AUC
for H&E (AUC = 0.819 ± 0.051). Only the comparison
of AUC between Mib-1 and H&E achieved statistical
significance (P = 0.019), unlike the AUC comparison
between PPH3 and H&E (P = 0.091).

Discussion

Proliferation is one of the strongest prognostic factors
in breast cancer.26,35,36 Despite the various prolifera-
tion measures, routine H&E mitotic count is still
preferred, as it is cheap, quick and does not require
special equipment.35,37 However, underestimation of
H&E mitotic count in NCB potentially affects clinical

Table 1. Comparison between mitotic score on needle core
biopsy and surgical excision samples of breast cancers

Mitotic frequency
score on NCB

Mitotic frequency score on SES

Score 1 Score 2 Score 3

Score 1 58 9 15

Score 2 1 3 11

Score 3 0 0 4

A

B

Figure 2. Photomicrographs showing a wide variation in intensity of

Mib-1 nuclear staining pattern in a case with moderate (A) and high

(B) Mib-1 growth fraction.
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decisions. This pilot study was performed to investigate
the possibility of using immunohistochemistry to
improve NCB proliferation assessment.

reason for ncb underestimation of h & e

mitotic count

Due to breast cancer heterogeneity in regard to
proliferation,38 the inherent undersampling of the
NCB procedure is unsurprisingly the most common
cited reason for the underestimation.7–9 Although it
may play a role, as 14 cases were excluded in this study
due to insufficient NCB tumour material for micro-
scopic assessment, it is unlikely to be the sole cause.
Moreover, it is inconclusive as to whether increasing
the amount of tissue retrieved during NCB will improve
mitotic count agreement between NCB and SES.1,39–42

It was anticipated that tissue fixation could be a
factor in discrepancies between NCB and SES mitotic
counts. Fixation is usually rapid and uniform in NCB
but may not be so in SES.14,21,43 Previous studies,

including our own observation on effect of delay of
fixation (unpublished data),44–48 have shown that
there is a reduction in visibility of mitoses with
increasing length of fixation delay. The adequacy of
our fixation procedures is supported by the findings of
our previously published study,49 which demonstrated
that, using the same fixation procedures, excellent
agreement was found between oestrogen receptor
expression in SES and NCB, which is also sensitive to
fixation delay. The limited effect of fixation time
difference between NCB and SES in our study samples
is also supported by our findings that mitoses are
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higher in SES than in NCB, contrary to what might be
expected if slow fixation in SES resulted in loss of
mitotic figures. Thus, it is unlikely that the difference in
mitotic counts between SES and NCB is related to
fixation time or time between surgery and fixation.

In this study, H&E mitotic count was significantly
underestimated in NCB, as previously reported.2,6–13

However, NCB Mib-1 and PPH3 scores did not differ
significantly from their respective SES scores.

Thus, a possible contributory factor to NCB under-
estimation of mitotic count may be that fragile mitotic

figures in routine H&E slides might be obscured by
crushing or traumatic damage of cancer cells during
the NCB procedure14,42 that affects the visibility of
mitoses in NCB rather than actual change in the
number of dividing cells.

immunohistochemical proliferation

marker in ncb

Mib-1
The distribution of Mib-1 growth fraction in this study
was consistent with previous reports.38,50–56 Mib-1 in
NCB specimens was better at identifying low and high
mitotic counts in the surgical specimen than routine
H&E mitotic count in NCB specimens (Figure 5).

Patients with high Mib-1 growth fraction are found
to be good candidates for neoadjuvant chemotherapy
because highly proliferating cells are responsive to
antimitotic drugs.22 As fragile mitotic cells might be
damaged during the NCB procedure,14 Mib-1 scores
may be less likely to be underestimated in NCB
specimens due to Mib-1 labelling of G1, S and G2

phases besides M phase, unlike H&E and PPH3.
However, this labelling might undermine its prognostic
value as cells may have undergone apoptosis before
entering M phase.21,22

PPH3
The PPH3 pattern of nuclear immunoreactivity in this
study was comparable to previous studies.24,26,27

Although not achieving statistical significance, PPH3
on NCB was found to be better at identifying both low
and high mitotic grade breast cancer than routine
H&E.

The distinct brown PPH3 immunoreactivity enabled
easy and rapid screening for high proliferation even
using low objectives. PPH3 staining could identify
prophase nuclei easily and distinguish mitotic figures
from unstained apoptotic or necrotic nuclei,26 unlike
H&E.20 These are crucial in NCB, where specimens
might be damaged during the NCB procedure, obscur-
ing the identification of mitotic figures.

Conclusion

This study has confirmed previous studies showing that
mitotic count assessed on H&E sections of NCB under-
estimates the H&E mitotic count in SES. The immuno-
histochemical markers Mib-1 and PPH3 in NCB
showed a better concordance with the H&E mitotic
count in SES, but further prospective studies are needed
to provide standardization of scoring methodology57

and cut-offs.25–27,52,58,59
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