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Abstract

Background—Heart failure hospitalizations (HFHs) cost the US health care system ~$20 billion 

annually. Identifying patients at risk of HFH to enable timely intervention and prevent expensive 

hospitalization remains a challenge. Implantable cardioverter defibrillators (ICDs) and cardiac 

resynchronization devices with defibrillation capability (CRT-Ds) collect a host of diagnostic 

parameters that change with HF status and collectively have the potential to signal an increasing 

risk of HFH. These device-collected diagnostic parameters include activity, day and night heart 

rate, atrial tachycardia/atrial fibrillation (AT/AF) burden, mean rate during AT/AF, percent CRT 

pacing, number of shocks, and intrathoracic impedance. There are thresholds for these parameters 

that when crossed trigger a notification, referred to as device observation, which gets noted on the 

device report. We investigated if these existing device observations can stratify patients at varying 

risk of HFH.

Methods—We analyzed data from 775 patients (age: 69 ± 11 year, 68% male) with CRT-D 

devices followed for 13 ± 5 months with adjudicated HFHs. HFH rate was computed for 

increasing number of device observations. Data were analyzed by both excluding and including 

intrathoracic impedance. HFH risk was assessed at the time of a device interrogation session, and 

all the data between previous and current follow-up sessions were used to determine the HFH risk 

for the next 30 days.

Results—2276 follow-up sessions in 775 patients were evaluated with 42 HFHs in 37 patients. 

Percentage of evaluations that were followed by an HFH within the next 30 days increased with 

increasing number of device observations. Patients with 3 or more device observations were at 

© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
* Corresponding author. Cardiac Rhythm Disease Management, Medtronic Inc., Minneapolis, MN 55112, USA. Tel.: +1 763 526 
0139; fax: +1 763 526 5726. vinod.sharma@medtronic.com (V. Sharma).. 

Conflict of interest: Vinod Sharma, Jodi Koehler, and Eduardo Warman: Salary and stock awards from Medtronic Inc. Lisa D. 
Rathman, Roy S. Small, David J. Whellan, and William T Abraham: Consultation fees from Medtronic Inc.

HHS Public Access
Author manuscript
Heart Lung. Author manuscript; available in PMC 2015 April 09.

Published in final edited form as:
Heart Lung. 2015 ; 44(2): 129–136. doi:10.1016/j.hrtlng.2014.07.007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-sa/3.0/


42× HFH risk compared to patients with no device observation. Even after excluding intrathoracic 

impedance, the remaining device parameters effectively stratified patients at HFH risk.

Conclusion—Available device observations could provide an effective method to stratify 

patients at varying risk of heart failure hospitalization.
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Introduction

Implantable cardioverter defibrillator (ICD) and cardiac resynchronization therapy (CRT) 

devices have become the mainstay of treating persistent systolic heart failure in addition to 

guideline directed medical therapy.1,2 Many of these devices are implanted in patients with 

congestive heart failure with New York Heart Association (NYHA) class status of II to IV. 

While these devices considerably ameliorate patient morbidity and mortality, heart failure 

remains a significant economic burden costing the US health care system ~$30 billion 

annually. Heart failure hospitalizations (HFHs) account for two-thirds of the total expense.3 

Identifying patients at risk of worsening heart failure to allow timely intervention has the 

potential to prevent hospitalizations and improve long-term patient outcomes while reducing 

costs of care.

In addition to providing life-saving therapies, implantable devices collect a host of 

continuous physiological patient data (e.g. activity, day and night heart rate, AT/AF burden, 

heart rate during AT/AF, percent CRT pacing, number of shocks, and intrathoracic 

impedance). However, the data collected vary by manufacturer. For example, not all 

manufacturers have devices with intrathoracic impedance capability. Also, while all devices 

include a single or multi-axis accelerometer, proprietary algorithms to derive daily activity 

from accelerometer signals vary (see Methods for details). Many of the diagnostic variables 

have been shown to be prognostic markers of worsening heart failure and/or mortality risk. 

For example, NHR is a marker of autonomic tone, and an elevated NHR is associated with 

higher HFH risk.4 Activity is a reflection of patient functional capacity, and decreasing 

activity is associated with worsening HF status.4–7 A loss of CRT pacing compromises 

cardiac hemodynamics and hence leads to worsening patient status.8 And finally, a decrease 

in intrathoracic impedance is associated with an increase in wedge pressure, elevated pre-

load, and risk of fluid extravasation into the lungs.9 Risk stratification models combining 

various device diagnostic parameters have been proposed.10–12 The diagnostic performance 

of these models is better than each parameter alone. However, the clinical adoption of these 

risk stratification models has been slow because they use thresholds and measurement 

schemes not yet implemented in the implantable devices. Some of these approaches in fact 

use a fixed 30-day look back window requiring manual sifting of data to identify trends, thus 

making it cumbersome to use them in day-to-day practice.

All CRT-D devices have thresholds for various parameters that when crossed trigger a 

notification, referred to as device observation. The purpose of this study was to examine the 
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performance of the existing device observations for stratifying patients at HFH risk. Since 

the impedance observation is not available in all devices [e.g. OptiVol observation is not 

available on CareLink (Medtronic Inc. MN) in the US], we performed the analysis with and 

without impedance observation. Furthermore, we investigated the relationship between the 

number of device observations triggered and risk of HFH.

Methods

We performed retrospective analysis using patient data from FAST13 and PARTNERS-HF10 

clinical trials using Medtronic devices. Both study protocols were approved by institutional 

review boards and all patients provided written informed consent. FAST was a prospective 

double-blinded observational study in CRT-D and ICD patients (n = 109) with EF ≤ 35% 

and NYHA class III or IV. PARTNERS-HF was a prospective observational study in CRT-

D patients (n = 1024) with EF ≤ 35%, NYHA class III or IV, and QRS duration 130 ms. The 

two studies combined had 1133 patients and 220 HFHs. Only patients with an OptiVol 

capable CRT-D device were included in this analysis. Follow-up sessions with less than 7 

days of data before and less than 30 days of data after the evaluation were excluded. 

Furthermore, if there was another follow-up session within 30 days of a previous session, 

the second session was excluded. After applying above criteria, 186 HFHs in 775 patients 

and a total of 2276 follow-up sessions were available for analysis. Mean follow-up was 13 ± 

5 months. HFH associated with signs and symptoms of pulmonary congestion was used as 

the endpoint. All HFHs were adjudicated by an independent committee. The HFH event rate 

of 22.2% per year in this cohort is comparable to that in NYHA III and IV device 

patients.14,15

Diagnostic parameters and thresholds

The following diagnostic parameters in Medtronic devices have an observation: OptiVol 

index, AT/AF burden, ventricular rate during AT/AF (VRAF), activity, night heart rate 

(NHR), and percent pacing (% CRT pacing) (Fig. 1). In addition, an observation is noted if 

defibrillation shocks are delivered and this was also included in our analysis. Briefly, the 

measurement scheme for various parameters was as follows. Impedance (Z) is measured 

intrathoracically across the right ventricular (RV) coil and device-can by injecting a small 

current pulse (I) and measuring the developed voltage (V; Z = I/V). OptiVol index is derived 

as the cumulative difference between expected and actual Zs for the duration when expected 

Z is higher than actual Z. When actual Z exceeds expected Z, OptiVol index is set to zero. 

Since OptiVol index is integration of Z over certain duration, it is measured in units of ohm-

days (Ω-days). A higher value of OptiVol index has been shown to be associated with 

HFH.9 Several electrophysiological parameters including NHR, AF burden, and VRAF are 

derived from atrial and ventricular electrograms (egms) acquired by the device at 10 ms 

resolution. Device algorithms, such as PR Logic,16 are applied to discriminate among 

different rhythms and derive these electrophysiological parameters. NHR is the average 

heart rate between midnight and 4 am and is a measure of resting heart rate. AF burden is 

measured as total duration of fast atrial rate during a 24-h period associated with atrio-

ventricular conduction ratio ≤2:1. VRAF is the average ventricular rate during AF over a 24-

h duration. Activity is a quantitative measure of active duration and is a surrogate of 
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functional capacity. It is measured by a single axis accelerometer in the device that is used to 

detect patient motion and convert it into discrete electrical signals. An algorithm then 

converts these electrical signals to number of minutes active for the entire 24-h duration 

during a day (day and night time activities are not reported separately), where a minute is 

considered active if accelerometer registers signal equivalent to 70 steps/min or greater.4 

The device recorded activity has been shown to have a strong intra-individual correlation 

with activity measured using a validated external sensor.5 However, details of the algorithm 

differ between implantable and external devices (e.g. pedometers and external 

accelerometers) and absolute duration of reported activity between the two may differ.

All of the above parameters have a threshold value, which when exceeded triggers a device 

observation. Fig. 1 shows empirically derived nominal threshold values for various 

parameters that can be tailored on a patient basis. All nominals (or values close to the 

nominals) have been shown to be associated with greater HFH or mortality risk. An OptiVol 

observation is noted on the device report when a value of 60 Ω-days is exceeded, a threshold 

shown to predict HFH with optimal sensitivity and false alert rate.9 AT/AF burden of ≤6 

h/day for at least one day within the last 30-days is associated with 2× risk of an HF event.17 

This risk is further exacerbated with poor rate control with V-rate > 90 bpm.17 NHR of >90 

bpm discriminates between hospitalized and non-hospitalized patients.18 And finally, CRT 

pacing <90% is associated with increased mortality.19

The availability of OptiVol observations varies by geography and mode of device 

interrogation. For example, while there is an OptiVol observation on the programmer report 

in the United States, no such observation exists on the CareLink HF management report. 

Outside the United States, the OptiVol observation is available in both the programmer and 

CareLink reports. Thus, we performed our analysis by both including and excluding the 

OptiVol observation.

Analysis scheme

We used the analysis scheme depicted in Fig. 2. At the time-point of each follow-up a look 

back was performed until the previous follow-up to evaluate the number of device 

observations triggered. Also, a 30-day look forward was performed to assess if an HFH had 

occurred within that period. For example, for the follow-up labeled as FU2 in Fig. 2, number 

of observations triggered was evaluated for the duration labeled as ‘Risk Assessment 2’, and 

a 30-day HFH risk assessment was performed for the duration labeled as ‘Risk Prediction 2’. 

This was repeated for all the follow-ups for a given patient, and then for all the patients. 

These data from all ‘Risk Assessment’ and ‘Risk Prediction’ pairs were then used to 

compute the relationship between number of observations triggered and 30-day HFH event 

rate. Specifically, raw event rate for 0, 1, 2, and ≤3 observations was computed as:
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Statistical analysis

The HFH event rates and odds ratios were estimated using a Generalized Estimating 

Equations (GEE) model for the groups with different number of observations. A GEE model 

adjusts the estimate to account for multiple evaluations within a patient.20 We made no 

adjustment for baseline variables (age, gender, NYHA, history of coronary artery disease, 

MI, AF, diabetes, and hypertension) and baseline medications (ACE-I/ARB, diuretics, b-

blockers, and anti-arrhythmic drugs). This reflects the real world since device data are not 

yet fully integrated with clinical and demographic data.

A sensitivity and specificity analysis was performed to characterize our scheme’s 

performance. Sensitivity is defined as the number of evaluations with a given number of 

device observations in the preceding evaluation window and HFH event in next 30-days 

divided by the total number of evaluations with HFH in next 30-days. Specificity is defined 

as the number of evaluations without a given number of device observations in the 

preceding evaluation period and no HFH event in next 30 days divided by the total number 

of evaluations with no HFH in next 30 days. The sensitivity and specificity computations are 

adjusted for multiple evaluations in patients using a GEE model. All statistical analyses 

were performed using SAS version 9.2 (SAS Institute Inc., Cary, NC, USA).

Results

Patient demographics and follow-up

Table 1 summarizes clinical and demographic data for the 775 patients in the FAST and 

PARTNERS-HF trials selected for our analysis. All patients had a CRT-D device, and the 

majority (87%) of the patients had a heart failure status of NYHA III. These characteristics 

are similar to the characteristics of a patient population receiving CRT therapy.14,15,21 A 

total of 2276 in-clinic follow-up sessions were available for analysis. Forty-two follow-up 

sessions in 37 unique patients had an associated HFH in the following 30 days. Mean inter 

follow-up duration was 78 days.

Risk stratification performance of device parameters excluding OptiVol

Risk stratification performance of various parameters excluding OptiVol is shown in Table 

2. The rate of HFH increased with increasing number of observations. For zero device 

observation, the 30-day event rate was 0.9% and increased to 13.6% for three or more 

device observations. The odds ratio for three or more observations versus no observation 

was 17.9 (see Table 2 for other odds ratios). Also, noteworthy from Table 2 is that a vast 

majority (~71%) of the total follow-up sessions had no device observation. The proportion 

of follow-up sessions decreased with increasing number of observations (23.5%, 4.3% and 

1.3% for 1, 2 and ≤3 observations, respectively).

Based on univariate analysis (Table 3), HFH rate varied from 3.5% (for OptiVol) to 11.2% 

(for VRAF). Activity, AF Burden, and Decrease in CRT Pacing triggered observations 

during a large proportion of follow-up sessions (~10% or more) and the corresponding event 

rates were 5.1%, 4.7% and 4.6%, respectively.
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Risk stratification performance of device parameters including OptiVol

Risk stratification performance with OptiVol included is shown in Table 4. Similar to the 

case of OptiVol excluded, the HFH rate increased with increasing number of observations. 

The HFH rate for zero device observation was 0.4% and increased to 13.6% for ≤3 

observations with an odds ratio of 42.4 (see Table 4 for other odds ratios). Follow-up 

sessions with zero observation constituted the largest proportion (48.5%) of all follow-up 

sessions, and the proportion declined with increasing number of observations (36.4%, 12.3% 

and 2.9% for 1, 2 and ≤3 observations, respectively).

Event rate during 30 days post-evaluation

Fig. 3 shows HFH event rate during 30 days post-evaluation with OptiVol excluded (Panel 

A) and included (Panel B). The increase in event rate with increasing number of 

observations is evident in both plots. For example, with OptiVol excluded, the 30-day HFH 

rate was less than 1% for ‘0 observation’. The 30-day HFH event rate increased to ~3%, 

~7% and ~14% for 1, 2 and ≤3 observations, respectively. With OptiVol included, a greater 

separation between the ‘ 3 observations’ trace and ‘0 observation’ and ‘1 observation’ traces 

was observed suggesting a better risk stratification performance.

Sensitivity and specificity of predicting HFH

Tables 5 and 6 show the sensitivity and specificity in predicting HFH for the parameter set 

excluding and including OptiVol for ≤1, ≤2 and ≤3 device observations. With OptiVol 

excluded, the sensitivity for ≤1 observation was 68.9% and decreased to 9.5% for ≤3 

observations. The corresponding specificity for ≤1 observation was 71.2% and increased to 

98.8% for ≤3 observations. Similarly, with OptiVol included, the sensitivity for ≤1 

observation was 90.5% and decreased to 21.6% for 3 observations. The corresponding 

specificity increased from 49.1% (≤1 observation) to 97.4% (≤3 observations). With 

OptiVol included, the relative increase in sensitivity for ≤3 observations was significant 

(21.6% versus 9.5%; see bottom most rows in Tables 5 and 6) compared to the decrease in 

specificity (97.4% versus 98.8%).

Discussion

In this study we presented a novel scheme to stratify patients at risk of HFH using diagnostic 

parameters available in Medtronic's CRT-D devices. The thresholds and corresponding 

device observations were unmodified from what is available in the device. In addition, the 

look back period for assessing diagnostic parameters was the entire duration between the 

follow-up sessions to mirror the real world clinical practice. We found that this relatively 

simple and easy to implement scheme can stratify patients quite effectively. The risk of an 

HFH event increases with increasing number of device observations, and a patient with three 

or more observations is at 18× (OptiVol excluded) to 42× (OptiVol included) risk compared 

to a patient with zero observation (Tables 2 and 4). The sensitivity and specificity exhibit a 

typical trade-off. As the specificity improves with increasing numbers of observations the 

sensitivity worsens. For example, sensitivity for ≤3 device observations is lower than that 

for ≤2 observations while the specificity for ≤3 device observations is better. Inclusion of 

OptiVol improves overall performance. With OptiVol excluded for ≤3 device observations, 
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sensitivity and specificity are 9.5% and 98.8%, respectively. With OptiVol included 

sensitivity improves significantly to 21.6% while the specificity drops slightly to 97.4%.

Several non-device data based HF risk stratification strategies have recently been 

developed.22–25 In contrast to our dynamic risk assessment scheme, these models are static 

and use a one-time snapshot of laboratory measurements. Furthermore, since the device data 

are continuously collected, our scheme is amenable to be applied in an ambulatory setting. 

For example, the device data can be transmitted automatically to a clinic upon an alert 

(referred to as CareAlert in Medtronic's CareLink system) or on a predetermined schedule.

It is instructive to compare the performance of device diagnostics with patient weight in 

predicting HFH. Patient weight increases steadily for ~2 weeks before HFH26 and is 

routinely used in clinical practice. However, in a head-to-head comparison, patient weight 

performed significantly worse than OptiVol. While OptiVol had a sensitivity of 76% and an 

unexplained detection rate of 1.9 per patient-year, patient weight had a sensitivity of mere 

20% and an unexplained detection rate of 4.3 per patient-year.13 Given that our scheme 

combines several device parameters, its performance is better than OptiVol alone and hence 

superior to that of weights [e.g. for ≤1 observation, sensitivity with OptiVol included is 

90.5% (Table 6) and an unexplained detection rate at a specificity of 49.1% is 1.5 per 

patient-year].

Various device diagnostic parameters reflect different underlying physiological processes, 

and a deviation beyond a certain range may signal a compromise in physiological 

homeostasis and hence be a marker of patient risk. For example, impedance is an indicator 

of fluid status.9,27 A drop in impedance and accompanying rise in OptiVol is indicative of 

possible fluid overload, while an excessive rise in impedance and drop in OptiVol might 

signal dehydration. Similarly, elevated NHR is a potential marker of imbalance in 

autonomic tone, and lower activity can signal compromised functional capacity. While each 

diagnostic parameter is a risk marker, univariate analysis shows that performance of a single 

parameter is modest (Table 3). For example, 30-day HFH rate following an OptiVol 

observation is 3.5%, and HFHs occur even in the absence of an OptiVol observation at a rate 

of 0.9% (Table 3). Corresponding numbers for VRAF, the one with highest HFH rate, are 

11.2% and 1.5%. Prognostic value of device diagnostics is significantly improved when 

observations from all the parameters are combined.

The utility of combining device diagnostic variables for HF risk stratification has been 

shown earlier. Whellan et al10 combined device diagnostics for the previous 30 days using a 

heuristic approach to assess next 30-day HF risk. When two or more parameters exceeded 

preset thresholds or OptiVol alone exceeded a very high threshold, the risk was found to be 

5.5× higher compared to diagnostic criterion not met. Our scheme differs in a few important 

aspects. First, while they segmented patients into two risk categories (i.e. high and low), we 

use a graded approach with 4 risk categories (i.e. 0, 1, 2, ≤3 observations) in which risk 

gradually increases with increasing number of device observations. Second, while we also 

use a clinically relevant 30-day risk prediction window, our look back period spans the 

entire duration between current and previous follow-up. Finally, while they modified 

threshold values for a few parameters and used parameters without an existing observation 
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(e.g. HRV), we only selected parameters with available device observations. These last two 

differences make our scheme readily implementable (e.g. on CareLink) since any alterations 

in threshold values and ways to combine them makes the implementation cumbersome for 

health care providers.

Recently a more sophisticated methodology using a probabilistic Bayesian Belief Network 

approach has been presented to categorize patients into low, medium, and high risk 

statuses.12 While this approach is elegant and more rigorous, it cannot be readily applied by 

health care providers using existing device diagnostics.

To improve outcomes using integrated device data has challenges similar to those faced by 

other management strategies involving a single device parameter (e.g. OptiVol9,13,18,28) or 

other diagnostic modalities (e.g. intra-cardiac pressure29,30). Foremost among these the 

diagnostic information provided needs to be actionable and must be acted upon. Provided 

device diagnostic data are combined with an appropriate intervention algorithm that is 

adhered to, it has the potential to improve patient outcomes as shown for intrathoracic 

pressure.29 However, given telemonitoring trials have had mixed results,31–34 no assertions 

can be made regarding effectiveness of any novel risk assessment scheme in absence of a 

prospective study.

Similar to other risk assessment models,24,35,36 our scheme does not have perfect 

performance. Thus, as is the case for other approaches to manage patients (e.g. weight, 

blood pressure, temperature, ECG, etc.), it is imperative that a patient's overall health status 

be taken into account to devise a management strategy.

While an odds ratio for our risk stratification scheme is superior to several clinically used 

risk stratification tools (Tables 2 and 4), it is apparent that the absolute 30-day HF 

hospitalization rate is relatively low (e.g. ~14% for ≤3 observations, Tables 2 and 4). These 

low numbers are reflective of HFH being a relatively rare event with a rate of ~1–2% over a 

30-day period. Thus, greater number of device observations alone should not trigger an 

action as it can potentially lead to an increase in health care utilization and hospitalization 

rate.37 Rather they should be used in conjunction with other clinical data to identify a subset 

of high risk patients and judiciously allocate resources. The actions may include diet and 

medication counseling for non-adherence, more frequent tele-monitoring, or medication 

change.

Since our proposed scheme uses unmodified device observations, they are already available 

to clinicians for use. However, whether device diagnostics are integrated into a clinic's 

workflow is influenced by several factors such as expertise of staff, proven or perceived 

value of device diagnostics, resources needed, and ease of use. Varying approaches can be 

used to integrate device diagnostics into a clinic's workflow, and are influenced by factors 

such as volume of patients, skill level of staff, and availability of resources.38,39 In all cases, 

ease of use could potentially lower the hurdle for adoption. Presently, HF related 

observations can only be viewed at a patient level (e.g. clinician must open and view HF 

management report for each patient in CareLink to assess various observations) or they are 

mingled with other device and electrophysiological observations (e.g. lead failure, low 
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battery voltage). This makes using HF related observations a bit cumbersome. A clinic level 

view dedicated to HF related observations and the ability to sort patients by the number of 

these observations could facilitate the triaging process. Streamlining the CareLink system 

and then demonstrating that clinic efficiencies, time to clinical action, and perhaps patient 

outcomes are improved by using a device observations based tri-aging scheme remain topics 

of future research. Although studies demonstrating improvement in time to clinical action 

with use of device diagnostics are available,40,41 none are available demonstrating 

improvement in outcomes.

Limitations

This analysis is based on data from only two studies. All patients included in our analysis 

had a CRT-D device. The device diagnostic parameters and their significance for an ICD 

and CRT-D are slightly different. For example, % CRT pacing is irrelevant for an ICD. 

Instead, a lower RV pacing is desirable. Furthermore, since characteristics of ICD and CRT-

D patients differ (class II and III for the former versus class III and IV for the latter), our 

findings may not translate to an ICD patient population. Secondly, our results apply to only 

Medtronic devices. Since type of diagnostic parameters, collection method (e.g. time and 

frequency of sampling), and thresholds for observations can vary among manufacturers, our 

results are not generalizable to non-Medtronic devices. Finally, to reflect the current practice 

of using device data in a standalone fashion, we only used device data and did not include 

demographic, medication or clinical data (e.g. weight, blood pressure and brain natriuretic 

peptide) that clinicians have access to. Additionally, a clinician may have intimate 

knowledge of a patient's psychosocial status. We did not address incremental value of device 

parameters to the clinical and psychosocial variables.

Conclusions

We developed a novel and simplified scheme for stratifying patients at risk of HF 

hospitalization using existing diagnostic observations available in a CRT-D device. The 

scheme can be readily implemented on a remote management system such as CareLink 

(Medtronic Inc., MN) and could potentially be another tool in a clinician's repertoire to help 

quickly identify patients at risk of HF events. However, whether an appropriately devised 

intervention strategy when coupled with our stratification scheme improves patient 

outcomes will require prospective evaluation.
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Abbreviations

AF atrial fibrillation

AT atrial tachycardia
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CRT cardiac resynchronization therapy

EF ejection fraction

GEE generalized estimating equation

HF heart failure

HFH heart failure hospitalization

HRV heart rate variability

ICD implantable cardioverter defibrillator

NHR night heart rate

NYHA New York Heart Association

VRAF ventricular rate during AF
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Fig. 1. 
Various device diagnostic parameters and corresponding default threshold values that trigger 

a device observation. The left column shows the various device parameters and their 

representative trend. The right column shows the corresponding default threshold values 

(see Methods for more details). Except for raw impedance and HRV, all other parameters 

have an observation that is triggered when the corresponding threshold is crossed. However, 

the availability of OptiVol observation varies with geography (refer to text for details).
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Fig. 2. 
The schematic for diagnostic evaluation and risk assessment framework. The device 

observations occurring during the entire duration between two successive follow-ups (FUs) 

sessions were noted. Various follow-ups are indicated as FU1, FU2 etc. The look-back time 

window for evaluating device observations is labeled as ‘Risk Assessment’. The 

corresponding 30-day look-forward time window is labeled as ‘Risk Prediction’. Refer to 

text under the section Analysis Scheme for more details.
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Fig. 3. 
Kaplan Meier curves for time to first HF hospitalization. Panel A shows HFH rate in the next 

30-days following an evaluation for varying number of observations with OptiVol excluded 

from the device parameter set. Panel B shows an analogous plot with OptiVol included in 

the device parameter set.

Sharma et al. Page 15

Heart Lung. Author manuscript; available in PMC 2015 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sharma et al. Page 16

Table 1

Patient clinical and demographic data of combined FAST and PARTNERS-HF trials used for the present 

analysis.

Total (n = 775)

Mean age (SD) 69 (11)

Male gender 524 (68%)

Ethnic origin

    Caucasian 655 (85%)

    African American 85 (11%)

    Other/Unknown 35 (5%)

NYHA

    I 9 (1%)

    II 59 (8%)

    III 674 (87%)

    IV 33 (4%)

Ischemic 485 (63%)

Coronary artery disease 524 (68%)

Myocardial infarction 360 (46%)

Hypertension 552 (71%)

Diabetes 324 (42%)

History of AF 219 (28%)

LVEF ≤35%
a 676 (100%)

Baseline medications

    ACE/ARB 641 (83%)

    Beta-blockers 696 (90%)

    Diuretics 642 (83%)

    Digoxin 279 (36%)

    Aldosterone antagonist 257 (33%)

    Hydralazine 44 (6%)

    Nitrates 215 (28%)

    Anti-arrhythmic drugs 138 (18%)

    Warfarin 183 (24%)

a
LVEF was only available for 676 patients.

Heart Lung. Author manuscript; available in PMC 2015 April 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sharma et al. Page 17

Table 2

Performance of device observations excluding OptiVol in stratifying patients at risk of heart failure 

hospitalization (HFH).

Number of device 
observation(s)

Number of follow-ups 
(Number of patients)

Number of HFHs 
(%)

GEE adjusted HFHs (95% 
CI)

Odds ratio versus 0 
observation (95% CI)

0 1614 (631) 14 (0.9) 0.9% (0.5-1.6) Reference group

1 535 (284) 17 (3.2) 3.0% (1.8-5.0) 3.6 (1.6-7.8)

2 98 (71) 7 (7.1) 7.0% (3.4-13.8) 8.5 (3.3-22.3)

≥3 29 (24) 4 (13.8) 13.6% (5.5-30.0) 17.9 (5.6-57.2)
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Table 3

Univariate analysis and risk of various device parameters for HFH.

Device observation Number of follow-ups Number of HFHs (%) GEE (95% CI)

Activity

Yes 277 14 (5.1%) 5.1% (3.0-8.4)

No 1999 28 (1.4%) 1.4% (0.9-2.1)

NHR

Yes 28 2 (7.1%) 7.2% (2.2-21.7)

No 2248 40 (1.8%) 1.8% (1.3-2.5)

AF burden

Yes 235 11 (4.7%) 4.7% (2.5-8.5)

No 2041 31 (1.5%) 1.5% (1.0-2.2)

VRAF

Yes 26 3 (11.5%) 11.2% (3.8-28.5)

No 2250 39 (1.7%) 1.7% (1.2-2.4)

Decrease in CRT pacing

Yes 228 11 (4.8%) 4.6% (2.4-8.4)

No 2048 31 (1.5%) 1.5% (1.0-2.2)

Shock

Yes 26 2 (7.7%) 7.1% (1.5-27.3)

No 2250 40 (1.8%) 1.8% (1.3-2.5)

OptiVol

Yes 783 28 (3.6%) 3.5% (2.4-5.2)

No 1493 14 (0.9%) 0.9% (0.6-1.6)

Heart Lung. Author manuscript; available in PMC 2015 April 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sharma et al. Page 19

Table 4

Performance of device observations including OptiVol in stratifying patients at risk of heart failure 

hospitalization (HFH).

Number of device 
observation(s)

Number of follow-ups 
(number of patients)

Number of HFHs 
(%)

GEE adjusted HFHs (95% 
CI)

Odds ratio versus 0 
observation (95% CI)

0 1103 (554) 4 (0.4) 0.4% (0.1-1.0) Reference group

1 828 (514) 14 (1.7) 1.7% (0.9-3.0) 4.6 (1.4-14.5)

2 279 (190) 15 (5.4) 5.3% (3.1 -8.8) 14.9 (5.2-43.1)

≥3 66 (50) 9 (13.6) 13.6% (7.2-24.3) 42.4 (12.6-142.1)
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Table 5

Sensitivity versus specificity in a 30-day evaluation framework for ≥ 1, ≥2 and ≥3 observations for the 

parameter set excluding OptiVol.

Number of device observation(s) Sensitivity Specificity

Unadjusted GEE adjusted (95% CI) Unadjusted GEE adjusted (95% CI)

≥ 1 observation(s) 28/42 (66.7%) 68.9% (52.8-81.5) 1600/2234 (71.6%) 71.2% (68.4-73.9)

≥ 2 observations 11/42 (26.2%) 27.0% (15.2-43.3) 2118/2234 (94.8%) 94.5% (93.1-95.7)

≥ 3 observations 4/42 (9.5%) 9.5% (3.7-22.5) 2209/2234 (98.9%) 98.8% (98.2-99.3)
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Table 6

Sensitivity versus specificity in a 30-day evaluation framework for ≥1, ≥2 and ≥3 device observations for the 

parameter set including OptiVol.

Number of device observations Sensitivity Specificity

Unadjusted GEE adjusted (95% CI) Unadjusted GEE adjusted (95% CI)

≥1 observation(s) 38/42 (90.5%) 90.5% (77.5-96.3) 1099/2234 (49.2%) 49.1% (46.5-51.7)

≥2 observations 24/42 (57.1%) 58.0% (42.0-72.4) 1913/2234 (85.6%) 85.5% (83.5-87.4)

≥3 observations 9/42 (21.4%) 21.6% (11.2-37.6) 2177/2234 (97.4%) 97.4% (96.5-98.1)
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