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Myeloid cells are key components of the tumor microenvironment and critical regulators

of disease progression. These innate immune cells are usually short-lived and require

constant replenishment. Emerging evidence indicates that tumors alter the host

hematopoietic system and induce the biased differentiation of myeloid cells to tip the

balance of the systemic immune activities toward tumor-promoting functions. Altered

myelopoiesis is not restricted to the bone marrow and also occurs in extramedullary

organs. In this review, we outline the recent advances in the field of cancer-associated

myelopoiesis, with a focus on the spleen, the major site of extramedullary hematopoiesis

in the cancer setting. We discuss the functional specialization, distinct mechanisms, and

clinical relevance of cancer-associated myeloid cell generation from early progenitors in

the spleen and its potential as a novel therapeutic target.
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INTRODUCTION

Cancer is now viewed as an ecological disease in which interactions between neoplastic,
stromal, and infiltrating immune cells profoundly regulate disease progression. Myeloid cells
are major components of this ecosystem. These cells belong to the innate immune system and
comprise various mononuclear and polymorphonuclear phagocytes and precursors, including
monocytes/macrophages (Mos/Mφs), dendritic cells (DCs), granulocytes, and myeloid-derived
suppressor cells (MDSCs). Over the past two decades, a wealth of studies has revealed the crucial
roles that myeloid cells play in many, if not all, steps of tumor initiation, progression andmetastasis
(1–6). The importance of myeloid cells has been further underlined by identifying the broad
involvement of myeloid cells in regulating treatment responses and has thereby spurred interest
in therapeutically targeting these cells (7–12).

In addition to directly modulating myeloid cells in tumor tissues using small molecules (13–
16), antibodies (17–19), and nanoparticles (20–24), a novel myeloid cell-targeting strategy is
now emerging into the research spotlight. The idea is to limit the tumor-supporting myeloid
cell response at its root by restraining tumor-associated myelopoiesis. Tumor progression often
parallels a coordinated expansion and continuous accumulation of myeloid cells such as tumor-
associated macrophages (TAMs) (11, 25–28), neutrophils (TANs) (5, 15, 29–31), and MDSCs
(3, 32, 33). Considering that cells of the myeloid compartment are generally short-lived, this
growing and fast-turnover pool of tumor-associated myeloid cells needs to be promptly and
constantly regenerated from hematopoietic stem and progenitor cells (HSCs and HPCs, or HSPCs
combined). Therefore, tumors interfere with host hematopoiesis and skew the process toward
the generation of myeloid cells with tumor-promoting properties. The generality and importance
of hematopoietic deviation in cancers are supported by evidence from both human and mouse
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studies (34–38). Notably, hematopoietic alteration is not
restricted to the bone marrow (BM), the primary hematopoiesis
site for adults, but has also been observed in multiple
extramedullary organs. However, our knowledge about the
nature and properties of cancer-induced myelopoiesis, in
particular the necessity and advantages of extramedullary
hematopoiesis, is still limited. In this review, we briefly introduce
myelopoiesis in different sites discovered to date in the context
of solid tumors and then focus on the spleen, the major site
of extramedullary myelopoiesis. The expansion of downstream
immature [e.g., MDSCs (2, 39, 40)] or mature myeloid cells
[e.g., TAMs (41)] has been well-summarized in several recent
reviews; thus, here, we focus on the role of early HSPCs in
cancer-associated myelopoiesis.

SITES OF MYELOPOIESIS IN CANCERS

At steady state, HSPCs reside primarily in the BM and
generate cells of the blood and immune systems (42, 43),
with a small subpopulation constantly recirculating between
the BM and blood (44, 45). These peripheral HSPCs survey
extramedullary tissues and respond rapidly to danger signals
to resolve hematopoietic/immunological stress conditions (46).
In recent years, the paradigm that HSPCs divide in response
to peripheral cytopenia has given way to one in which HSPCs
can sense environmental stimuli and pro-inflammatory cytokines
directly and thus can actively serve as a foundation for the
immune response (47, 48). These mechanisms operating in
“emergency”myelopoiesis are hijacked by cancers, which instruct
HSPC activity, at least in part, through the constant and
progressive release of cytokines, chemokines, and metabolites
(49, 50). Here, we summarize the recent discoveries in cancer-
associated myeloid cell generation taking place in the BM and
extramedullary sites.

Bone Marrow
In the BM, the binding of stromal-cell-derived factor-1 (SDF-
1, also known as CXCL12) to its receptor CXCR4 represents
a critical axis in the BM retention and homing of HSPCs
(45, 51–53). Granulocyte colony-stimulating factor (G-CSF) is
known to antagonize this SDF-1/CXCR4 axis, modulate BM
HSPC mobilization, and direct hematopoietic differentiation. A
recent study using a mouse model of breast cancer showed that
tumor-derived G-CSF induces the expansion and differentiation
of HSPCs to skew hematopoiesis toward the myeloid lineage.
Myeloid-biased hematopoiesis results in the systemic expansion
of myeloid suppressors with the distinguishing characteristics
of tumor-induced immunosuppressive neutrophils (36). These
results are consistent with previous findings showing that the BM
CD11b+Gr1+ myeloid cell compartment expands in response
to tumor-derived G-CSF and is functionally altered before these
cells are mobilized into the circulation (54, 55), via the activation
of the retinoic-acid-related orphan receptor (RORC1/RORγ) and
CCAAT/enhancer-binding protein β (C/EBPβ) pathways (56).

In addition, other hematopoietic cytokines, such as
macrophage colony-stimulating factor (M-CSF) (57),

granulocyte/macrophage colony-stimulating factor (GM-
CSF) (58), vascular endothelial growth factor A (VEGF-A)
(59, 60), placental growth factor (PlGF) (59, 61), osteopontin
(62, 63), transforming growth factor-β (TGF-β) (60), and tumor
necrosis factor-α (TNF-α) (60, 64), are known to influence
hematopoiesis and are secreted by a variety of solid cancers to
affect the BM (65). Although the precise effect and mechanisms
are not yet fully elucidated, these cytokines may also impact the
differentiation pattern of HSPCs and regulate tumor-promoting
myeloid cell responses.

Primary Tumor and Pre-metastatic Sites
In the context of cancer, we have found that circulating HSPCs
from patients with various types of solid tumor, including
hepatocellular, breast, cervical, esophageal, gastrointestinal, lung,
and ovarian tumors, exhibit a generalized myeloid bias that
skews toward granulocytic differentiation (35). Whether these
trafficking HSPCs have a preset destination other than returning
to the BM remains unclear. One possible extramedullary site for
HSPC residence and function is the tumor. BM-derived HSPCs
have been observed within the stroma of primary tumors and
are thought to promote tumor progression (59, 62, 63, 66). In
support of these findings, we have found that there is significant
infiltration of CD133-expressing precursor cells with multipotent
colony-formation capabilities in human colon cancer tissues (35,
67). These HSPCs give rise to immature myeloid cells with a
potent immunosuppressive function in a glutamine metabolism-
dependent manner (67). Recent studies have demonstrated
that in addition to homing to the primary tumor, a distinct
subset of HSPCs that express vascular endothelial growth factor
receptor 1 (VEGFR1; also known as Flt1) can home to tumor-
specific pre-metastatic sites. These HSPCs express necessary
adhesion molecules and growth factors and differentiate into
immunosuppressive MDSCs to form a permissive niche for
incoming tumor cells (61, 68, 69).

In contrast to the above findings, there are some reports based
on transplant-treatment models showing that the transfer of BM-
derived HSPCs can enhance adoptive T cell immunotherapy
(ACT) in mouse melanoma (70) and glioma models (71), thus
arguing that HSPCs can play an antitumor role in ACT. Wildes
et al. reported that the combination of ACT and HSPC transfer
could lead to HSPC differentiation into immune-stimulating
DCs in mouse glioma. The treatment began with a sublethal-
or lethal-dose total body irradiation, followed by adoptive
transfer of autologous HSPCs and tumor-reactive T cells. These
T cells released IFN-γ in the brain tumor microenvironment
to augment HSPC differentiation into potent DCs, which in
turn further activated tumor-reactive cytotoxic T lymphocytes
(CTLs) in a positive feedback manner (72). Such treatments,
involving total body irradiation, may raise concerns regarding
the translational value, but these studies did provide hints
of the potential mechanisms by which altering the tumor
microenvironment/hematopoietic niche may reprogram the
typical immunosuppressive myelopoiesis and function of HSPCs.
Thus, current evidence suggests that the existence, biological
nature, and clinical relevance of myelopoiesis in primary
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tumors and pre-metastatic sites are highly heterogeneous
and tumor-dependent.

Spleen
The spleen is now viewed as the prominent site of extramedullary
hematopoiesis (EMH) in cancers. The spleen, which is located
in the abdominal cavity, right beneath the diaphragm and
connected to the stomach, is the largest secondary lymphoid
organ in the body. The spleen plays a crucial role in filtering
antigenic particles and abnormal cells from the blood, destroying
aged erythrocytes, and recycling iron and is an important
organ for the differentiation and activation of T and B
cells and production of antibodies (73–75). In hematology,
the spleen serves as an important reservoir of monocytes
(76, 77), platelets (78, 79), and memory B cells (80). The
spleen is also a significant site of hematopoiesis throughout
vertebrate evolution and during fetal development in humans
(81). Although the contribution of splenic EMH in steady-
state adults seems trivial, a vast spectrum of hematopoietic
stresses, including myelofibrosis (82), anemia (83), pregnancy
(84), infection (85, 86), myeloablation (87), myocardial infarction
(88, 89), diabetes (90), atherosclerosis (91, 92), colitis (93),
and spondyloarthritis (94), can induce profound EMH in the
spleen. Splenic EMH also occurs in the context of cancer. In
addition to reports on the expansion of myeloid precursors in
the spleen (95–97), Cortez-Retamozo et al. found that the spleen
of hosts bearing lung adenocarcinomas accommodates a large
number of HSPCs, including HSCs and granulocyte/macrophage
progenitors (GMPs), that are phenotypically and functionally
analogous to their BM counterparts. These splenic HSPCs give
rise to myeloid descendants, such as monocytes and neutrophils,
that subsequently migrate to the tumor and exert tumor-
promoting functions (34, 98). Consistently, in various mouse
models with transplanted, genetically engineered, or chemically
induced malignancies and in patients with hepatocellular,
gastric, renal, or pancreatic cancers, the spleen accommodates a
profound expansion of early HSPCs and supports myeloid-biased
myelopoiesis, suggesting the generality of splenic myelopoiesis
in various types of solid tumors (37). It is also noteworthy that
cancer-induced EMH does not produce only myeloid cells; in
late-stage cancers, the spleen generates unique erythrocytic cell
populations to further alleviate the disease (99–101).

To evaluate the significance of splenic myelopoiesis in cancers,
two central questions need to be addressed: (1) What is the
relative contribution of splenic myelopoiesis, compared with
that of the BM and other extramedullary tissues, to cancer-
associated myeloid cells? (2) Is splenic myelopoiesis a mere
complement to BM hematopoiesis or does it play a unique role
in generating particular myeloid subsets? To date, the relative
contribution of splenic myelopoiesis is controversial. Current
evidence suggests that this depends on the type of cancer and the
settings of the tumor model. In some experiments, splenectomy
causes a significant decrease in the tumor-infiltrating myeloid
population and restricts tumor growth (34, 102–104), whereas
in other settings, these effects seem marginal (37, 38, 105).
Beyond the comparison of production capacity, we recently
found that although splenectomy does not change the frequency

or distribution of tumor myeloid cells in a hepatoma model,
the abrogation of splenic EMH reduces the expression of
arginase 1 (Arg1) and abolishes the suppressive activity of
tumor CD11b+Ly6G+Ly6Clow granulocytic MDSCs, the major
MDSC subset in that tumor (37). Thus, emerging studies
suggest that splenic myelopoiesis is more than a complement
to BM myelopoiesis and may represent myeloid cell biogenesis
that is functionally and mechanistically different from its BM
counterpart. This mechanism is important for systemic tumor-
promoting myeloid cell responses. Therefore, a systematic
understanding of cancer-induced splenic EMH (myelopoiesis)
is critical for guiding the development of novel therapeutic
strategies targeting myeloid cell responses.

Other Extramedullary Organs
Hematopoiesis can take place in many tissues (106–108).
Although EMH plays a physiological role during fetal
development, its occurrence after birth is typically abnormal,
usually associated with inflammation or hematological diseases
such as myelofibrosis, leukemia, and hemolytic anemia. In
cases of malignant solid tumors, this process seems to rarely
develop in organs other than the spleen. The liver is an
important hematopoietic organ during the fetal stage, but liver
hematopoiesis in solid cancers has only been reported in patients
undergoing liver transplantation (109, 110). Even in the context
of hepatoma, there is no detectable HSPC accumulation in the
non-cancerous livers of mice bearing orthotopic hepatic tumors
or in the tumor stroma of patients with hepatocellular carcinoma
(37). Similarly, a recent study revealed that the lung is a reservoir
for HSPCs and an important site of platelet biogenesis in adults
(111). However, reports on lung hematopoiesis in cancers are
still rare (112).

MECHANISMS REGULATING SPLENIC
MYELOPOIESIS

Splenic EMH is a highly flexible and adaptable response that
differs in scale and output in homeostasis, under physiological
stress conditions, and in various disease states. How splenic
HSPC activity and the EMH niche are shaped to adapt to
the organismal environment is incompletely understood, but
it may involve at least two essential mechanisms: the selective
recruitment of HSPCs and dynamic HSPC-niche interactions
(Figure 1). Below, we discuss the potential mechanisms by
which splenic EMH is induced and regulated in the context
of cancer.

Stromal and Endothelial Cells
The structure and fundamental functions of the spleen have
been thoroughly described in recent reviews (73–75). The
spleen is organized in regions called the red pulp and white
pulp. During EMH, HSCs are found mainly around sinusoids
in the red pulp. Stem cell factor (SCF, also known as kit
ligand) and SDF-1 are key factors in the BM niche of
HSCs (42, 51–53). Based on the similarities between splenic
EMH and normal BM hematopoiesis under physiological stress
conditions such as myeloablation, blood loss, and pregnancy, the
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FIGURE 1 | Mechanisms regulating HSPC activity in the spleen. Schematic representation of the HSPC behavior during splenic myelopoiesis, showing multiple cell

types and factors of various origins that directly or indirectly regulate HSPC activity. The splenic HSPC response is initiated with (1) increased production of

chemokines, such as SDF-1 and CCL2, by endothelial cells and stromal cells around sinusoids. This change of chemokine production might be triggered by systemic

factors that convey organismal stress messages. (2) HSPC survival is supported with the key niche-derived cytokine SCF and HSPCs express CD47 to avoid being

engulfed by splenic macrophages. In addition, HSPCs express VLA-4 and downregulate S1P1 to maintain in the splenic niche. (3) Activated by systemic,

niche-derived, and neural signals, splenic HSPCs upregulate transcription factors including RORC1/RORγ and C/EBPβ to direct myeloid-biased differentiation.

Emerging evidence highlights the roles of the HSPC endogenous cytokines such as GM-CSF, and the transcription factor NF-κB that drives the production of

cytokines in HSPC, as key regulators of HSPC behavior. (4) HSPCs proliferate and differentiate into different myeloid cell populations to respond to the body’s or,

unfortunately, the tumor’s call. AGTE1A, type1A angiotensin II receptor; AngII, angiotensin II; C/EBPβ, CCAAT/enhancer-binding protein β; CCL2, C-C motif

chemokine ligand 2; CCR2, C-C motif chemokine receptor 5; CXCR4, C-X-C motif chemokine receptor 4; NF-κB, nuclear factor kappa-light-chain-enhancer of

activated B cells; RORγ, related orphan receptor γ; S1P1, sphingosine-1-phosphate receptor 1; SCF, stem cell factor; SDF-1, stromal-cell-derived factor-1; SIRPα,

signal regulatory protein α; Tlx1, T-cell leukemia homeobox protein 1; VCAM-1, vascular cell adhesion molecule-1; VLA4, very late antigen-4.

splenic EMH niche components are thought to be analogous
to those in the BM. Indeed, murine splenic stromal cells
(PDGFRβ+TCF21+ and Tlx1+) and endothelial cells have been
found to be the major source of SCF, whereas a fraction
of the non-endothelial SCF-expressing stromal cells are the
source of SDF-1. EMH induction significantly expands the SCF-
expressing endothelial and stromal cell populations to which
most splenic HSPCs are found to be adjacent (113, 114).
However, it should be noted that the structure of the human
spleen is different from that in mice in many aspects (74,
115), and this may also be true regarding the EMH niche
components. For example, SDF-1 expression has been detected
in humans (116) but not mouse (113) splenic endothelial cells.

A detailed depiction of the EMH niche in the human spleen is
still lacking.

Although the splenic EMH niche is poorly understood,
growing evidence indicates that tumor-induced splenic EMH
may not entirely mimic BM EMH. In hepatoma-bearing
mice, SDF-1 expression in the spleen is markedly decreased,
rather than increased, at both the RNA and protein levels.
In contrast, the CCR2 ligand CCL2, mainly expressed by
VE-cadherin+ stromal/endothelial cells, has been found to
profoundly increase as tumor grows (37). CCR2 is expressed
on a subset of the highly active HSPC population in the
circulation. Peripheral CCR2+ HSPCs are armed with pattern
recognition receptors (PRRs) such as TLR4 and TLR2 and
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FIGURE 2 | Crucial relationships for splenic HSPCs in cancer and potential therapeutic targets. Numerous cell types and factors come into play in regulating the

cancer-induced splenic HSPC activity, providing a wide range of potential therapeutic targets. This figure categorizes these interplays into four groups, and highlights

examples of some potential therapies. (A) The complex reciprocal interplay between HSPCs and niche cells. (B) The interaction between HSPCs and splenic

macrophages. Note that macrophages could play dual roles in modulating splenic EMH. (C) The regulation of splenic HSPC response by other splenic

microenvironmental components, e.g., the sympathetic neurons and leukocytes that produce catecholamines. (D) The remote control of splenic myelopoiesis by

tumor and possibly other distant organs such as the bone marrow. ACE, angiotensin-converting enzyme; AngII, angiotensin II; CCL2, C-C motif chemokine ligand 2;

CCR2, C-C chemokine receptor 2; HSPGs, heparan sulfate proteoglycans; IL-6, interleukin-6; M-CSFR, macrophage colony-stimulating factor receptor; S1P1,

sphingosine-1-phosphate receptor 1; SCF, stem cell factor; SIRPα, signal regulatory protein α; Tlx1, T-cell leukemia homeobox protein 1; VCAM-1, vascular cell

adhesion molecule-1; VLA4, very late antigen-4.

preferentially differentiate into reparative myeloid cells, such
as M2 macrophages, representing the most upstream point of
increased local myelopoiesis after aseptic inflammation, liver
injury, and myocardial infarction (117, 118). The CCL2/CCR2
axis is employed to mediate the splenic recruitment of
HSPCs in tumor-bearing mice. A lack of CCR2 expression on
HSPCs reduces splenic myelopoiesis, impairs the suppression
activity of tumor MDSCs, allows an increase in the number
of tumor-infiltrating IFNγ+CD3+CD8+ CTLs, and enhances
immunotherapy efficacy (37, 38). Thus, this selective recruitment

mechanism may in part account for splenic immunosuppressive
myelopoiesis in cancer.

Endogenous HSPC Signals and the
HSPC-Niche Interplay
In addition to niche signaling, it is well-accepted that HSPCs
themselves can secrete a long list of cytokines that modulate their
own function in an autocrine or paracrine manner in response
to stimuli (86). Although the contribution of these endogenous
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signals to the inflammatory response in inflamed tissues remains
doubtful, HSPC-derived pro-inflammatory factors may play a
significant role in the hematopoietic niche.We recently identified
a subset of GM-CSF-expressing HSPCs found exclusively in
the spleens of mice bearing different types of solid tumors but
not in the BM, control mouse spleen, or spleens of mice with
EMH induced by repeated bleeding (37). GM-CSF, as shown in
other studies (93, 94, 119), can direct HSPC proliferation and
myeloid differentiation. More surprisingly, GM-CSF-expressing
splenic HSPCs, but not BM HSPCs, can readily generate
myeloid suppressors independent of the presence of tumors
when transferred into tumor-free mice (37). These findings
represent the tip of a far larger iceberg. It is logical to
assume that under pathological conditions, a considerable
proportion of HSPCs may produce a broad spectrum of
cytokines in the splenic niche to direct splenic EMH. Moreover,
one may infer that these cytokines would also affect the
dynamic niche. If so, the HSPC-niche cell interplay would
be reciprocal. Understanding how the unique combination of
HSPC-derived and niche factors orchestrate HSPC activity to
regulate the output in the spleen of a tumor-bearing host
will certainly advance our understanding of cancer-induced
splenic myelopoiesis.

Macrophages as Double-Edged Swords in
Regulating Splenic EMH
Splenic red pulp macrophages also play an important role
in regulating splenic EMH. On the one hand, macrophages
retain HSPCs in the splenic red pulp by providing adhesion
via vascular cell adhesion molecule-1 (VCAM-1) and may
thus promote splenic EMH. Hindering macrophage maturation
using in vivo RNAi silencing, depleting splenic macrophages,
or silencing VCAM-1 in macrophages releases HSCs from the
spleen and compromises splenic EMH (120). On the other
hand, macrophages can regulate splenic EMH by phagocytosing
redundant HSPCs in the spleen. According to an early study,
the phagocytosis of HSPCs by the numerous active macrophages
present in the cords of the red pulp results in limited
EMH in human spleens (121), suggesting that phagocytosis
is a key mechanism regulating splenic HSPC activity. CD47
is a “don’t eat me” signal that inhibits phagocytosis by
binding to its receptor signal regulatory protein α (SIRPα),
which is expressed on phagocytes. HSPCs upregulate CD47
expression just before and during their migration to the
periphery to avoid inappropriate phagocytosis (122). Thus,
the downregulation of CD47 expression might lead to the
clearance of splenic HSPCs as they age or become dysfunctional.
Therefore, macrophages could play dual roles in modulating
splenic EMH. However, the roles that splenic macrophages
play in regulating cancer-induced splenic EMH during cancer
development and the relationship between these functions are
still largely unknown. Since therapies targeting macrophages
(21, 32, 123) and anti-CD47 treatment (122, 124, 125) are
emerging as novel anti-tumor strategies, a deeper understanding
of these issues may reveal the impact of these treatments on
splenic EMH.

The Nervous System and Neural
Signal-Expressing Cells
Recent studies have revealed an intricate, panicle-shaped
sympathetic architecture in the spleen (126). Most detectable
nerves entering the spleen arise from the nerve plexus
that surrounds branches of the splenic artery and are
catecholaminergic (127). Such sympathetic architecture is
absent in the other classic lymphoid organs, but whether and
how this unique innervation of the spleen contributes to the
distinct EMH remains largely unclear. A recent study showed
that in liver cancer models, blocking β-adrenergic signaling
could prevent the redistribution of splenic myeloid cells and
inhibit tumor growth induced by restraint stress (128). In
addition, immune cells such as macrophages and T cells can
also produce catecholamines (129, 130). Although data from
cancer models are limited, in hyperglycemic conditions, the
spleens of diabetic patients and mice harbor increased numbers
of tyrosine hydroxylase (TH)-expressing leukocytes that produce
catecholamines, and GMPs that are actively proliferating.
These two events are closely linked, as the interaction of
catecholamine and β2 adrenergic receptors expressed on splenic
GMPs mediates GMP proliferation and myeloid cell production.
Moreover, TH+ leukocytes are located close to splenic nerves
and express high levels of neuropeptide Y receptors, suggesting
that these cells are involved in neuroimmune communication
(90). These mechanisms may also exist in cancer-bearing
hosts. Future studies are required to identify the roles of the
nervous system and neural signal-expressing cells in regulating
cancer-induced myelopoiesis.

Signals From Distant Organs
Although it is almost certain that tumors can profoundly affect
splenic myelopoiesis, either directly or indirectly, as the tumor
influences the BM (65), themolecularmechanisms remain largely
undetermined. In the scenario of cancers expressing high levels
of CSFs, these cytokines may be the major cause of HSPC
mobilization, splenomegaly, and vigorous splenic myelopoiesis
(36, 97, 131, 132). In addition to hematopoietic cytokines,
other tumor-derived factors, e.g., peptides and carbohydrates,
can also impact on HSPC behaviors. Cortez-Retamozo et al.
showed angiotensin II (AngII), a peptide hormone that belongs
to the renin-angiotensin system, may also play a significant
role in HSPC retention (98). They found that the expression
of angiotensinogen, the AngII precursor, was upregulated in a
mouse model of lung adenocarcinoma as well as in human lung
cancer stroma. AngII could directly induce HSPC amplification
in the splenic red pulp, suppressing the signaling between
sphingosine-1-phosphate receptor 1 (S1P1) and sphingosine-1-
phosphate and thus sequestrating HSPCs in the spleen. A 3 week
treatment with the angiotensin-converting enzyme inhibitor
enalapril suppressed the expansion of HSPCs in the spleen but
not in the BM and reduced the amplification of monocytes
in the spleen and macrophage accumulation in the lungs (98).
Heparan sulfate proteoglycans (HSPGs) represent another class
of potential factors that tumors may exploit to impact on host
hematopoiesis. These molecules are composed of a core protein
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to which chains of the glycosaminoglycan, heparan sulfate (HS),
are covalently bound. HSPGs are wildly expressed and released
by most types of tumor cells (133) and have known essential
effect on furnishing the myelopoiesis microenvironment (134).
Early studies have implicated that these structures may play an
important role in regulating splenic EMH in tumor conditions
(135, 136), but the exact mechanism remains to be further
explored and validated. Nevertheless, these potential mechanisms
exemplify how the tumor remotely expands the splenic HSPC
response and regulates splenic myelopoiesis.

To date, we have limited information about the mechanism
by which tumors systemically modulate the scale, functional
characteristics, and output of splenic HSPC responses. Several
important questions warrant investigation. For example, do
the systemic factors derived from the tumor qualitatively
and quantitatively affect splenic EMH and myelopoiesis to
the same extent as they impact BM hematopoiesis? In
addition, although splenic EMH is myeloid-biased in early
stages, cancer-induced EMH also generates unique tumor-
promoting cells of the erythrocytic lineage in late-stage
cancers (99–101); what tumor-derived signals through which
mechanism mediates this functional shift of splenic EMH?
A better understanding of these issues is crucial to delineate
cancer-associated myelopoiesis and myeloid cell responses
and pave the way to developing novel strategies for cancer
immunotherapy (Figure 2).

CLINICAL RELEVANCE OF SPLENIC
MYELOPOIESIS IN CANCER

Splenic EMH in Humans
Although the role of splenic EMH in tumor-induced
myelopoiesis and disease progression is increasingly being
appreciated in animal models, it remains largely unknown
whether the same is true in cancer patients. Previous studies
in human subjects suggested that there is very limited
hematopoiesis in the fetal spleen (81, 121) and that adult
spleens from individuals without EMH (exemplified by
increased circulating HSPC numbers) do not contain committed
hematopoietic progenitors (137). Thus, it has been speculated
that the human spleen may not function as an EMH site for
alteredmyelopoiesis. However, this view has been challenged by a
growing body of more recent data. First, a study using functional
identification assays demonstrated that although the frequency
of early colony-forming units (CFUs) in the spleen of healthy
adults was significantly lower than that in the BM, the frequency
of cobblestone area-forming cells in long-term stromal cultures
and the frequency of secondary CFUs in long-term culture-
initiating cells (both assays determine the long-term HSCs) were
comparable in the spleen and BM (138). These results suggest
that the human spleen is an important reservoir of dormant early
HPCs or even HSCs at steady state. Second, the significant role
splenic EMH plays in human pathology is now emerging. The
expansion of splenic HSPCs has been observed in patients with
osteopetrosis (137), myelofibrosis (139), and acute myocardial
infarction (88), supporting the hypothesis that the spleen is the

preferred site for extramedullary “emergent” hematopoiesis in a
wide spectrum of pathological conditions.

We found that in cancer, in addition to the generalized
myeloid bias in the circulating HSPC compartment from various
patients with solid tumors, there is a positive correlation between
the levels of circulating GMPs and clinical stages in patients
with hepatocellular (HCC), cervical and colorectal carcinomas.
Moreover, within a small group of HCC patients, Kaplan-Meier
analysis revealed that the frequency of GMPs was negatively
correlated with the time to progression (35). Accordingly,
elevated proportions of HSPCs in the circulation were also found
in newly diagnosed cancer patients with rhabdomyosarcoma
and breast cancer and correlated with an increased risk for
metastatic relapse (69). These data indicate that there is a
correlation between heightened EMH and the progression of
human cancer. Moreover, the spleen has been reported to be a
site of cancer-related EMH in metastatic carcinomas of different
origins, including lung, breast, prostate, and kidney (140). We
and others have confirmed and extended this observation by
showing the splenic accumulation of HSPCs and myeloid cells in
patients with different types of solid tumor (34, 37). In a cohort
of patients with gastric cancers, the accumulation of HSPCs was
inversely correlated with reduced overall survival after surgery
(34, 37). However, larger-scale studies are required to confirm the
clinical relevance of splenic EMH in cancer and to test the utility
of HSPC number and phenotype in circulation as biomarkers
to predict disease progression and the therapeutic response in
cancer patients.

Impact of Splenectomy on Malignancy
To date, most clinical data regarding the impact of spleen
function on malignancy come from studies on splenectomized
patients. These studies relate to issues in two categories: (1)
whether splenectomy predisposes one to increased or reduced
risk of tumorigenesis and (2) the effect of splenectomy on
tumor growth, progression, and relapse. For the first issue,
epidemiological studies have observed that splenectomy is
followed by increased risk for a large array of solid tumors and
hematological malignancies (141–143). This finding is supported
by a recent population-based cohort study demonstrating that
people with splenectomy have an increased risk of developing
overall cancer, as well as certain site-specific cancers, especially
patients with non-traumatic conditions (144). These results
suggest that the normal spleen plays an immune surveillance role,
protecting against tumor development.

For the second issue, the effect of splenectomy pertaining
to cancer progression has also been studied, but the evidence
remains inconclusive. Studies on concomitant splenectomy in
patients with gastric, colon, liver, and pancreatic cancers have
shown marginal, if any, effects on the disease-free and overall
survival of patients (145). Among these data, it may be of
particular interest to look at the results from liver cancer
because the so-called “liver-spleen axis” in liver disease is now
gaining increasing attention (146–149). Liver transplantation
(LT) has been established as a standard treatment for patients
with HCC who meet the Milan criteria. Splenectomized LT
patients benefit from increased platelet counts, but they suffer
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risks, including increased operation time, intraoperative blood
loss, intraoperative red blood cell transfusion, and postoperative
complications (150). Splenectomy improves patient prognosis
but only in a subgroup of patients with an increased neutrophil-
lymphocyte ratio (NLR) and increased infiltration of CD163+

TAMs in the tumor stroma, both of which are indicative of
enhancedmyelopoiesis (151). However, whether the abolishment
of splenic myelopoiesis is directly involved in the therapeutic
effect of splenectomy and the mechanisms by which splenic
EMH, or lack thereof, may influence cancer progression and
treatment are yet to be elucidated.

TARGETING CANCER-INDUCED SPLENIC
MYELOPOIESIS

One explanation for the modest effect of splenectomy on tumor
progression in both patients and mice is that the spleen is
a multifunctional organ. As noted before, the spleen is an
important organ for blood homeostasis and is a reservoir of
various immune and blood cell populations that have differential
impacts on tumor progression via diverse mechanisms. The
ultimate impact of splenectomy on cancer patients is determined
by the net balance of these known or still unknown factors,
dependent on the individual’s status. Therefore, an enhanced
strategy is to seek a selective treatment modality that specifically
targets protumoral splenic EMH while maintaining the normal
physiological and antitumoral immune functions of the spleen
(Figure 2).

In this context, Ugel et al. evaluated a large panel of
conventional chemotherapeutic agents for their ability to
eliminate splenic committed myeloid precursors. Low-dose 5-
fluorouracil (5-FU) treatment, for example, could reduce the
splenic (but not BM) expansion of committed precursors
with high proliferative potential, restore antitumor immunity,
and enhance the efficacy of ACT, recapitulating the effect of
splenectomy (38). We recently found that a low-dose c-Kit
inhibitor inhibits proliferation, induces apoptosis, and thus
reduces the total number of upstream early HSPCs in the spleen
but has a much smaller effect on those in the BM. Moreover, low-
dose c-Kit inhibitor treatment attenuates endogenous GM-CSF
expression in splenic HSPCs, inhibits the suppressive functions
of tumor PMN-MDSCs, and synergistically increases the efficacy
of immune checkpoint blockade (37). Why splenic HSPCs
and committed myeloid precursors are more sensitive than
their BM counterparts to such treatments is presently unclear.
One possibility might be due to the anatomical structure and
physiological function of the spleen, which often causes drug
retention. Another possibility for the differential effects could
be the distinct cellular characteristics of the BM and splenic
HSPCs in tumor-bearing hosts. If so, a better understanding of
the biological features of splenic HSPCs and myeloid precursors
may provide a molecular basis for the development of novel
therapeutic strategies to selectively target splenic myelopoiesis.

In addition to the regulation of splenic HSPC proliferation
and survival, the specific abrogation of cancer-induced
myelopoiesis could also be achieved by targeting the recruitment

and retention of splenic HSPCs. In this scenario, the CCL2/CCR2
axis is attracting particular interest and plays multiple important
roles in systemic tumor-associated myeloid cell responses.
This axis mediates the migration of BM monocytes into the
bloodstream (152), guides monocytes to the marginal zone of
the spleen (38), and directs the infiltration of monocytes in
the tumor (34, 153, 154). Moreover, as noted before, CCR2
expression identifies an upstream subset of circulating HSPCs
that can respond to splenic CCL2 and home to the splenic niche
(38). Thus, CCR2-specific antagonists may act as multivalent
inhibitors targeting multiple events of cancer-induced myeloid
cell responses. Currently, a number of clinical trials have
been established to investigate the safety and efficacy of CCR2
inhibitors, including CCX872-B, PF-04136309, MLN1202, and
BMS-813160, for the treatment of solid tumors [reviewed in
(155)]. In addition, CD47 and AngII have been revealed as
critical mediators of splenic HSPC retention and expansion.
Blocking these signaling pathways may inhibit tumor-promoting
splenic myelopoiesis, as shown in mouse models (75, 122).
Nevertheless, the translational values of these findings need to
be further investigated in cancer patients to validate whether
the blockade of these signals will be effective and beneficial and,
importantly, whether the therapeutic effects rely on the impact
on altered myelopoiesis in the spleen.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The emerging field of cancer-induced hematopoiesis, EMH in
particular, complements and completes our knowledge of tumor-
associated myeloid responses. The spleen, as the main EMH
site in tumor-bearing hosts, generates significant amounts of
myeloid cells that continuously replenish the large and rapidly
turned over pool but is functionally and mechanistically different
from that in the BM. The understanding of the unique splenic
myelopoiesis opens a new avenue of myeloid cell-targeting
strategies, which pursue the goal of restraining systemic tumor-
promoting myeloid responses at their source.

From the therapeutic perspective, splenic myelopoiesis may
be the “weakest link” in the chain of myeloid cell reactions
because the spleen is a rather pharmacodynamically favorable
organ due to its anatomical structure and the large blood
flow (75). In addition, splenic HSPCs, partially due to their
highly proliferative nature and residence in a less protective
niche, are more vulnerable to targeted drugs than their BM
counterparts and downstream myeloid descendants (37, 38).
Therefore, targeting splenic myelopoiesis holds real potential to
restrain tumor-promoting myeloid cell responses and to tip the
balance toward tumor suppression. A better understanding of the
functional specialization and regulatory mechanism of splenic
myelopoiesis will provide the keys to controlling myeloid cell
responses at the source.

Finally, more human data are needed to demonstrate the
clinical relevance of splenic myelopoiesis in cancer patients.
Studies on cancer-induced splenic myelopoiesis in humans are
hampered by the limited availability of spleen samples, the poorly
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defined phenotypes and functions of the highly heterogeneous
circulating HSPC subsets, and the unclear nature of the
splenic niche constitution. In situ studies using novel multiplex
staining and detection methods, lineage-tracing and imaging
techniques, and informative tools and statistical modeling would
be invaluable for identifying disease-specific splenic myelopoiesis
patterns. Single-cell analyses, such as cytometry by time of
flight (CyTOF) and single-cell RNA sequencing, can help to
reveal the heterogeneity of splenic HSPC populations in different
conditions. Dynamic modeling using in vitro experiments will
be crucial to identify key regulatory pathways and search for
checkpoints that are susceptible to therapy. These advanced
methodologies and experimental models will not only facilitate
human studies but also facilitate the translation of clinical
insights back to improvements in mouse models, which may
produce applicable and precise therapeutics. Such parallel studies
may provide a long sought-after means to reshape the tumor

immune micro- and macroenvironment by rerouting myeloid
cell responses.
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