
MINI REVIEW
published: 03 March 2020

doi: 10.3389/fcvm.2020.00015

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 March 2020 | Volume 7 | Article 15

Edited by:

Marie Lordkipanidzé,

Université de Montréal, Canada

Reviewed by:

Matthew Harper,

University of Cambridge,

United Kingdom

Mikhail Panteleev,

Lomonosov Moscow State

University, Russia

Marina Camera,

University of Milan, Italy

*Correspondence:

Margaret L. Rand

margaret.rand@sickkids.ca

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Atherosclerosis and Vascular

Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 15 October 2019

Accepted: 30 January 2020

Published: 03 March 2020

Citation:

Reddy EC and Rand ML (2020)

Procoagulant

Phosphatidylserine-Exposing Platelets

in vitro and in vivo.

Front. Cardiovasc. Med. 7:15.

doi: 10.3389/fcvm.2020.00015

Procoagulant
Phosphatidylserine-Exposing
Platelets in vitro and in vivo

Emily C. Reddy 1† and Margaret L. Rand 2,3*†

1Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada, 2Division of

Haematology/Oncology, Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,
3Departments of Laboratory Medicine & Pathobiology, Biochemistry, and Paediatrics, University of Toronto, Toronto, ON,

Canada

The physiological heterogeneity of platelets leads to diverse responses and the formation

of discrete subpopulations upon platelet stimulation. Procoagulant platelets are an

example of such subpopulations, a key characteristic of which is exposure either

of the anionic aminophospholipid phosphatidylserine (PS) or of tissue factor on the

activated platelet surface. This review focuses on the former, in which PS exposure on a

subpopulation of platelets facilitates assembly of the intrinsic tenase and prothrombinase

complexes, thereby accelerating thrombin generation on the activated platelet surface,

contributing importantly to the hemostatic process. Mechanisms involved in platelet PS

exposure, and accompanying events, induced by physiologically relevant agonists are

considered then contrasted with PS exposure resulting from intrinsic pathway-mediated

apoptosis in platelets. Pathologies of PS exposure, both inherited and acquired, are

described. A consideration of platelet PS exposure as an antithrombotic target concludes

the review.

Keywords: platelets, procoagulant, phosphatidylserine (PS) exposure, platelet activation, platelet apoptosis,

hemostasis, thrombosis

INTRODUCTION

Blood vessel wall injury sets into play processes that lead to the formation of a hemostatic plug
that stops the bleeding from the injury site. In primary hemostasis, platelets adhere to exposed
subendothelium, resulting in their activation and aggregation, forming a platelet plug. Secondary
hemostasis is initiated by tissue factor exposure at the site of vessel wall damage, resulting
in formation, via the coagulation pathway, of covalently cross-linked fibrin that binds to, and
stabilizes, the platelet plug (1).

It has long been recognized that activated platelets contribute in a major way to fibrin formation;
this is well-exemplified in the cell-based model of coagulation (2). This procoagulant property
of platelets, earlier termed platelet factor 3 availability (PF3a) and assayed by measuring the
ability of platelets to promote thrombin and fibrin formation (3), results from exposure of the
anionic aminophospholipid phosphatidylserine (PS) on the surface of activated platelets (4). PS,
translocated from the internal to the external platelet membrane leaflet, facilitates the assembly
of the intrinsic tenase complex [factor (F)VIIIa; FIXa; FX] and prothrombinase complex (FVa;
FXa; prothrombin), contributing to the burst of thrombin generation in the propagation phase
of coagulation. Specifically, the negatively charged γ-carboxyglutamate (Gla) residues at the
NH2 termini of the vitamin K-dependent factors, FIX(a), FX(a), and prothrombin, interact with
negatively charged PS via Ca2+. FVIII binds to PS via its C2 domain and FVa via its C1 and C2
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domains (5, 6). Tenase and prothrombinase activities are
enhanced by PS-containing membranes by up to three orders
of magnitude (7–9). Phosphatidylethanolamine (PE), that
also becomes exposed on the surface of activated platelets,
can contribute to the enhanced thrombin formation (7, 10);
the fatty acid chain length of PE, but not PS, regulates the
ability to support coagulation, with platelet-specific PEs
demonstrating optimum activity (11). Oxidized PE, specifically
12-hydroxyeicosatetraenoic acid (HETE)-PE, formed by
activated platelets, is even more potent than native PE in
enhancing thrombin generation (12).

It is recognized that tissue factor-expressing platelets also
comprise a subpopulation of procoagulant platelets. However,
a discussion of this type of procoagulant platelet is beyond the
scope of this mini-review, and the reader is referred to several
recent, relevant publications on the topic (13–18).

Procoagulant
Phosphatidylserine-Exposing Platelet
Subpopulations and Nomenclature
A unique feature of procoagulant platelet formation is that
only a subpopulation of activated platelets exposes PS. This
was recognized over 25 years ago by flow cytometry (19)
using fluorescently labeled annexin A5 that binds PS with high
affinity in a Ca2+-dependent manner. Fluorescently labeled
lactadherin that does not require Ca2+ is also used to detect PS-
exposing platelets [e.g., Dasgupta et al. (20)]. Flow cytometric
and microscopy studies have shown colocalization of FVIII(a),
FIX(a), FX(a), FV(a), and prothrombin with PS-exposing
platelets, confirming that these platelets serve as assembly sites
for the intrinsic tenase and prothrombinase complexes (21–25).

Procoagulant platelet subpopulations have been referred
to by a myriad of names in the literature; however, it is
recognized that these platelets share the key characteristic of
PS exposure. An early description of a subpopulation of PS-
exposing platelets was as COAT (COllagen And Thrombin)-FV
platelets formed in response to dual agonist activation. These
platelets were characterized by high levels of FV on their surface,
in addition to PS (22, 26). COAT-FV was later abbreviated
to COAT when it was demonstrated that these platelets are
also coated with fibrinogen, fibronectin, von Willebrand factor
(VWF), and thrombospondin, among many other α-granule
proteins, on their surface (27). Subsequently, this subpopulation
has been termed coated platelets, denoting the coating of the
platelets with procoagulant proteins, including fibrin (28–30).
The distinct morphology of procoagulant platelets has led to the
terminology of blebbing, balloon(ing), or balloon-like platelets
(31–35). Procoagulant platelets have also been referred to as SCIP
(sustained calcium-induced platelet morphology) platelets (36),
necrotic/4-[N-(S-glutathionylacetyl)amino]phenylarsonous acid
(GSAO)-binding platelets (37–39), superactivated platelets (40),
capped platelets (21, 41), and zombie platelets (42). Agbani and
Poole (43) recently proposed “procoagulant platelets” as the
unifying term for this activated platelet subpopulation.

In this brief review, we focus on mechanisms involved in PS
exposure induced by platelet activation to form a subpopulation

of procoagulant platelets, then contrasting it with PS exposure
resulting from platelet apoptosis. Pathologies of PS exposure,
inherited and acquired, are described. We conclude with a
consideration of platelet PS exposure as an antithrombotic target.

PLATELET MEMBRANE PHOSPHOLIPID
ASYMMETRY: MAINTENANCE AND
COLLAPSE

Flippase [(Aminophospholipid)
Translocase]
Similar to other biological membranes, resting platelets possess
an asymmetrical phospholipid plasma membrane bilayer (4),
with the minor phospholipid PS sequestered to the inner
cytoplasmic leaflet. This PS asymmetry is created by a
flippase/(amino)phospholipid translocase enzyme, a member of
the Type IV subfamily of P-type ATPases (P4-ATPases) (9,
44), that rapidly and specifically shuttles PS from the outer to
the inner membrane leaflet against the concentration gradient,
in an ATP-dependent fashion (45). Its activity is abrogated
when cytoplasmic Ca2+ (Ca2+cyt) increases to low micromolar
levels (46).

Scramblase and TMEM16F
Scramblase is a Ca2+-dependent, ATP-independent enzyme
that regulates the rapid, non-specific bidirectional movement,
i.e., “scrambling,” of phospholipids between membrane leaflets,
resulting in a loss of normal membrane phospholipid bilayer
asymmetry. Although scramblase activity has long been
described in platelets (4), the protein involved in Ca2+-
dependent PS exposure was only identified a decade ago as
TMEM16F (anoctamin 6) (47–49). It is a member of the multiple
transmembrane (TMEM)16 (anoctamin) domain family of
proteins, of which the first-described member, TMEM16A, is a
Ca2+-activated Cl− channel. TMEM16F has been described to be
a Ca2+-dependent Cl− channel, a Ca2+-regulated non-selective
cation channel permeable for Ca2+, or a Ca2+-dependent
phospholipid scramblase (49). Evidence is accumulating that
TMEM16F is indeed itself a scramblase [e.g., Watanabe et al.
(50); Le et al. (51)].

PLATELET PHOSPHATIDYLSERINE
EXPOSURE

Several different pathways result in procoagulant platelet
formation. In one, PS exposure occurs rapidly via platelet
activation by strong agonists. A second is the intrinsic apoptosis
pathway via which PS exposure occurs more slowly (9, 37, 52,
53). These pathways are considered in turn below, and key
characteristics are summarized in Table 1. In a recently described
third pathway that is distinct from the aforementioned canonical
pathways, binding of oxidized low-density lipoprotein to platelet
membrane glycoprotein (GP)IV (CD36) and signaling through
extracellular signal-regulated protein kinase (ERK)5 mitogen-
activated protein (MAP) kinase leads to PS exposure. This
pathway may be relevant in thrombotic events that occur in
dyslipidemia (54).
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TABLE 1 | Summary of key characteristics of platelet agonist- and apoptosis-induced PS exposure (Agonist-Induced Phosphatidylserine Exposure and

Apoptosis-Induced Phosphatidylserine Exposure).

Agonist-induced platelet PS exposure

(fast response)

Apoptosis-induced platelet PS exposure

(slow response)

Trigger Physiologically relevant: engagement of both GPVI

(collagen/convulxin/CRP) and PAR1/PAR4 (thrombin)

receptors

Non-physiological: Ca2+ ionophores A23187, ionomycin

Inhibition of pro-survival Bcl-xL, resulting in activation of

proapoptotic Bak and Bax

Non-physiological: ABT-737

Cytoplasmic Ca2+ (Ca2+cyt ) concentrations Sustained, elevated Ca2+cyt levels required Not dependent on sustained, elevated Ca2+cyt levels

Mitochondrial integrity Loss of IMM integrity:

• Dependence on MPTP formation

• 19m depolarization occurs

MOMP occurs early, with loss of IMM integrity occurring

concomitant with PS exposure

Intracellular protease activation • Calpain activated

• Caspase activation occurs, but PS exposure is not

dependent on it

• Dependent on caspase activation

TMEM16F Required Not essential

Morphology • Rounded, blebbing platelets essentially empty of

cytoplasmic contents

• EVs are shed

• Rounded, blebbing platelets with cytoplasmic contents

remaining

• EVs are shed

In vivo effects (in animal models) • In arterial thrombi, PS-exposing platelets form

microdomains that do not participate in

platelet aggregation

• PS-exposing platelets continue to circulate in

the bloodstream

• Formation of venous thrombi inhibited

• Thrombocytopenia, with PS exposure persisting on

remaining circulating platelets

Ca2+cyt, cytoplasmic Ca2+; CRP, collagen-related peptide; EV, extracellular vesicle; GP, glycoprotein; IMM, inner mitochondrial membrane; MOMP, mitochondrial outer membrane

permeabilization; MPTP, mitochondrial permeability transition pore; PAR, protease-activated receptor; PS, phosphatidylserine; 1Ψm, inner mitochondrial membrane potential.

Agonist-Induced Phosphatidylserine
Exposure
Agonist-stimulated platelet surface PS exposure is a rapid
process, occurring in seconds to minutes, and is accompanied by
other apoptotic-like events, including mitochondrial membrane
permeabilization and depolarization, and plasma membrane
blebbing, with extracellular vesicle (EV) formation. The
proportion of PS-exposing platelets formed depends on the
agonist(s) used for platelet stimulation, with the most potent in
vitro, physiologically relevant stimulus being the combination
of collagen/convulxin/collagen-related peptide (CRP) plus
thrombin (C+T) The former binds to GPVI, and the latter
cleaves protease-activated receptor (PAR)1 and PAR4 (23),
synergizing to set into motion the signaling pathways that result
in the sustained, supramaximal levels of Ca2+cyt (55) (see below)
that are required for PS exposure on a substantial proportion of
platelets. Anywhere from 20 to 40% of C+T-stimulated platelets
become PS-exposing, with a wide variation between donors;
singly, these agonists are not as potent, with a smaller proportion
of PS-exposing platelets being formed (56). ADP or thromboxane
A2 (TxA2) (using the stable mimetic U46619) does not play
a major role (23, 33), while shear forces are effective (57, 58).
The non-physiological, non-receptor-mediated ionophores
A23187, and ionomycin, that directly increase Ca2+cyt, are the
most potent stimulators of PS exposure, with typically >90% of
platelets taking on the procoagulant phenotype (19, 56).

Platelet stimulation by collagen (or convulxin/CRP) or
thrombin [or the PAR-specific thrombin receptor activating
peptides (TRAPs)] alone activates phospholipase (PL)Cγ

(via GPVI) and PLCβ (via PAR1/4), resulting in a rise in
Ca2+cyt to the micromolar range (23). Cleavage of membrane
phosphatidylinositol-4,5-bisphosphate by PLC forms inositol
trisphosphate (IP3) and diacylglycerol (DAG); the former
induces the release of Ca2+ from internal stores, the dense
tubular system (DTS), via IP3 receptors. Depletion of internal
Ca2+ stores allows store-operated Ca2+ entry (SOCE) from
the platelet exterior: briefly, stromal interaction molecule 1
(STIM1) in the DTS membrane undergoes a conformational
change, allowing activation of Orai1, the major Ca2+ release-
activated Ca2+ channel in the platelet plasma membrane (23).
DAG, together with Ca2+, activates protein kinase C (PKC)α
that enhances Na+/Ca2+ exchange during SOCE (59, 60).
Sustained increases in Ca2+cyt via release from internal stores,
SOCE, and release of mitochondrial Ca2+ upon mitochondrial
permeability transition pore (MPTP) formation (see below)
in a small proportion of platelets activate scramblase. It is the
dual stimulation of GPVI and PAR1/4 by C+T that leads to the
sustained, elevated levels of Ca2+cyt necessary for PS exposure
in a substantial proportion of platelets; the combination of
C+T activates store-independent, receptor-operated Ca2+ entry
(ROCE). This involves non-selective cation transient receptor
potential C (TRPC) channels, TRPC3 and TRPC6, that allow
Na+ entry. Coupling to reverse-mode Na+/Ca2+ exchange
then leads to the sustained elevated Ca2+cyt that activates
scramblase (61).

Ca2+cyt increases activation of the Ca2+-dependent cysteine
protease calpain that has a number of substrates in platelets,
including cytoskeletal components, signaling molecules, and
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the β3 integrin subunit, thereby regulating many platelet
responses, including spreading, secretion, aggregation, and EV
formation (36, 62–64). In platelets stimulated to expose PS,
calpain-2-mediated proteolysis of αIIbβ3-associated proteins and
β3 results in inactivation of αIIbβ3, the integrin necessary
for platelet aggregation (65); thus, procoagulant platelets are
unable to participate in aggregation. To that end, both in
flow chambers coated with collagen and in mouse models of
arterial thrombosis, two distinct microdomains of platelets are
visualized in thrombi: 1) aggregated, non-PS-exposing platelets
with extended pseudopods and activated αIIbβ3; surrounded by
2) PS-exposing platelets that have elevated Ca2+cyt, inactivated
αIIbβ3, a roundedmorphology, and are shedding EVs (see below)
(32, 36). Further, in these ex vivo and in vivo systems, PS-exposing
platelets are observed to translocate to the surface of thrombi
where they accelerate fibrin formation (66).

Mitochondrial integrity loss is an apoptosis hallmark that
precedes agonist-induced PS exposure, with involvement of
the inner mitochondrial membrane (IMM) Formation of the
cyclophilin D-regulatedMPTP, a non-selective multiprotein pore
that spans the IMM, is a key step (67, 68), as PS exposure
is reduced in convulxin+thrombin-stimulated cyclophilin D-
deficient platelets or platelets treated with cyclosporin A,
an MPTP inhibitor (69–71). Reactive oxygen species, e.g.,
hydrogen peroxide (H2O2), that can trigger MPTP formation,
synergize with thrombin to expose platelet PS, indicating a
role for oxidative stress in procoagulant platelet formation (69).
Sustained MPTP formation leads to disruption of the IMM
potential (19m) (72, 73), and 19m depolarization is associated
with PS exposure both in agonist-stimulated platelets in vitro and
platelets aging in vivo (69, 71, 74–77).

In convulxin+thrombin-stimulated platelets, PS exposure is

entirely dependent on 19m loss and TMEM16F. However, there

is evidence of a secondminor pathway of PS exposure that occurs

with collagen+thrombin stimulation that is independent of these

(76, 78). This pathway may also be involved in the mitochondrial

depolarization-independent PS exposure observed in A23187-
stimulated platelets in the presence of cyclosporin A (79).

Heterogeneity within the PS-exposing platelet subpopulation has

also been reported by Topalov et al. (80): one subset with high

Ca2+cyt, 19m loss, and inactive αIIbβ3; and another with low

Ca2+cyt, intact 19m, and active αIIbβ3. Subsequently, this latter

subset was described to be the result of the interaction between

a procoagulant platelet and an aggregatory (non-PS-exposing)
platelet (81).

Although caspase activation occurs upon mitochondrial
depolarization and has been used as a marker in studies of
agonist-induced platelet PS exposure, e.g., caspase-3 (75, 79),
the agonist-induced pathway of procoagulant platelet formation
appears to be independent of caspase activation (52, 82).

Near-complete shedding of GPIbα and GPVI mediated by
ADAM17 and 10, respectively, is accompanied by PS exposure
and modulates platelet function from less adhesive to more
procoagulant (83).

In becoming procoagulant, platelets undergo remarkable
morphological changes. Platelets adherent to collagen/CRP, but

not fibrinogen, spread and transform into blebbing, rounded,
balloon-like structures (31, 34). These collagen-adherent balloon
platelets are PS exposing, as determined by annexin A5 binding
(32, 33). Similarly, platelets stimulated in suspension by C+T
or A23187 form a distinct PS-exposing platelet subpopulation
with a spherical, balloon-like morphology, almost devoid of
granules and normal internal architecture (Figure 1) (35, 84).
This ballooning has been attributed to activation of Ca2+-
activated Cl− channels, resulting in initial salt entry into platelets,
which is then followed by the influx of water (33). There is
increased permeability of plasma membrane of the PS-exposing
platelets to low-molecular-weight molecules (33, 71).

The unique surface protein coating of procoagulant platelets
(Introduction) has been observed primarily localized to a small,
convex structure, or cap, rather than distributed uniformly on
the PS-exposing platelet surface; 85% of PS-exposing platelets
possess caps, with one per platelet (21, 41). It was subsequently
demonstrated that procoagulant activity is located in the cap,
or remnant platelet body, early in balloon-platelet development,
then becomes predominant in the balloon-like structure at later
time points (85). Recently, it was observed that more than 90%
of PS-exposing platelets possess one or multiple associated EVs
that exhibit heterogeneity in platelet membrane glycoproteins
and activation markers different from platelet-derived EVs free
in suspension (see below) (Figure 1) (35).

PS exposure is accompanied by the release of membrane-
bound EVs (previously referred to as microparticles or
microvesicles) from the platelet plasma membrane (86); indeed,
Scott syndrome platelets, that are deficient in PS exposure upon
activation (Pathologies of Phosphatidylserine Exposure), are also
deficient in EV formation (87, 88). EV surface membranes
are heterogeneous in their expression of platelet membrane
glycoproteins, e.g., αIIbβ3 and GPIb-IX-V, and activation
markers, e.g., CD62P (P-selectin), CD63, and activated αIIbβ3
(35, 89, 90), and only about half expose PS (86). Platelet-derived
EVs support hemostasis and also play a role in platelet–cell
communications, delivering bioactive molecules, e.g., cytokines,
eicosanoids, RNA species, to target cells [e.g., Boilard et al.
(91)]. Elevated circulating EV levels have been reported
in thrombotic conditions, immune-mediated conditions, and
malignancy and inflammatory conditions, but whether they are
“active contributors” or “passive indicators” of these conditions
is not known (86). EVs are cleared rapidly (92), implying that
they must be produced continuously for circulating levels to
be detected.

Once procoagulant platelet formation has been stimulated
in vitro, PS exposure is not readily reversed; this is likely
due, at least in part, to inhibition of translocase activity
(56, 76, 93), preventing the flipping of PS to the internal
membrane leaflet. Even in vivo, PS exposure persists on activated

platelets, as demonstrated by a study in which rabbit platelets

stimulated to expose PS in vitro continued to circulate when

injected into recipient rabbits (94). Although PS is a clearance
signal of apoptotic cells by macrophages (see below), there
are examples of cells that express PS constitutively and are
viable (95, 96).
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FIGURE 1 | Upon platelet activation with collagen (10µg/ml) + thrombin (1 U/ml) (C + T), a subpopulation of phosphatidylserine (PS)-exposing platelets with a round,

balloon-like morphology and one or more associated extracellular vesicles (EVs) is formed. Resting (unstimulated) (A) or stimulated (B) washed platelets were labeled

with anti-CD41-FITC (platelet marker) and annexin A5-Alexa Fluor 647 (PS exposure) and analyzed on an Amnis ImageStreamX Mark II (ISX ) multispectral imaging flow

cytometer. Images representative of n = 4 independent experiments.

It is still not clear why there is platelet response heterogeneity
to becoming PS exposing. Certainly, it is not due to differences
in overall platelet reactivity, as PS-exposing platelets express
CD62P to the same extent as non-PS-exposing platelets (9),
indicating that they are capable of the secretion event. Although
it had previously been attributed to platelet age, with young
platelets, identified by increased thiazole orange staining, having
an enhanced capacity to take on a procoagulant phenotype
(22, 97), uptake of this dye is increased in large platelets that
are not necessarily young platelets in the steady state (98).
Recently, it has been shown that young, newly produced, steady-
state (rabbit) platelets are indeed less responsive in exposing

PS than older platelets (98). It is speculated that differences in
receptor expression levels and in Ca2+-flux machinery activity

are involved (99), and levels of adhesive receptors, including
GPVI, GPIbα, αIIb, and β3, have been reported to be increased
on procoagulant platelets (97, 100).

Apoptosis-Induced Phosphatidylserine
Exposure
It is now well-recognized that platelets, although they are
anucleate, can undergo apoptosis. This occurs via the intrinsic,
mitochondrial-dependent pathway, with platelets possessing the
necessary cytosolic machinery, while likely lacking the death
receptors required for the extrinsic pathway (37, 101, 102).
Platelet apoptosis can be initiated in vitro by ABT-737, a BH3-
only protein mimetic, that inhibits the pro-survival Bcl-2 family
protein Bcl-xL, resulting in activation of the proapoptotic Bcl-2
proteins Bak and Bax; these then go on to initiate mitochondrial
damage, cytochrome c release, caspase activation, PS exposure,
and membrane blebbing and EV formation (37, 52, 101), all
hallmarks of apoptosis in nucleated cells.

In contrast to platelet agonist-induced PS exposure, which
occurs rapidly, apoptosis-induced PS exposure occurs more
slowly, on the order of hours (9, 37, 52, 53). This apoptosis
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pathway is indeed Bak and Bax dependent, as platelets
lacking these proteins do not externalize PS when incubated
with ABT-737. It is also caspase dependent, as responses
are abolished in the presence of a caspase inhibitor (52,
78). However, it does not require increases in Ca2+cyt or
calpain activity, which are necessary for agonist-induced PS
exposure (52) (Agonist-Induced Phosphatidylserine Exposure)
There is early mitochondrial outer membrane permeabilization
(MOMP), followed by later IMMdisruption concomitant with PS
exposure (81): MPTP formation may not be involved, and 19m

depolarization may occur (52, 103–105). PS-exposing platelets
take on a rounded morphology but maintain cytoplasmic
components (105, 106); EV formation is not observed early on,
but increases with time (103, 104, 107).

ABT-737 treatment of platelets has also been reported to
result in PS exposure on a second platelet population at a
higher level, observed with agonist-induced PS exposure, than
described above. PS exposure on this population is dependent on
increases in Ca2+cyt and TMEM16F but unlike agonist-induced
PS exposure is dependent on caspase activation (78, 107).

Apoptosis, being the process of programmed cell death, is
a major physiological mechanism that regulates the life span
of cells, with externalized PS being the “eat me” recognition
signal for phagocytic cells to mediate clearance of damaged cells
(108). Platelet apoptosis regulates circulating platelet life span, as
mutations in Bcl-xL result in shortened platelet survival, while
deletion of Bak and Bax prolongs it by almost 2-fold (109, 110).
Administration of ABT-737 to dogs and mice causes dramatic
thrombocytopenia within 2 h (109, 111), but PS exposure persists
on the circulating platelets (106); formation of venous thrombi
is inhibited (106). Platelet PS exposure may be involved in
physiological platelet clearance; the proportion of PS-exposing
platelets increases as rabbit platelets age in the circulation under
steady-state conditions (77).

PATHOLOGIES OF PHOSPHATIDYLSERINE
EXPOSURE

The importance of activated platelet membrane phospholipid
bilayer scrambling with resulting PS exposure in hemostasis
is highlighted in the very rare inherited autosomal recessive
disorder Scott syndrome. The first-described patient, Mrs. M.A.
Scott, had a relatively severe bleeding phenotype: she was
found to have an isolated defect in PF3a (Introduction) (112);
impaired PS exposure upon platelet activation, thereby resulting
in deficient procoagulant activity and abrogated fibrin formation
at sites of vascular damage (3, 113); and diminished EV formation
(Agonist-Induced Phosphatidylserine Exposure) The genetic
defect in four of the six known Scott syndrome patients for
whom mutational analysis is available, as well as in canine Scott
syndrome, in German Shepherd dogs, involves homozygous
and heterozygous variants in the TMEM16F gene (47, 49, 114–
118), resulting in an absence of expression of the TMEM16F
protein (Scramblase and TMEM16F) Knockout of TMEM16F
in genetically modified mice recapitulates the Scott syndrome
phenotype (119–122).

Studies of Scott syndrome platelets have shown that, in
humans, TMEM16F is required for the major agonist-induced PS
exposure pathway but is not essential for apoptosis-induced PS
exposure (78). In contrast, in dogs, both agonist- and apoptosis-
induced platelet PS exposure requires TMEM16F (116). Detailed
proteomic profiling of human Scott syndrome platelets has
provided insight into protein modifications that occur when
platelets are activated to expose PS (123).

In contrast with the Scott syndrome, in the rare autosomal
dominant Stormorken syndrome, resting platelets have elevated
surface PS exposure; resting Ca2+cyt is increased due to a novel
STIM1 gain-of-function variant. Stormorken syndrome patients
have thrombocytopenia and a mild bleeding diathesis along with
their thrombocytopathy (124).

Another inherited disorder in which elevated PS exposure
and Ca2+cyt is observed with resting platelets is the
microthrombocytopenia, Wiskott–Aldrich syndrome (WAS)
Upon stimulation, WAS platelets have increased susceptibility to
PS exposure that occurs as a result of MPTP opening (125, 126).

Resting platelets from Bernard–Soulier syndrome patients
also have elevated PS exposure, independent of their large
size (127), indicating a role for GPIb-IX-V. PS exposure is
generally increased in activated BSS platelets as well and
is accompanied by 19m depolarization in a proportion of
platelets (127).

Aberrant PS exposure has been described in certain
acquired platelet disorders. Platelets from patients with
immune thrombocytopenia have increased (apoptosis-induced)
PS exposure likely contributing to the decreased platelet
counts (128, 129). Recently, there has been the report of
increased circulating PS-exposing ballooned platelets in trauma
hemorrhage in response to the damage-associated molecular
pattern histone H4, demonstrating a mechanism by which
platelets respond to tissue damage (130).

CONCLUSION: POTENTIAL OF
PROCOAGULANT
PHOSPHATIDYLSERINE-EXPOSING
PLATELETS AS AN ANTITHROMBOTIC
TARGET

Understanding of the mechanisms involved in the formation
of the procoagulant PS-exposing platelet phenotype and its
role in hemostasis has increased dramatically. Since traditional
antiplatelet agents do not completely reduce the risk of
thromboembolic events, the question arises: Is PS exposure
a useful antithrombotic target? Not surprisingly, drugs that
target the ADP and TxA2 pathways of platelet activation
and aggregation have no major effect on inhibiting platelet
procoagulant activity (38, 131, 132) since these agonists
are not particularly potent in stimulating the formation
of PS-exposing platelets (Agonist-Induced Phosphatidylserine
Exposure). There are certainly indications that the procoagulant
platelet might be a useful target in reducing thrombosis.
Firstly, knockout of TMEM16F in platelets of genetically
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modified mice (Pathologies of Phosphatidylserine Exposure)
decreases platelet thrombus formation in vitro on collagen-
coated coverslips under flow conditions and in models of
arterial and venous thrombosis (119–122). Secondly, there is
evidence that in clinical conditions of thrombosis, specifically
coronary artery disease, and essential thrombocythemia, the
procoagulant platelet response is increased, and that increased
levels of procoagulant platelets are associated with increased risk
for recurrent infarction in lacunar and non-lacunar stroke and
predict incident stroke after transient ischemic attack (131, 133–
136). Thirdly, procoagulant platelets have recently been shown
to play a critical role in forming neutrophil macroaggregates
that promote pulmonary thrombosis after gut ischemia that is
a potent inducer of platelet PS exposure on the endothelium in
the intestines, liver, and lungs; large membrane fragments ripped
from PS-exposing platelets in a shear-dependent fashion wrap
around the neutrophils to form adhesive bridges (137).

Thus, since PS exposure persists on activated platelets not
only in vitro but in vivo as well (76, 94), blocking of the
procoagulant surface could be an effective, novel strategy to
reduce thrombosis. By binding to PS, annexin A5, diannexin

[a recombinant annexin A5 homodimer with a longer circulating
half-life than annexin A5 and a 10-fold higher binding
affinity to PS (138, 139)] and lactadherin inhibit thrombus
formation in vitro and in animal models of arterial and venous
thrombosis (139–145). However, diannexin and lactadherin
impair hemostasis as well, increasing murine tail bleeding time
blood loss (139, 145); thus, if a strategy of blocking exposed
PS is to be pursued, dosages of blocking compounds must be
finely tuned.

Alternatively, mitochondrial depolarization (70), scramblase
activity (146, 147), or water entry into platelets (33, 148) are
potential targets to inhibit formation of the thrombin-generating
subpopulation of platelets while still allowing platelet aggregation
to occur. It may be that inhibition of procoagulant platelet
formation could be an alternative approach to reduce thrombosis
without impairing hemostasis.
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