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Abstract: After the re-introduction of African swine fever virus (ASFV) genotype II isolates into
Georgia in 2007, the disease spread from Eastern to Western Europe and then jumped first up to
Mongolian borders and later into China in August 2018, spreading out of control and reaching
different countries of Southeast Asia in 2019. From the initial incursion, along with domestic pigs,
wild boar displayed a high susceptibility to ASFV and disease development. The disease established
self-sustaining cycles within the wild boar population, a key fact that helped its spread and that
pointed to the wild boar population as a substantial reservoir in Europe and probably also in
Asia, which may hinder eradication and serve as the source for further geographic expansion.
The present review gathers the most relevant information available regarding infection dynamics,
disease pathogenesis and immune response that experimental infections with different ASFV isolates
belonging to genotype I and II in wild boar and feral pigs have generated. Knowledge gaps in
areas such as disease pathogenesis and immune response highlights the importance of focusing
future studies on unravelling the early mechanisms of virus-cell interaction and innate and/or
adaptive immune responses, knowledge that will contribute to the development of efficacious
treatments/vaccines against ASFV.
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1. General Aspects of African Swine Fever and the Current Situation

Currently, African swine fever (ASF) constitutes the biggest threat faced by the world pork
industry in decades. ASF is a devastating haemorrhagic infectious disease which affects domestic and
wild suids (all Sus scrofa) of all breeds and ages, with high lethality often up to 90–100% in naïve animals.
There is no treatment or effective vaccine commercially available. The causative agent, African swine
fever virus (ASFV), is a large and complex double-stranded DNA arbovirus that is the only member of
the Asfarviridae family, genus Asfivirus [1]. The molecular phylogeny of the virus is investigated by
sequencing the 3’end of the VP72 coding sequence, which differentiates up to 24 distinct genotypes [2].
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Among them, the warthog (Phacochoerus africanus) has been pointed out as the most important
host, while the role of bushpigs (Potamochoerus larvatus) in the transmission of ASFV has not been fully
elucidated [3]. Soft ticks of the Ornithodoros genus, especially Ornithodoros moubata and Ornithodoros
erraticus, have been shown to be both reservoirs and transmission vectors of ASFV [4]. ASFV can
survive for long periods in a protein rich environment, remaining infectious for months in refrigerated
(4 ◦C) or frozen blood samples as well as in blood samples kept at room temperature [5]. ASFV remains
viable for long periods in faeces and tissues, including uncooked or undercooked pork products.
In contrast, the virus is inactivated by heat treatment at 60 ◦C for 20 min [5–7].

ASF is endemic in most sub-Saharan countries in Africa. Transcontinental spread, in which ASFV
isolates belonging to genotype I from Western Africa were involved, first occurred to Europe (Spain
and Portugal) in 1957 and 1960, and from there to other European countries, South America and the
Caribbean. Except for Sardinia, disease was eradicated from outside Africa in the mid-1990s. A second
transcontinental spread of genotype II ASFV from Southeast Africa into Georgia occurred in 2007 [8].
ASF subsequently spread to Eastern Europe and later into Western Europe, reaching Belgium in
September 2018 [9]. From the initial incursion into Georgia and subsequent spread, the disease affected
both domestic pigs and wild boar [10]. African swine fever has led to the deaths of over 800,000 pigs
and wild boar across Europe. Initial experimental infections indicated that wild boar are at least as
susceptible as domestic pigs initially leading to suggestions that endemicity in wild boar populations
might be unlikely [11]. However, the disease established self-sustaining cycles within the wild boar
population, a key fact that helped its spread and maintenance in regions. While control efforts may be
reducing incidence in domestic pigs, latest reports show a persistent incidence of ASFV-positive wild
boar in Belgium and Eastern Europe, representing a significant reservoir that remains a continued
threat to the domestic pig industry [12,13]. Increasingly there are reports of antibody-positive wild
boar indicating that a proportion of animals survive infection. Some authors have suggested that
subclinically infected, chronically infected or survivor pigs might play an important role in disease
persistence in endemic areas or in sporadic outbreaks of ASF [14], although the contribution of such
animals to virus persistence in a region and their existence is uncertain and under discussion [15].
Moreover, populations of wild boar in many parts of Europe, worryingly continue to expand and
increase in abundance, posing a threat via further spread and spill-over to pigs, and increasing the risks
of establishing endemic areas of ASF infection [16]. The seriousness of the ASF threat is exemplified
by the big jump of ASFV in August 2018, with disease occurring close to the Mongolian borders and
later into the world’s largest pig producer, China [17]. Since then, the disease has been out of control,
spreading to several provinces and reaching Vietnam, Cambodia, Laos and North Korea in 2019 [18].
While official estimates count 4 million culled hogs, slaughter data suggest 25 times more will be
removed from China’s 440 million-strong swine herd in 2019. The United States (U.S) Department of
Agriculture forecast in April 2019 a decline of 134 million heads, equivalent to the entire annual output
of American pigs. The harm to pigs is especially critical for China, with a USD 128 billion pork industry
and the world’s third highest per-capita consumption. China will clearly need to import substantial
amounts of pork to satisfy demand, a situation that will impact food prices globally. Wholesale pork
prices in China are already 21% higher than a year ago and have risen in the U.S. and European Union
after processors sent more of their product to China. It will probably have a lasting effect for several
years, moving markets and possibly influencing geopolitical situations [19].

Understanding host–virus interactions and disease dynamics in wild boar by way of experimental
infections, not only with genotype II isolates currently circulating in Europe and Asia but also with
isolates belonging to other genotypes, is critical for risk assessments and future development of safe
and efficacious treatment/vaccines effective in this population. Gathering the most relevant information
available and identifying knowledge gaps regarding infection dynamics, disease pathogenesis and
immune response, mainly in experimentally infected wild boar, was the aim of the present review.
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2. Experimental Infections with ASFV Genotype II Isolates in Wild Boar and Disease Progression

Virulence factors, host–virus interactions and the pathogenesis of most of the ASFV genotypes
are still far from being understood. This lack of knowledge hampers targeted research into basic
mechanisms of disease protection and vaccine design. So far, most studies have been focused on
understanding how ASFV isolates of genotype I and II, the only genotypes that have spread outside
Africa to date, affect domestic pigs. Since the genotype II outbreak in Georgia in 2007, several studies
have been conducted trying to understand infections with particular isolates from Eastern and Central
Europe and their disease dynamics. The biological characterization of such isolates has been carried
out in domestic pigs [20–26] and, to a lesser extent, wild boar [11,21,26–28] by way of experiments in
which different routes of infection (intramuscular, intranasal and contact infections), as well as different
low and high infectious doses, were tested (see Table 1).

In general, wild boar displayed an apparent higher susceptibility to ASFV than domestic pigs in
many of the experimental studies. The first oral and intramuscular experimental infections of piglets
and adult wild boar with medium (103 HAD50 intramuscularly) and high doses (106 TCID50 orally)
of genotype II isolates from the Caucasus region (Armenia in 2008 and Chechen Republic in 2009)
resulted in acute forms of ASF with 100% lethality within less than 10 days [11]. After oral infection,
wild boar piglets 9 weeks old (6/6) died between 5 and 7 days, displaying high temperature from
day 3–4 post-infection (pi). Apart from haemorrhagic lymph nodes and haemorrhagic gastritis, other
macroscopic lesions were not mentioned. Three domestic weaner pigs were placed in contact with the
wild boar 2 days after their oral inoculation. Two of the pigs developed acute fatal ASF at 11–12 days
after the inoculation of the wild boar, dying 1 week later, while the third pig showed fever at day 20 pi
and was euthanized at day 25 pi. One adult wild boar intramuscularly inoculated displayed clinical
signs from day 3 pi, dying at day 5 pi, while in-contact adult wild boar (3/3) showed clinical signs at
day 8 pi of the intramuscularly inoculated wild boar, dying 2 days later and showing gross lesions
characteristic of acute ASF forms (haemorrhages in multiple oedematous and enlarged lymph nodes,
hyperplasia of mesenteric lymph nodes, pulmonary hyperaemia and alveolar oedema, haemorrhagic
gastritis; no skin lesions described). In a second experiment, one adult wild boar, two adult sows and
one piglet orally inoculated (3×106 TCID50) with the ASFV Caucasus isolate died or were euthanized
between day 8–9 pi. No antibodies were detected in serum samples [27]. Although shedding of ASFV
through nasal discharge or faeces seemed to be limited, virus transmission to domestic pigs and wild
boar used as in-contact controls was effective, also inducing acute disease in these recipients. Blood was
shown to be highly infectious and is likely to be the main source of infection for in-contact pigs [11].

The possibility that low dose genotype II ASFV infections might lead to prolonged incubation
times and chronic disease, or the development of a carrier state, was also investigated [21]. Low-dose
oronasal infections of domestic pigs and European wild boar were undertaken with the Armenia 2008
isolate. Very low doses of this isolate (3 or 25 haemagglutinating units (HAU), after back titration),
which may be equivalent to those obtained by contact with contaminated fomites, swill, carcasses
or excretions of infected animals, were sufficient to infect especially weak or runt wild boar by the
oronasal route. The time to onset of clinical signs was delayed in these low dose infections, but there
were no changes in the course and outcome of infection. Infected pigs developed acute and subacute
forms of ASF with severe vascular changes after incubation periods of 11 days to 4 weeks. In wild boar
(4–5 months old) inoculated with 100 HAU (25 HAU after back titration), maximum clinical scores
were reached from day 13 pi. One animal that displayed clinical signs from day 2 pi died at day 11 pi
while the rest displayed clinical signs from day 11 pi, reaching maximum scores from day 13 and dying
or being euthanized between day 14 and 17 pi. On the other hand, two wild boar with smaller and
weaker appearance inoculated with 25 HAU (3 HAU after back titration) died or were euthanized
between day 6 and 10 pi. The rest of animals reached maximum clinical scores from day 14 pi. All
animals had to be euthanized approximately 5 to 7 days after onset of first clinical signs (between
day 18 and 23 pi). While wild boar showed clinical signs, domestic pigs (8–12 weeks old) inoculated
with 25 HAU remained clinically healthy up to day 23 pi, being euthanized within 36 days; clinical
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signs in domestic pigs inoculated with 3 HAU started from day 12 pi; all animals were euthanized
between day 17 and 23 pi. With only a few exceptions, antibody detection yielded negative results. A
brief description of macroscopic lesions indicated that haemorrhagic lesions were apparently more
severe in wild boar and some individual animals developed secondary infections of the respiratory and
gastro-intestinal tract. Thus, results did not suggest the existence of prolonged or chronic individual
courses on low-dose infection in wild boar or domestic pigs [21].

An ASFV isolate was obtained by animal passage using tissue samples that were DNA positive
by PCR. These tissue samples were obtained from a wild boar outbreak with apparently low mortality
in North-Eastern Estonia in 2015 [28]. In young European wild boar (4 months old) inoculated by
the oronasal route with 104.5 HAU of the North-Eastern Estonia ASFV isolate, nine of ten animals
developed clinical signs between day 4 to 6 pi, with worsening clinical signs characteristic of severe
acute forms of ASF between day 7–13 pi, when animals were euthanized. These animals also displayed
typical ASF lesions of varying severity that increased as the experiment progressed (lung oedema,
ebony-coloured gastrohepatic lymph nodes, haemorrhagic and oedematous lymph nodes in all parts
of the body, multiple haemorrhages in several organs, severe lung oedema, gall bladder oedema, renal
infarction, gastritis and arthritis). A survivor (1 of 10) recovered completely after an acute disease
and was commingled with three sentinel wild boar of the same age class from day 50 to 96 post
initial inoculation. The sentinels remained healthy and both virus and antibody negative throughout
the experiment, so no transmission occurred from the survivor to in-contact pigs. The survivor was
negative for ASFV detection in blood and in different tissues taken at day 96 pi, although it had high
antibody levels, indicating that virus exposure had occurred [28]. A virus that was recovered from this
survivor in the acute phase of the disease was used for additional oronasal inoculations (105 to 106.5

HAU) of twelve adult minipigs, five domestic pigs aged six months and five wild boar, three adults
around two years old and two piglets six months old [26]. Three minipigs died between day 8 and 15 pi
displaying alveolar oedema, several haemorrhagic lymph nodes and pericarditis, while 9 minipigs
(75%) and all domestic pigs (100%) recovered after the acute course of the disease without pathological
findings indicative of ASFV infection. However, all adult wild boar succumbed between day 8–9 pi
showing severe respiratory distress while both wild boar piglets were euthanized after reaching the
humane endpoint between day 16 and 17 pi. Necropsy revealed pulmonary oedema, haemorrhagic
lymph nodes and petechiae in the renal cortex. These results suggested that the north-eastern Estonia
strain re-isolated from a surviving animal during acute infection showed an attenuated phenotype in
minipigs and domestic pigs. However, the higher susceptibility of wild boar is only partially in line
with the field observations that showed several apparently healthy, but sero-positive wild boar in the
hunting bag of North-Eastern Estonia. Curiously, wild boar piglets survived longer (day 16–17 pi) than
adults (day 8–9 pi), which fits with the observation that the detection of antibodies was more likely in
the young age class [26]. In a second wild boar experiment with this isolate with three adults and three
suckling piglets (unpublished), acute lethal disease was again seen in adults, but the suckling piglets
recovered after acute infection [reviewed by 10].

Despite the low mortality rates suggested by some field observations, for example in Estonia [28,29],
and the existence of genetic variants of ASFV [30,31], so far the experimental studies mentioned above
using different genotype II ASFV isolates from different regions of Eastern and Central Europe, and
also now present in Asia, have not demonstrated clear evidence of a reduced virulence in either wild
boar or domestic pigs. In most of the cases, a detectable antibody response was not observed due to
the rapid onset of acute disease.
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Table 1. Experimental infections of wild boar with African swine fever virus (ASFV) Genotype II isolates. Information about experimental conditions of domestic pigs
that were infected in parallel with wild boar have also been provided. (GT): genotype; (WB): wild boar; (DP): domestic pigs; (HAU): haemagglutinating units; (TCID):
Tissue Culture Infectious Dose (TCID), (ND): Not determined; (NA): Not administered (in contact animals).

Isolate/ Origin GT Type /Number
of Animals Estimated Age Dose Route of

Exposure
Onset of Clinical Signs

After Infection
Survival After Infection

(dpi) Ref.

Armenia 2008
II WB (n = 6) 9 weeks 106 TCID Oral 3–4 dpi (6) 5–7 dpi (6) [11]
II DP (n = 3) Weaner pigs NA In contact 11–12 dpi (2)/ 20 dpi (1) 17 dpi (2)/ 25 dpi (1)

Chechen
Republic 2009

II WB (n = 1) 9 months 103 HAU Intramusc. 3 dpi (1) 5 dpi (1) [11]
II WB (n = 3) 9 months NA In contact 8 dpi (3) 10 dpi (3)

Caucasus isolate II
WB (n = 1) 10 years

3 × 106 TCID Oral ND 8–9 dpi (4) [27]Sow (n = 2) 4–5 years
WB (n = 1) Piglet

Armenia 2008

II
WB (n = 6) 4–5 months 100 HAU (25

HAU after back
titration)

Oronasal
WB: 2–5 dpi (1)/ 11–13

dpi (5)
WB: 11 dpi (1)/ 14–17

dpi (5)

[21]
DP (n = 6) 8–12 weeks DP: 23 dpi (1)/ 30–33

dpi (5)
DP: 28 dpi (1)/ 34–36

dpi (5)

II
WB (n = 6) 4–5 months 10 HAU (3 HAU

after back
titration)

Oronasal
WB: 0–9 dpi (2; runt

animals)/ 14–19 dpi (4)
WB: 6–10 (2; runt

animals)/ 18–23 dpi (4)
DP (n = 6) 8–12 weeks DP: 12–19 dpi (6) DP: 17–23 dpi (6)

North-Eastern
Estonia II WB (n = 10) 4 months 104.5 HAU Oronasal 4–6 dpi (10) 7–13 dpi (9)/ recovered

WB (1) [28]

North-Eastern
Estonia II

1 recovered WB
and 3 WB
(sentinels)

5 months NA In contact No clinical signs (4)
End of trial at 96 dpi. All

animals (4) completely
healthy.

[28]

North-Eastern
Estonia

II
Minipigs
(n = 12) 6 months

105 HAU Oronasal
Minipigs: 7 dpi (12)

Minipigs: 8–15
dpi (3)/recovered

minipigs (9)

DP (n = 5) 6 months
DP: 4–6 dpi (4)/10 dpi (1).

All animals without
clinical signs from 19 dpi

DP: All animals
recovered (5) [26]

II
WB (n = 3) 2 years (adults)

106.5 HAU Oronasal
Adults WB: 3–4 dpi (3) Adult WB 8–9 dpi (3)

WB (n = 2) 6 months
(piglets) Piglets WB: 3–4 dpi (2) Piglets: 16–17 dpi (2)
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Some studies have suggested the existence of isolates that displayed an attenuated phenotype,
especially in domestic pigs [25,26], along with descriptions of occasional survivors [23,28]. However,
most of the experiments have demonstrated a limited potential of genotype II ASFV isolates to cause
persistent infection and thus generate ASFV carriers. Recently, it has been demonstrated that oral
immunization of wild boar with a naturally attenuated non-haemadsorbing ASFV genotype II isolated
in Latvia in 2017 (Lv17/WB/Rie1), conferred clinical protection against challenge with homologous high
virulence ASFV isolate (Arm07) [32,33]. However, the immunized wild boar were weakly viraemic
after challenge with virulent virus and shed it sporadically [33]. Additionally, the Lv17/WB/Rie1
attenuated virus was reported to cause clinical signs, including joint swelling in a previous experiment
in domestic pigs [32].

3. Other Experimental Infections in Wild Boar and Feral Pigs with ASFV Genotype I Isolates

Early literature also describes preliminary experimental infections in wild boar through inoculation,
ingestion and contact using Italian isolates belonging to genotype I (see Table 2). Wild boar displayed
high susceptibility and frequently died as a result of such infections, showing characteristic ASF
haemorrhagic lesions [34,35]. In a preliminary experiment, one adult boar female and one adult boar
male were inoculated subcutaneously in the base of the ear with blood (2 and 4 mL, respectively)
containing Tor Sapienza strain (genotype I). An increase in temperature was observed between 24 h
(female boar) and 72 h after infection (male boar). Other clinical signs (anorexia, postration and
lethargy) were observed in both animals from day 5 pi. Female boar also displayed haemorrhagic
diarrhoea from day 8 pi and died at day 11 pi while male boar died at day 13 pi. A detailed macroscopic
evaluation described the presence of typical ASF haemorrhagic lesions equivalent to those observed
in domestic pigs such as occasional subcutaneous petechial haemorrhages, intraparietal diffuse
petechial haemorrhages in the abdominal wall, mild hydropericardium with sero-haemorrhagic fluid,
petechial haemorrhages in endocardium, diffuse pulmonary congestion along with alveolar oedema
and presence of subpleural and parenchymal petechiae, mild ascites, hyperaemic splenomegaly, mild
hepatic congestion and hepatomegaly, oedema in the gallbladder wall with presence of petechial
haemorrhages on the mucosal surface, reddish fibrin deposits on the serosa surface of the cecum and
colon and haemorrhages on the mucosal surface of the rectum. The kidneys showed petechiae in renal
cortex, with the medulla and the renal pelvis appearing uniformly haemorrhagic. The female boar
also displayed a sero-haemorrhagic fluid with fibrin deposits within the breast cavities. Regarding
the lymph nodes, the mesenteric and bronchial were enlarged and strongly hyperaemic while the
gastrohepatic and inguinal were severely enlarged and seemed like blood clots, displaying a strong
dark red colour [34].

In a second experiment, four young wild boar (two males and two females) were split in two
pens, each containing two boar of different sex. In both groups, the male boar received 2 mL of
leukocytes culture infected with Nemi strain (genotype I) by intramuscular (group 1) and oral route
(group 2) while female boar were kept in close contact with the infected animals. In group 1, the male
boar intramuscularly inoculated displayed an increase in temperature from 24 h pi and died at day
11 pi showing less severe typical ASF macroscopic lesions (focal subcutaneous haematomas, mild
hydropericardium, occasional petechial haemorrhages in renal cortex, alveolar oedema and systemic
lymphadenitis) than observed in animals infected intramuscularly in the first experiment. Regarding
the female boar in contact, clinical signs, evidence of viral infection or macroscopic lesions characteristic
of ASF were not observed throughout several weeks after the death of the male boar. In group 2, the
male boar infected orally developed clinical signs from day 6 pi, being euthanized in a moribund
state at day 20 pi, while the female boar in contact developed clinical signs from day 20 pi and was
euthanized in a moribund state at day 28 pi. In both animals, macroscopic lesions characteristic of ASF
were scarce and mild showing mild alveolar oedema and systemic lymphadenitis [35].

In more recent experimental studies, four wild boar were inoculated intramuscularly with 106

HAU of Sardinian 2008 ASFV isolate (genotype I). Animals displayed respiratory distress and were
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euthanized between day 5 and 8 pi after reaching the humane endpoint. The peak temperature was
detected at day 4 pi (41.7 ◦C), while the highest clinical scores were observed at day 8 pi. At necropsy
pulmonary oedema, haemorrhagic lymph nodes, hepatic congestion, gall bladder wall oedema and
haemorrhages were the most common macroscopic lesions [36].

An interesting study, in which 7-week-old classical swine fever virus postnatal persistently infected
(CSFV PI) wild boar (n = 3) and wild boar tested pestivirus-free (n = 3) were experimentally infected
by intramuscular route with a dose of 104 TCID50 of ASFV E75 isolate (genotype I), revealed that only
CSFV PI wild boar showed a progressive clinical disease from day 4 pi with external lesions and clinical
signs typically described in acute forms of ASF (high temperature, dyspnoea, tremors, cyanosis and
petechial haemorrhages in the ears and abdomen) [37]. While CSFV RNA load remained unaltered
over the study, the levels of type I IFNα and IL-10 in sera were almost undetectable and CD4+ T-cells
displayed a significant decrease. Survival rates were similar in both groups. CSFV PI wild boar (3/3)
died between day 6 and 7 pi, while pestivirus-free ASFV-infected wild boar died suddenly at day 8 pi
(2/3), and the third animal was euthanized at day 10 pi, with all pestivirus-free animals showing only
mild clinical signs of ASF. Apart from the wild boar euthanized at day 10, ASFV-specific antibodies
were not detected in any of the animals. In both groups, wild boar displayed characteristic macroscopic
lesions of acute ASF during necropsy. The survival rate following ASFV infection was similar in both
experimental groups as was ASFV DNA load, which suggested that ASFV infection does not produce
any interference with persistent CSFV replication, or vice versa. However, the immunosuppression
state in CSFV PI wild boar may have influenced ASF progression and development of haemorrhagic
clinical signs [37].

Biological characterization of ASFV genotype I strains from the Iberian Peninsula (highly virulent
isolate Lisbon 1960) and the Dominican Republic (moderate virulent isolate DR 1979) were also carried
out through intranasal inoculations of feral pigs (Sus scrofa) trapped in Florida, USA [38]. Twelve
feral pigs were split in two experimental groups. Two members of each group were inoculated by
instilling into each nostril and into the mouth a total dose of approximately 107 HAU50 of Lisbon
1960 or DR 1979 respectively, while the rest of animals (four per group) were kept in close contact.
Clinical signs (temperatures up to 41.1 ◦C, lethargy, inappetence) were observed in both groups of
inoculated pigs between day 3 and 4 pi. All pigs infected with Lisbon 1960 isolate were either dead
or moribund 2 to 6 days after the onset of fever (day 7–8 pi for inoculated pigs and day 14–20 pi for
contact pigs), developing an acute form of ASF. All pigs exposed to DR 1979 isolate also died but
survived 6 to 13 days after the onset of fever (day 11–16 pi for inoculated pigs and day 19–22 pi for
contact pigs), developing a subacute form of ASF. In a previous experiment, only 20% of domestic pigs
of a similar age died after infection with DR 1979 isolate [39]. Although pigs infected with Lisbon
1960 (inoculated and in contact) developed an acute clinical form of ASF, the severity of macroscopic
lesions described corresponded to subacute forms of ASF characterized by the presence of extensive
and severe haemorrhagic lesions [38].

These included the presence of extensive areas of purplish skin discoloration in ventral areas,
severe hydropericardium with red-tinged fluid, hyperaemic splenomegaly, petechiae in renal cortex and
extensive haemorrhages in renal pelvis and heart, generalized haemorrhagic lymphadenitis (especially
in mandibular, gastrohepatic, renal and inguinal lymph nodes), severe ascites with red-tinged fluid,
perirenal oedema and marked retroperitoneal haemorrhages. The haemadsorption reaction, and the
direct and indirect immunofluorescence were used to confirm the presence of ASFV in the blood and
selected tissues samples from all infected pigs. ASFV-specific antibody response was only detected
in pigs that died from 5 to 13 days after the onset of clinical signs [38].



Viruses 2019, 11, 852 8 of 13

Table 2. Experimental infections of wild boar and feral pigs with ASFV Genotype I isolates. (GT): genotype; (WB): wild boar; (DP): domestic pigs; (HAU):
haemagglutinating units; (TCID): Tissue Culture Infectious Dose (TCID), (ND): Not determined; (NA): Not administered (in contact animals).

Isolate/ Origin GT Type /Number
of Animals Estimated Age Dose Route of

Exposure

Onset of Clinical
Signs After

Infection

Survival After
Infection (dpi) Ref.

Tor Sapienza I WB (n = 2) Adults ND (2–4 mL infected
blood

Subcutaneous
(base of the ear)

Temperature: from
24–72 h/clinical

signs: from 5 dpi (2)
11–13 dpi (2) [34]

Nemi
I

WB (n = 1) Young ND (2 mL of leukocyte
culture infected)

Intramusc.
(neck)

Temperature: from
24 h (1) 11 dpi (1) [35]

WB (n = 1) In contact No clinical signs (1)
Euthanized
weeks after

infection

I
WB (n = 1) Young ND (2 mL of leukocyte

culture infected)
Oral 6 dpi (1) 20 dpi (1) [35]

WB (n = 1) In contact 20 dpi (1) 28 dpi (1)

Sardinian 2008 I WB (n = 4) ND 106 HAU Intramusc. 3–4 dpi (4) 5–8 dpi (4) [36]

E75 I
CSFV PI WB

(n = 3) 7 weeks 104 TCID Intramusc.
CSFV PI WB: 4

dpi (3)
CSFV PI WB:

6–7 dpi (3) [37]
Pestivirus-free

WB (n = 3)
Pestivirus-free WB:

4 dpi (3)
Pestivirus-free

WB: 8–10 dpi (3)

Lisbon 1960
I Feral pigs (2) Adults 107 HAU Intranasal Feral pigs: 3–4

dpi (2)
Feral pigs: 7–8

dpi (2) [38]

I Feral pigs (4) Adults NA In contact Feral pigs: 8–17
dpi (4)

Feral pigs:
14–20 dpi (4)

Dominic.
Republic 1979

I Feral pigs (2) Adults 107 HAU Intranasal Feral pigs: 3–4
dpi (2)

Feral pigs:
11–16 dpi (2) [38]

I Feral pigs (4) Adults NA In contact Feral pigs: 10–13
dpi (4)

Feral pigs:
19–22 dpi (4)
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4. Conclusions and Future Research

While control efforts, particularly increased biosecurity and professionalisation of the pig industry,
have successfully reduced the incidence of ASF in domestic pigs, the wild boar population represents a
substantial reservoir in Europe and probably also in Asia, which will hinder eradication and serve as a
source for further geographic expansion [40]. Therefore, understanding host–virus interactions and
disease dynamics in wild boar experimentally infected with genotype II isolates currently circulating
in Europe and Asia is critical for risk assessments and vaccine development. To date, relatively
few ASFV experimental infections have been carried out in wild boar and therefore the body of
data is not comparable to the one in domestic pigs. However, results in both domestic pigs and
wild boar have highlighted variability relating to experimental outcomes and severity of signs after
experimental infections with the currently circulating ASFV genotype II isolates in Europe, possibly
above the expected biological variability, and attributable to the different experimental settings. In
any case, except for the naturally attenuated ASFV isolate found in Latvia in 2017 (Lv17/WB/Rie1),
evidence for reduced virulence in the rest of the ASFV isolates assessed was not observed. In most
of the experimental infections with genotype II isolates, wild boar of different ages displayed a high
susceptibility to ASFV and disease development. In several studies, the susceptibility was even higher
than that shown by domestic pigs of the same ages. Such differences in the course and severity of ASFV
infection and development of disease between domestic pigs and Eurasian wild boar may suggest
subtle differences in the pathogenetic mechanisms between the two subspecies that future studies
should elucidate.

Due to the close taxonomic relationship between wild boar and domestic pigs it could be assumed
that ASFV infection in wild boar has a similar course as in domestic pigs, and furthermore, that an
ASF vaccine developed for domestic pigs can be applied to vaccinate wild boar with similar results.
However, even though both domestic pigs and European wild boar are of the same species (Sus scrofa),
they belong to different subspecies. Besides genetic differences, domestic pigs are managed and
therefore their diet, reproduction and health status are controlled, whereas free-ranging wild boar are
subjected to natural nutritional, climatic and reproductive variations and cycles. Wild boar in nature
show intraspecific aggression, carry a mixed pathogen load and suffer periods of stress, which may
compromise the function of their immune system. All together, these factors may affect the outcome of
ASFV infection in wild boar. Therefore, it is important to study the pathogenetic and immunological
mechanisms of ASF specifically in wild boar so that not only biological differences with domestic pigs
can be identified but also additional differences between experimental and natural ASFV infection in
wild boar can be assessed. These data can contribute to epidemiological studies, modelling and design
of control strategies such as vaccine development and deployment. The fact that information about the
presentation of ASF in wild boar was scarce, and derived only from limited experimental studies, led
to early assumptions that it was unlikely that Caucasian isolates would become endemic in European
wild boar populations without a significant change in virulence [11]. The evolution of ASF in Europe
shows otherwise and emphasises the need for more studies.

In most of the studies included in the present review, clinical evaluations were carried out by way
of equivalent clinical scoring systems, which allowed to set up accurately the evolution and duration of
clinical course of disease. In addition, viraemia levels and spread mechanisms through different organic
fluids and routes of excretion were determined for swabs and blood samples by equivalent molecular
detection techniques. Also, virus burdens in target tissues taken once the animals reached the humane
endpoint were precisely evaluated. However, the published studies are more limited on precise,
systematic and semi-quantitative evaluations of macroscopic and/or histopathologic lesions, which may
establish differences among individual animals. In addition, there are few comparative evaluations
between pig and wild boar describing the characteristics of the disease induced by experimental
infection with ASFV.

Furthermore, apart from ASFV-specific antibody responses, other innate or adaptive
immunological parameters that may contribute to memory responses, key for vaccine design, have
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not been extensively assessed in wild boar. As in domestic pigs, no correlates of protection in wild
boar are defined for ASFV infection, which can only be informed by a deeper knowledge of the
host–virus interaction. Thus, experimental studies of ASFV in domestic pigs and wild boar require
approaches that should be assessed not only by virologists, molecular biologists and immunologists,
but also by pathologists. Therefore, along with standard protocols to evaluate virological parameters
and immunological responses, scientists involved in ASFV studies would benefit from applying
standard pathological evaluation protocols for adequate individual, intergroup and inter-experiment
comparison. In this sense, standardized scoring systems to perform macroscopic and histopathological
assessments of ASFV-inoculated pigs have been proposed [41]. Such evaluation protocols have been
demonstrated to be a useful tool for the identification and evaluation of lesions severity, data collections
and analysis in the course of ASFV experiments focused on testing new vaccine candidates [42–45] or
during pathogenesis studies and/or the biological characterization of new ASFV isolates [46].

Although pathogenetic mechanisms induced by high and moderate virulence ASFV isolates of
genotype I have been widely studied since the disease first appeared in the Iberian Peninsula in the
1950–60s [47,48], less is known about such mechanisms or the immune response induced by isolates
of genotype II in domestic pigs and, to a lesser extent, wild boar despite their high susceptibility
to disease. Comparative time-course studies would provide novel and more detailed information
which is currently lacking on the pathogenesis and immunology of ASF in domestic pigs and wild
boar. Early studies have shown that in natural infections and experimental infections by intranasal
route, ASFV enters preferably via the tonsils or dorsal pharyngeal mucosa and then extends to
mandibular or retropharyngeal lymph nodes. After extensive replication in lymphoid tissues, ASFV
spreads throughout the body disseminated by leukocytes and/or erythrocytes via lymphatic fluid
or blood [49–51]. Future studies should be focused on unravelling, from the very early stages after
infection, pathogenic mechanisms of ASFV genotype II isolates, virus–cell interactions and local
immune responses in organs positioned at the opening of respiratory and gastrointestinal tract (palatine
tonsils, lung and regional lymph nodes). This will contribute to our understanding of infection
dynamics and disease pathogenesis and will help towards the development of safe and efficacious
treatments/vaccines against ASFV.
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