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Abstract

In a compartmental epidemic model, the initial exponential phase reflects a fixed interaction

between an infectious agent and a susceptible population in steady state, so it determines

the basic reproduction number R0 on its own. After the exponential phase, dynamic com-

plexities like societal responses muddy the practical interpretation of many estimated

parameters. The computer program ARRP, already available from sequence alignment

applications, automatically estimated the end of the exponential phase in COVID-19 and

extracted the exponential growth rate r for 160 countries. By positing a gamma-distributed

generation time, the exponential growth method then yielded R0 estimates for COVID-19 in

160 countries. The use of ARRP ensured that the R0 estimates were largely freed from any

dependency outside the exponential phase. The Prem matrices quantify rates of effective

contact for infectious disease. Without using any age-stratified COVID-19 data, but under

strong assumptions about the homogeneity of susceptibility, infectiousness, etc., across dif-

ferent age-groups, the Prem contact matrices also yielded theoretical R0 estimates for

COVID-19 in 152 countries, generally in quantitative conflict with the R0 estimates derived

from the exponential growth method. An exploratory analysis manipulating only the Prem

contact matrices reduced the conflict, suggesting that age-groups under 20 years did not

promote the initial exponential growth of COVID-19 as much as other age-groups. The anal-

ysis therefore supports tentatively and tardily, but independently of age-stratified COVID-19

data, the low priority given to vaccinating younger age groups. It also supports the judicious

reopening of schools. The exploratory analysis also supports the possibility of suspecting

differences in epidemic spread among different age-groups, even before substantial

amounts of age-stratified data become available.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0254145 July 13, 2021 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Spouge JL (2021) A comprehensive

estimation of country-level basic reproduction

numbers R0 for COVID-19: Regime regression can

automatically estimate the end of the exponential

phase in epidemic data. PLoS ONE 16(7):

e0254145. https://doi.org/10.1371/journal.

pone.0254145

Editor: Nicholas S. Duesbery, Ochsner Clinic

Foundation: Ochsner Health System, UNITED

STATES

Received: February 23, 2021

Accepted: June 18, 2021

Published: July 13, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0254145

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

https://orcid.org/0000-0001-6207-1419
https://doi.org/10.1371/journal.pone.0254145
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254145&domain=pdf&date_stamp=2021-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254145&domain=pdf&date_stamp=2021-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254145&domain=pdf&date_stamp=2021-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254145&domain=pdf&date_stamp=2021-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254145&domain=pdf&date_stamp=2021-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254145&domain=pdf&date_stamp=2021-07-13
https://doi.org/10.1371/journal.pone.0254145
https://doi.org/10.1371/journal.pone.0254145
https://doi.org/10.1371/journal.pone.0254145
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


Introduction

Historically, compartmental models of epidemics derive from the Susceptible-Infectious-

Recovered (SIR) model of Kermack and McKendrick [1–3]. In classical compartmental mod-

els, epidemics have a distinctive beginning, middle, and end. In the beginning, an epidemic

has an exponential phase, growing as exp(rt), where r is the exponential growth rate. The initial

exponential growth rate r is an observable that constrains the basic reproduction number R0

(e.g., [4–6]), the expected number of secondary infections produced by a typical infected indi-

vidual during its entire period of infectiousness in a completely susceptible population [7]. In

the middle of the epidemic, the basic reproduction number R0 provides a baseline for quantify-

ing how dynamic variables like societal responses and the depletion of susceptibles affect epi-

demic spread. Finally, in the end of the epidemic, R0 constrains the total count of individuals

infected by the epidemic as the population returns to a steady state [8–10].

The beginning of an epidemic therefore displays a simplicity lacking during the middle of

the epidemic and its dynamic complexities [11]. In fact, the initial exponential phase develops

from a fixed interaction between an infectious agent and a population in steady state. In con-

trast, the dynamic complexities of the middle, particularly societal responses, muddy the inter-

pretation of estimated parameters. Although biology analyzes ever more comprehensive

amounts of data, confident human interpretation remains practically useful. With a view to

narrowing the complexities muddying interpretation, the demarcation of the exponential

phase of an epidemic is therefore a worthwhile aim.

Though arbitrary, a transitional boundary demarcating the exponential phase therefore serves a

purpose, and individuals can often concur on such transitional boundaries to within useful accura-

cies (e.g., see Fig 1 of the Results). The ARRP computer program in sequence alignment demarcates

similar transitional boundaries automatically [12]. When estimating statistical parameters for the

popular BLAST suite of sequence comparison programs [13–15], Monte Carlo simulations gener-

ate data points (t, y) that approach a horizontal line as t tends to infinity (to motivate the discourse,

see Fig 2 of [12] for an example). To extract the constant at infinity, ARRP performs a so-called

asymptotic regression, a procedure related closely to change-point regression [16]. Change-point

regression specifies two statistical models, one for each side of a change-point, and then estimates

the unknown position of the change-point. In contrast, asymptotic analysis specifies only a single

model, e.g., in the sequence alignment application above, the model for the asymptotic regime near

infinite t. Conceptually, ARRP moves leftward from infinite t, accumulating the data points (t, y) in

a list. During the accumulation, ARRP estimates model parameters from each list. Eventually, the

residuals for the leftmost points (t, y) display a single sign, as their bias comes to dominate the sta-

tistical noise, signaling systematic departure from the model for the asymptotic regime. Formally,

ARRP calculates a transitional boundary by minimizing a penalized leftward cumulative sum of

normalized residuals over all lists (for further details, see the original article [12]).

Asymptotic regression mimics curve-fitting by the human eye. In many semi-logarithmic

plots of COVID-19 cases (e.g., see Fig 1 of the Results or Fig 1 in [17]), the eye can follow the

case counts as a line moving rightward out from the logarithmic Y-axis. Eventually, the case

counts start to lie systematically below the line, and the rightward “cumulative sum of normal-

ized residuals” strains human credulity in the implicit linear regression. The exponential phase

of COVID-19 case curves has a known simple model, before it transitions to a dynamic regime

in the epidemic. In the sequence alignment application, the known model applies to the

asymptotic (i.e., infinite) regime to the right of a transitional boundary. By contrast, in com-

partmental models of epidemics, the known model applies near the Y-axis. When applied to

epidemics, therefore, asymptotic regression might be more appropriately termed “regime

regression”, the term used throughout the present article.
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Regime regression does not require human supervision. For each country with pertinent

COVID-19 data, the present article uses ARRP to demarcate a transitional boundary. ARRP

then performs a weighted linear regression to estimate the initial exponential growth rate r as a

mean with a standard error mean. Throughout, the present article makes an “iso-distributional

assumption”, that the random generation time of SARS-CoV-2 infection has (approximately)

the same distribution the world over, regardless of who infected whom [18]. The generation-

time distribution then determines R0 for every country [5], using r according to the “exponen-

tial growth method” [19].

Using stronger assumptions, the Prem contact matrices [20] also determine R0 [21]. The

Prem contact matrices stratify the contact rates in 152 countries into 16 different age-groups.

Each Prem contact matrix corresponds to a 16-by-16 next-generation matrix whose elements

stratify according to age the expected number of secondary infections from a primary infection

in a completely susceptible population [22]. Hilton and Keeling [21] noted that for each coun-

try, the Prem contact matrix determines R0 if the Prem contact matrix is proportional to the

next-generation matrix, with a fixed, known constant of proportionality.

The present article makes the iso-distributional assumption and estimates the initial expo-

nential growth rates r for 160 countries by applying the ARRP program for regime regression

to unstratified COVID-19 case data. It then compares R0 estimated from the growth rates r to

R0 estimates derived from the Prem contact matrices. The primary aim of the present article is

Fig 1. ARRP regime regression of the initial COVID-19 growth, illustrated with 4 countries. Fig 1 plots the

smoothed new cases on a logarithmic axis against the days since the first day with at least 30 smoothed new cases. Fig 1

shows the exponential phase in 4 countries chosen for illustrative purposes, from top to bottom: Spain EPS (red circles),

Germany DEU (orange squares), Australia AUS (green triangles), and United Arab Emirates ARE (blue circles). In the

notation of the subsection “Regime regression” in the Materials and Methods, the points plotted are (t, y±ε). Each dotted

line displays an ARRP regime regression, described in the Materials and Methods. The largest X-coordinate of each line

indicates the estimated transitional boundary terminating the exponential phase of the epidemic: Day 11 (EPS), 18

(DEU), 13 (AUS), or 19 (ARE). In the same order, the 4 countries yielded slopes r from the semi-log graph in Fig 1: 0.34,

0.24, 0.19, or 0.14. Generally, ARRP and visual estimation locate similar post-exponential transitions, particularly for: (1)

a large regression slope (ESP or DEU); (2) large smoothed case numbers y, with concomitantly small errors ε (ESP or

DEU); (3) a large fall in cases immediately after the post-exponential transition, possibly due to lockdowns or other non-

pharmaceutical interventions (AUS); and (4) relatively little unmodeled, systematic noise in the data (AUS).

https://doi.org/10.1371/journal.pone.0254145.g001
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to present regime regression as a tool in the compartmental modeling of epidemics. To focus

its aim, therefore, it avoids analyzing age-stratified COVID-19 data. It does, however, explore

tangentially the possibility that certain age-groups, notably children and adolescents, contrib-

uted negligibly to the COVID-19 epidemic by examining how ad hoc deletion of age strata

from the Prem matrices affected the corresponding estimates of R0.

Materials and methods

The Supplementary Information gives complete URLs for all files downloaded in this study.

UN ISO 3166–1 alpha-3 country codes

Throughout the study, 3-letter UN ISO 3166-1 alpha-3 Country Codes from UNSD —

Methodology.csv (downloaded from the United Nations 2020-12-07) encoded relevant coun-

tries. Because irrelevant columns had formatting errors, Python extracted the relevant data

frame only from specific columns within the file.

COVID-19 data

Our World in Data (OWID) at Oxford University provided COVID-19 data for countries

across the world in owid-covid-data.json (downloaded 2020-12-07 from OWID). The file

identified its countries with the 3-letter ISO 3166 codes above, and for dates in 2020, it

included new COVID-19 cases smoothed over 7 days as running averages. For convenience,

we call these running averages “smoothed new cases”.

Regime regression

Data selection generally followed the procedure on 2020-12-09 underlying the OWID graph

“Daily new confirmed cases of COVID-19”. For each country (k) in the OWID COVID-19 data, a

script discarded data until the first date with 30 smoothed new cases, which it designated Day t(k)

= 0. Then, the script then captured the smoothed new cases on Days t(k) = 0,1,2,. . . until T(k), the

first day either lacking data, or having 1.0 or less smoothed new cases. Regression requires at least

2 points, so the script discarded any country (k) with T(k)�1. The standalone program ARRP Ver-

sion 1.1 (within ARRP_1.1.zip downloaded from the National Center for Biotechnology Informa-

tion 2020-07-14) performed regime regression. ARRP had its default settings except for its option

-include left, which forced it to include t(k) = 0 in the exponential phase. For each country, ARRP

estimated the transitional boundary terminating the exponential phase of the epidemic, when the

smoothed case numbers first displayed a cumulative bias exceeding estimated random errors.

ARRP has 3 columns in its input files. For each country (k), they were: (1) t, where 0�t =

t(k)<T(k); (2) y = lnY, the natural logarithm of the smoothed number of new cases Y = Y(k)(t);
and (3) ε, the estimated error in y.

To estimate ε, consider a Poisson variate X with mean EX ¼ l and variance σ2(X) = λ. The

Supplementary Information presents approximations ElnX � lnl and σ(lnX)�λ−1/2�X−1/2

for λ�30 (see Fige 5 in [23] for direct numerical support of the approximations). Because of

incomplete reporting and subclinical COVID-19 cases [24], the unsmoothed count of new

cases is likely sparsely sampled from all cases, so it is reasonably approximated by a Poisson

variate. If Y under consideration were the unsmoothed new case count, therefore, the estimate

ε = σ(lnY)�Y−1/2 would be reasonable. Preliminary visual inspection of graphs using

smoothed new cases showed that under the Poisson error ε�Y−1/2, however, ARRP consis-

tently over-estimated the duration of the exponential phase. ARRP often included in it an

obvious downward curvature away from exponential growth, because if noise estimates are
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inflated, ARRP becomes insensitive to systematic biases. The smoothed new casesY are run-

ning averages over 7 days, however, so ARRP actually used the reduced error ε�(Y/7)−1/2, as

justified in the Supplementary Information. ARRP estimates the initial slope of the (t,y±ε)-

plot and provides an estimate with error r±Δr for the exponential growth rate, where the initial

COVID-19 epidemic growth is proportional to the exp(rt).

The exponential growth method [19]

Under the iso-distributional assumption, the initial exponential growth rate r and the basic

reproduction number R0 satisfy the equation

R0Mð� rÞ ¼ R0E½expð� rTÞ� ¼ 1; ð1Þ

where E denotes mathematical expectation; T, the random generation time for the infectious

disease; and MðsÞ ¼ E½expðsTÞ�, the moment-generating function of T [5]. If the generation

time T has a gamma distribution with mean m ¼ ET and dispersion parameter κ = σ2(T)/μ2,

then MðsÞ ¼ E½expðsTÞ� ¼ ð1 � smkÞ� 1=k
. Eqs (5) and (6) in the Supplementary Information

show that a linear approximation, any error Δr in r±Δr propagates to the estimated R0 as

R0 ¼
1

Mð� r � DrÞ
¼ ð1þ rmkÞ1=k 1�

m

1þ rmk
Dr

� �

: ð2Þ

To estimate the distribution of the generation time T, the serial time has the same mean μ
and is relatively easy to estimate. A fixed effects model in a meta-analysis estimated the mean

serial time in COVID-19 infection as μ = 5.40 [25]. The serial time usually has a larger variance

than the generation time [26], but very few articles give separate estimates for generation and

serial intervals. One such article estimated the standard deviation of the generation time in

Singapore as σ = 1.72, however [27]. The tab “R0 vs gen time (mu, kappa)” in the S1 File calcu-

lates R0 from μ and κ numerically, showing that R0 is insensitive to plausible errors in σ. For

example, our chosen estimates μ = 5.40 and σ = 1.72 lead to R0 estimates with no more than

20% error for 5.19<μ = 5.40<5.61 and 1.50<σ = 1.72<2.50.

For fixed r, elementary calculus shows that R0 is an increasing function of μ and a decreas-

ing function of σ. All estimates of R0 therefore change in in the same direction in response to

errors in μ, and likewise to errors in σ, enhancing the robustness of scientific conclusions

against perturbations in μ and σ.

Preliminary regime regressions used unsmoothed new cases

OWID only recently added data with smoothed new cases, presumably because the

unsmoothed data had obvious reporting biases, e.g., due to the day of the week. With large

unmodeled errors in unsmoothed data, ARRP truncated some of the estimated exponential

phases prematurely, and some of its R0 estimates then exceeded the current consensus that

R0�6 (e.g., [21, 28–30]). Even with the unsmoothed data, all anomalous R0 estimates disap-

peared, when scripts discarded any exponential phase with a duration of less than 7 days.

Smoothed new cases eliminated the need for the 7-day threshold, or indeed, any other thresh-

old for minimum duration of the exponential phase.

Estimation of the basic reproduction number R0 from Prem contact matrices

For 152 countries (k), a 16-by-16 Prem contact matrix C = kCa,bk = C(k) stratifies their popula-

tion into ½-decades by age up to 80 years [20], with the elements Ca,b estimating an effective

contact rate by which a person in Stratum b can transmit infectious diseases to a person in
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Stratum a. The contact rate Ca,b influences Ra;b ¼ RðkÞa;b, the average number of secondary infec-

tions in Stratum a caused in a completely susceptible population by a single infected individual

in Stratum b [22]. Let the spectral radius ρ(R) denote the dominant (largest non-negative)

eigenvalue of the next-generation matrix R = kRa,bk. The basic reproduction number R0 ¼

RðkÞ0 ¼ rðRÞ is the average number of secondary infections caused by a typical infected individ-

ual in a completely susceptible population [7].

Define the basic contact rate C0 ¼ CðkÞ0 ¼ rðCÞ, and make a strong homogeneity assump-

tion, that a population is (probabilistically) homogeneous in every property relevant to an

infectious disease, with the single exception of the contact rates in the matrix C. Then within

the population, susceptibility, infectiousness, and disease characteristics like generation time,

e.g., do not vary systematically, so the matrices R and C are proportional [21]. Proportionality

implies that R0/C0, i.e., there exists some constant α, such that RðkÞ0 ¼ aC
ðkÞ
0 for each country

(k).

The Prem_2020 Contact Matrices (downloaded 2020-07-14 from PLoS) contained the

Prem contact matrices for all locations (home, work, school, and other) in MUestimates_all_

locations_1.xlsx and MUestimates_all_locations_2.xlsx. An online site converted the Excel

files to JSON, so another script could separate the tabbed Prem contact matrices into multiple

files, denoted [3-letter ISO 3166 country code].csv by country. The statsmodels routine (Ver-

sion 0.12.1) from NumPy in Python calculated dominant eigenvalues like C0 ¼ CðkÞ0 for each

country (k).

Now, weaken the strong homogeneity assumption, so that homogeneity holds as before,

with the sole exception that only certain age-strata A transmit the disease. Consider the princi-

pal submatrix CA of the Prem contact matrix C formed by elements Ca,b (a,b2A), i.e., elements

whose row index a and column index b both lie in A. Define a modified basic contact rate

C0;A ¼ CðkÞ0;A ¼ rðCAÞ. Under the modified homogeneity assumption, R0/C0,A, i.e., there exists

some constant α, such that RðkÞ0 ¼ aC
ðkÞ
0;A for each country (k). The Supplementary Information

discusses the interpretation of the modified basic contact rate C0,A at greater length.

Results

All graphical results also appear numerically in the S1 File.

The figures below display choropleths of the world, colored according the duration of the

exponential phase (Fig 2), the exponential growth rate r (Fig 3), and the basic reproduction

number R0 (Fig 4). (The S1 File also contains a choropleth for the exponential doubling time td
= ln2/r, but the distribution of td diverges more from a uniform distribution than the distribu-

tion of r, so because choropleths are linearly-colored, the choropleth for td is less informative

than the choropleth for r.)
Gray regions in the choropleths either lacked COVID-19 data (e.g., Turkmenistan TKM; or

People’s Republic of Korea PRK) or did not meet the initial threshold of 30 smoothed new

cases on two consecutive days, as described in the Materials and Methods (e.g., Tanzania TZA;

Congo COG; Chad TCD; Togo TGO; Eritrea ERI; Bhutan BTN; or Laos LAO).

The choropleths therefore provide a comprehensive quantitative visual summary of the

exponential phase of COVID-19 for countries worldwide. Many qualitative features are of

course well known, such as the aggressive initial spread of COVID-19 in industrialized coun-

tries and the slow initial spread in Africa. Of particular interest later, the largest initial slopes as

estimated here were Spain ESP (0.34 day−1), Iran IRN (0.34 day−1), United States USA (0.30

day−1), Turkey TUR (0.29 day−1), and Germany DEU (0.24 day−1), all readily visible in Fig 3,

with the possible exception of Germany DEU. The basic reproduction number R0 in Fig 4 is an
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increasing function of the exponential growth rate r in Fig 3, so it emphasizes the same numer-

ical contrasts as Fig 3, but perhaps more strikingly.

Table 1 provides estimates of the initial exponential growth r for four European countries

from [19]; Table 2, the corresponding estimates from regime regression. The estimates in

Table 1 represent the best model fit of case counts to an exponential curve over all possible

start and end dates for the exponential phase. Table 1 displays the countries, the start and end

dates of the best fit for each country, and the corresponding estimate of r. The countries are in

descending order of their slopes as estimated by regime regression in Table 2.

Table 2 below includes Iran (for later purposes) and all countries in Table 1, but the esti-

mates are from regime regression. In Table 2, the estimated errors in the slope (not shown) are

all between about ±0.01 and ±0.02. The exponential growth method of estimating R0 requires

the characterization of the generation time distribution, which has improved between the pub-

lication of [19] and the present article. Unlike Table 1, therefore, Table 2 includes estimates of

R0.

The slopes for Spain and Italy in Table 2 accord reasonably well with Table 1, and the corre-

sponding R0 estimates here (5.35 and 2.82) also accord reasonably well with R0 estimated else-

where (6.00 and 3.60). The slopes for France are in discord, but R0 estimated here (2.69)

Fig 2. The duration of the initial exponential phase of COVID-19 growth in different countries. Fig 2 shows the

duration of the initial exponential phase of COVID-19 growth, as computed by the regime regression illustrated in Fig

1. Fig 2 colors countries darkening linearly from lightest blue (4 days for Sao Tome and Principe, STP) up to darkest

blue (256 days for Ukraine, UKR). Python GeoPandas generated Fig 2.

https://doi.org/10.1371/journal.pone.0254145.g002

Fig 3. The exponential growth rate r in the exponential phase of COVID-19 in different countries. On one hand,

Fig 2 shows the duration of the initial exponential growth of COVID-19 as computed by regime regression; on the

other, Fig 3 shows computed initial exponential growth rate r. Fig 3 colors countries by darkening linearly from

lightest red (r = 0.34 days−1 for Spain ESP) down to darkest red (r = −0.30 days−1 for Equatorial Guinea GNQ).

Predictably, the duration characterizing the initial exponential growth in Fig 2 is negatively correlated with the slope in

Fig 3 (Pearson correlation coefficient = −0.33). Python GeoPandas generated Fig 3.

https://doi.org/10.1371/journal.pone.0254145.g003
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accords well with R0 estimated for France elsewhere (2.90). Germany presents the main dis-

cord in Table 2, both in slope (0.24 vs 0.34 in Table 1) and in the estimated R0 (3.37 vs the esti-

mate of 5.46 cited from Table 3 in [29]). Accordingly, Germany provides an instructive case

for closer examination in the Discussion.

Under the strong homogeneity assumptions in the Materials and Methods, Fig 5 would dis-

play a linear relationship through its origin, which it palpably does not. The legend in the

upper right of Fig 5 identifies the region containing each country with a marker of characteris-

tic color and shape. The dominant eigenvalues C0 of the Prem contact matrices therefore

appear to separate countries by regions better than they introduce any ordered pattern into the

R0 estimates on the Y-axis.

In contrast to Figs 5 and 6 has a relatively simple compact cluster structure, arguably the

simplest structure of all similar figures in the Supplementary Information derived from princi-

pal submatrices of the Prem contact matrices. Moreover, an Excel unweighted linear regres-

sion through (0, 0) of the 5 topmost points (DEU, TUR, USA, ESP, and IRN) yields R2 =

−0.051 (slope 0.30) in Fig 5 but R2 = 0.860 (slope 0.44) in Fig 6. (Regression without an inter-

cept can yield a negative R2.) For descriptive purposes, therefore, the unweighted R2 quantita-

tively reinforces the impression that the 5 topmost points have moved closer to the ideal of a

straight line through (0, 0). Table 2 contains citations that estimated R0 in various countries.

The citations accord well with R0 for Spain and Iran in Figs 5, 6. The Discussion examines the

discordant R0 for Germany. Articles estimating R0 for the whole of the United States or the

whole of Turkey were not found.

Discussion

Not every epidemic has an initial exponential phase [34–36]. If it does, however, regime regres-

sion can estimate the end of the exponential phase automatically and reproducibly, helping to

Fig 4. The estimated basic reproduction number R0 of COVID-19 in different countries. Eq (2) estimates the basic

reproduction number R0 as an increasing function the exponential growth rate r. On one hand, Fig 3 shows the initial

exponential growth rate r; on the other, Fig 4 shows the corresponding basic reproduction number R0. Fig 4 colors

countries by darkening linearly from lightest red (R0 = 5.35 for Spain ESP) down to darkest red (R0 = 0.17 for

Equatorial Guinea GNQ). Python GeoPandas generated Fig 4.

https://doi.org/10.1371/journal.pone.0254145.g004

Table 1. Initial exponential growth r from estimates in bold from Table 1 of [19].

Country Start End Slope

Spain 19-Feb 9-Mar 0.30

Germany 21-Feb 9-Mar 0.34

Italy 23-Feb 9-Mar 0.21

France 23-Feb 9-Mar 0.34

https://doi.org/10.1371/journal.pone.0254145.t001
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estimate initial parameters like R0 and possibly the date when non-pharmaceutical interven-

tions like lockdowns first took effect [37]. Some important epidemic parameters, e.g., trans-

mission rates β or recovery rates γ, may be more conveniently estimated after the end of the

exponential phase, in which case the corresponding truncation of epidemic data has limited

utility. Implicitly, however, estimates of such dynamic parameters like β or γ may fluctuate

because of societal responses, temporary biases in reporting, etc. Regime regression can trun-

cate epidemic data, thereby eliminating dynamic complications that can muddy the interpreta-

tion of estimates of initial parameters like R0 [11].

The exponential phase may suffer its own dynamic complications, e.g., reporting and test-

ing capacity may fluctuate during the exponential phase. Estimates of the initial exponential

growth are unlikely to suffer greatly, however, unless the dynamism shows wide fluctuations

during the initial exponential phase. If fluctuations are narrow, they do not contribute substan-

tially to the exponent, only to its prefactor. One should note, however, that the initial exponen-

tial phase may not be representative of the societal steady state, particularly if the society has

prepared for the coming epidemic. Countries may vary substantially in their preparations,

with corresponding distortions of their societal steady states.

Table 2. Initial exponential growth r estimated by regime regression.

Country Start End Slope R0 R0 (Citation)

Spain 5-Mar 16-Mar 0.34 5.35±0.34 6.00 [29]

Iran 27-Feb 7-Mar 0.34 5.35±0.45 4.70 [31]

Germany 4-Mar 22-Mar 0.24 3.37±0.11 5.46 [29]

Italy 24-Feb 15-Mar 0.20 2.82±0.34 3.60 [32]

France 4-Mar 23-Mar 0.19 2.69±0.08 2.90 [33]

https://doi.org/10.1371/journal.pone.0254145.t002

Fig 5. R0 from Fig 4 vs the dominant eigenvalue C0 of the Prem contact matrix. Fig 5 plots R0 from Eq (2) with

error against the basic contact rate, the dominant (largest non-negative) eigenvalue C0 of the Prem matrix [20]. The

3-letter codes label the countries (the S1 File also gives the same information as Fig 5, but in tabular form). Red squares

indicate countries in Africa; yellow diamonds, in the Americas; green triangles, in Asia; blue circles, in Europe; purple

squares, in Oceania (i.e., in AUS & NZL). As in the Materials and Methods, consider an idealized world whose

population is (probabilistically) homogeneous in every property relevant to COVID-19, with the single exception of

having a different Prem contact matrix C for each country. In such an idealization, Fig 5 would display a straight line

through (0, 0).

https://doi.org/10.1371/journal.pone.0254145.g005
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In COVID-19, primary infections vary widely in the secondary infections they induce [38,

39]. An epidemic like COVID-19 may therefore have a pre-ignition phase where it sputters,

with repeated introductions and extinctions in a population, before igniting in the exponential

phase that begins an epidemic. Following OWID, therefore, the present article took the first

day with 30 cases after 7-day smoothing as the ad hoc beginning of a country’s COVID-19

epidemic.

OWID also smooths new cases over 7 days, reducing unmodeled noise due to weekly

rhythms in reporting. Smoothing improved the robustness of estimates from regime regres-

sion. Increased noise, including unmodeled noise, tends to increase the estimated duration of

the exponential phase slightly, particularly for slow initial growth (e.g., see ARE in Fig 1). Typi-

cally, if the estimated duration is inflated, it biases the estimate of the exponential growth r
downward slightly. In its original application (Monte Carlo simulation in sequence align-

ment), regime regression did not encounter unmodeled noise. In the present application,

unmodeled noise probably biased R0 estimates down slightly. Regime regression is automatic,

however, so it permits systematic technical improvements. In principle, further work can easily

adapt regime regression to unmodeled noise by down-weighting outliers and replacing inter-

mediate linear regressions with robust regressions [40].

Regime regression provides a principled automatic fit for the initial exponential growth,

but its estimated R0 for Germany showed a substantial discordance with a competing estimate

(3.37 vs 5.46 in Table 2). Note that: (1) R0 is an average, so its estimation should not be unduly

influenced by epidemic fluctuations like early superspreading events, and (2) the R0 estimate

for Germany (DEU) is based directly on the smoothed case counts displayed in Fig 1. Fig 1

and Table 2 show that Day 0, when smoothed case counts first exceeded 30, was 4-Mar for

Fig 6. R0 from Fig 4 vs the dominant eigenvalue of a principal submatrix of the Prem contact matrix. Fig 6 is like

Fig 5 and plots R0 from Eq (2) with error, this time against a modified basic contact rate, the dominant (largest non-

negative) eigenvalue of a principal submatrix of the Prem contact matrix [20]. The submatrix deletes rows and

columns from the Prem contact matrix if they correspond to age-groups up to 20 years. Consequently, Fig 6 has the

same interpretation as Fig 5, except that people up to 20 years old do not contribute to the dominant eigenvalue of the

submatrix or, equivalently, to the corresponding epidemic model. The deletion decreases the dominant eigenvalue of

Prem contact matrix, moving all points in Fig 5 horizontally and leftward to their positions in Fig 6. Older populations

like Germany DEU (leftmost blue circle) undergo less movement from Fig 5 to Fig 6 than younger populations like

those in Africa (red squares) The 5 topmost points (DEU, TUR, USA, ESP, and IRN) move noticeably closer to the

idealization mentioned in the legend of Fig 5, a straight line through (0, 0).

https://doi.org/10.1371/journal.pone.0254145.g006
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Germany. To ease reading, we translate all dates for Germany into “Days” on the X-axis in

Fig 1.

From Table 1, the best exponential fit for Germany [19] occurred from Day -12 to Day 5.

Possibly, the best exponential fit may have truncated the exponential phase prematurely,

before case counts grew enough to display average behavior dependably. In Fig 1, Days 9 to 16

appear linear, with large smoothed case counts from about 500 to 2000. A different study [37]

found three epidemic change-points for Germany at Day -1, Day 15, and Day 19 (3-Mar,

19-Mar, and 23-Mar), so the interval from Day -1 to Day 15 may correspond approximately to

our estimated exponential phase in Table 2, from Day 0 to Day 18.

Notably, a super-spreading event occurred in a Berlin nightclub on Day -5 (28-Feb) [41],

suggesting the possibility that random fluctuations unduly inflated estimates of the mean

parameter R0 in early case counts from Germany (examine Fig 1 near Day 0). Fig 5 and the

exploratory analysis of Fig 6 also support an expectation that Germany should have a substan-

tially lower R0 than Spain, because the Prem contact matrices yield much lower basic contact

rates for Germany than for Spain.

On the other hand, simulations elsewhere suggested that the exponential growth method

may seriously and systematically underestimate R0, specifically because it discounts early super

spreading [17]. Fig 1 displays around Day 0 for Germany the considerable effect of early super

spreading but in the opposite direction, with early fluctuations unduly and temporarily inflat-

ing the apparent exponential growth. The effect of early super spreading on R0 estimates there-

fore requires further investigation.

To simplify the initial presentation of regime regression in epidemiology, the present article

has generally avoided modeling population inhomogeneities. As an important example of

inhomogeneities in epidemics, however, asymptomatic cases may transmit COVID-19 less

than symptomatic or presymptomatic cases [42, 43]. Generally, children display fewer symp-

toms and probably transmit COVID-19 less readily than adults [44]. By its structural simplicity

relative to Fig 5 and similar graphs in the Supplementary Information, Fig 6 suggests that the

top five initial exponential growth rates of COVID-19 in various countries (Spain EPS, Iran

IRN, United States USA, Turkey TUR, and Germany DEU) are more readily explained if sub-

populations under 20 years old contributed much less to the initial epidemic transmission

than their elders. Fig 6 therefore supports suggestions elsewhere that age-specific heterogene-

ities beyond contact structure were important in the initial spread of COVID-19 [21].

Beyond the top five, the remaining countries in Fig 6 fall into two or three clusters lacking a

ready explanation. The Prem contact matrices were extrapolated from eight European coun-

tries to 152 nations, so the clusters may reflect the extrapolation. They also may reflect, e.g.,

disparate reporting biases or other dynamic factors outside the societal steady state, including

pre-adaptation to the coming epidemic. To reach definite conclusions, many studies narrow

their subject by selecting the countries under study, e.g., [24]. By contrast, the design of Figs

2–6 deliberately included as many countries as possible, to provide a global overview.

The exploratory analysis in Fig 6 with principal submatrices of the Prem contact matrices

adds to the information in Fig 5. Populations in different countries have different age-struc-

tures, so their age-specific contact rates vary. The principal submatrices therefore permitted an

age-stratified analysis, even without any age-stratified data specific to COVID-19. In principle,

the analysis could have been refined by pre- and post-multiplying each Prem contact matrix

by diagonal matrices representing age-stratified susceptibility, symptomatic fractions, and

infectivity, in the same spirit as fig 1b in [24]. Without specific age-stratified data, however, a

refined analysis seems premature, and the use of age-stratified data goes beyond the purview

of the present paper.
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In summary, vaccination, viral mutants with increased infectiousness, and population het-

erogeneity all conspire to reduce the predictive utility of R0 [11, 45], but typically R0 and its

judicious interpretation remain helpful throughout an epidemic. Fig 4 shows that the R0 esti-

mates for COVID-19 vary across countries, perhaps to a surprising degree. The countries’ pop-

ulations also vary widely in age-structure, so the R0 estimates permitted an exploratory

analysis with principal submatrices of the Prem contact matrices, suggesting that age-groups

under 20 years might not have promoted the initial exponential growth of COVID-19 as much

as other age-groups. The exploratory analysis therefore supports tentatively and tardily, but

largely independently of age-stratified data, the vaccination strategy giving low priority to

younger age groups. It also supports the judicious reopening of schools, a topic of current con-

cern [46]. It also supports the possibility of suspecting differences in epidemic spread among

different age-groups, even before substantial amounts of age-stratified data become available,

much as others have already suggested [20, 21].
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