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Abstract 

Background

The endothelial glycocalyx (EG) appears to play a critical role in physiological  

vasculo-endothelial function. Sepsis, trauma, and hemorrhagic shock are associated 

with EG shedding and intravenous fluids have the potential to worsen EG degrada-

tion. There is little available research evaluating the relationship between intravenous 

fluids, inflammation, and EG degradation in critically ill dogs.

Objective

To study EG degradation in critically ill dogs over their first 48 hours of hospitalization 

and characterize the influence of intravenous fluids and inflammation.

Methods

Hyaluronic acid (HA), a biomarker of EG degradation, was measured in dogs with 

non-pulmonary sepsis, pulmonary sepsis, or spontaneous hemoperitoneum at five 

pre-defined time points over 48 hours. The concentration of HA was trended over 

time, compared between groups, and studied for associations with the cumulative 

volume of intravenous fluids administered, a pro-inflammatory cytokine (interleukin-6, 

IL-6), and a biomarker of hypervolemia (atrial natriuretic peptide, ANP).

Results

Concentration of HA was not significantly different between the groups at each time 

point. It increased over the first 24 hours of the study before reaching a plateau in 

patients with sepsis and spontaneous hemoperitoneum. Concentration of IL-6 had 

a significant positive association with HA concentration on presentation in all groups 
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(p = 0.026). Cumulative fluid volume had a significant association with HA concentra-

tion during hospitalization in all groups (p = 0.0002). There was no significant effect of 

ANP on HA concentration. Concentration of HA was associated with disease severity 

but not with outcome.

Conclusions

In the dogs studied, markers of inflammation and administration of larger volumes of 

intravenous fluids were associated with increasing HA concentration, and thus pre-

sumptive EG degradation. Further research is needed to explore the clinical impact 

of intravenous fluid therapy on the EG. These findings should be considered carefully 

by clinicians prescribing fluid resuscitation for critically ill dogs.

Introduction

The endothelial glycocalyx (EG) is a mesh-like layer which covers the inner surface 
of blood vessels, positioned at the interface between the bloodstream and endothelial 
cells [1,2]. It plays a crucial role in regulation of transvascular fluid flux, inflammation, 
hemostasis, and vascular tone [3–5]. It prevents fluid extravasation via the filter role 
of its component glycosaminoglycans (GAGs) and the support of a low oncotic pres-
sure in the sub-endothelial space, following the revised Starling’s theory [4,6,7]. It 
also acts as a dynamic barrier between the leukocytes, platelets, red blood cells, and 
the active endothelial surface [4,5,8].

Evaluation of EG degradation in vivo is possible using its shed components as 
biomarkers. These biomarkers have shown good correlation with other structural and 
functional indicators of EG degradation, and with severity of disease and outcome 
in people [9–12]. Hyaluronic acid or hyaluronan (HA) is a GAG found in the EG and 
other extracellular matrices. Quantification of HA concentration in canine blood using 
commercial human enzyme-linked immunosorbent assay (ELISA) kits has been pre-
viously validated and used in research [13–19].

Sepsis, hemorrhagic shock, and trauma are major causes of EG degradation, as 
demonstrated in both experimental animal models and in people [1,20–23]. Similarly, 
increased concentrations of HA have been found in dogs with sepsis and hemor-
rhagic shock [14–16,24]. Evidence that intravenous (IV) crystalloid administration has 
the potential to be associated with EG degradation has also been demonstrated in 
experimental animal models [10,25,26], and in people [27–32] and dogs [14,15,17] 
receiving IV fluids for sepsis, hemorrhagic shock, or surgery. Resuscitation with 
non-crystalloid fluids (such as plasma) has been associated with less EG degra-
dation than crystalloids [33]. Although the actual effects of IV crystalloids on the 
EG remain to be determined, degradation of the EG has been suggested as one of 
the reasons why liberal fluid therapy can contribute to a negative patient outcome 
[28,29]. Researchers have speculated that the consequences of EG degradation 
might include interstitial edema, tissue hypoxia, coagulopathy, and dysregulated 
systemic inflammation [34–38]. The mechanisms responsible for IV fluid-induced EG 
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degradation are not completely understood. Atrial natriuretic peptide (ANP), which is released by the cardiac atria under 
mechanical wall stress, has been debated as a potential factor [28,29,31,39–44]. Other hypotheses include direct effect of 
shear stress on the endothelium [29], and modulation of inflammatory proteins by IV fluids [45,46].

Considering the potential negative effects of IV fluids on the EG, a better understanding of their impact is warranted for 
future development of evidence-based recommendations on therapeutic fluid prescriptions which could protect the EG. 
Minimal investigation has been reported in veterinary medicine. Using HA serum concentrations to characterize EG degra-
dation in critically ill dogs, our study aimed to explore the association of HA with inflammatory biomarkers and with cumula-
tive IV fluid volumes during the resuscitation period and beyond to 48 hours. Critically ill dogs with pulmonary sepsis (PS), 
non-pulmonary sepsis (NPS; e.g., septic peritonitis), and spontaneous hemoperitoneum (HEM) were enrolled. The study was 
designed based on the hypothesis that these three patient groups would differ in fluid volumes received during resuscitation 
and ongoing hospitalization, following current recommendations, dogs with PS being expected to receive more conservative 
IV fluid volumes, and dogs with NPS and HEM likely to be supported with more aggressive IV fluid volumes [47–49]. Based 
on this, the main objective of our study was to compare HA shedding in dogs with severe inflammation (sepsis groups) vs. 
dogs with minimal inflammation (HEM) and in dogs with expected similar inflammatory status but differing fluid resuscitation 
strategies (PS vs. NPS). A secondary objective was to investigate the association of HA with the cumulative volume of IV 
fluids administered and with biomarkers of hypervolemia (ANP) and inflammation (IL-6). We hypothesized that HA would be 
higher in patients with higher cumulative fluid volumes, that HA would be lower in dogs with PS (conservative fluid therapy) 
compared to NPS, and that HA would be lower in dogs with HEM (non-inflammatory) compared to dogs with NPS.

Materials and methods

Study design

Patients were enrolled in a prospective observational study conducted in the intensive care unit (ICU) of a veterinary 
teaching hospital between February 2022 and September 2023. All procedures were approved by the Institutional Animal 
Ethics Committee (AUP#4422) and informed owner consent was obtained for all dogs.

Dogs were enrolled if they were admitted to the ICU with a diagnosis of sepsis (subdivided into pulmonary sepsis 
and sepsis of any non-pulmonary cause [e.g., septic peritonitis]) or HEM, and had planned hospitalization expected to 
last for at least 24 hours. Inclusion criteria for each group are summarized in Table 1. Briefly, inclusion in either sepsis 
group required at least two of the systemic inflammatory response syndrome (SIRS) criteria [50]. In addition, for the PS 
group, history consistent with pneumonia and radiographic or ultrasonographic evidence of pneumonia were required. 
Dogs with fungal pneumonia were excluded. Inclusion in the NPS group required confirmation of an infectious process at 
admission or within 12 hours of hospitalization. This was based on identification of intracellular bacteria during cytologi-
cal  examination of the source or positive results on bacterial culture. Inclusion in the HEM group was based on evidence 
of hypovolemic shock and confirmation of hemorrhagic abdominal effusion without evidence of trauma or coagulopathy. 
Study exclusion criteria included body weight of less than 10 kg to avoid iatrogenic anemia, lack of confirmation of sepsis 
following initial inclusion in either sepsis group, or if blood collection could not be performed at defined time points for at 
least the first 24 hours of the study. Dogs were not excluded from the study if only one sample was missed. Dogs with 
a history of comorbidities were not excluded, however this information was recorded. For each study dog, all decisions 
regarding medical and surgical interventions, including volume resuscitation, medications, transfusion needs, and diag-
nostic tests were at the discretion of the attending clinician.

Clinical data collection

Patient signalment and weight were recorded, as well as known comorbidities that might affect HA concentration, 
including liver disease, diabetes mellitus, malignancy, and renal disease. Data recorded at admission included 
clinical and laboratory findings: mentation, rectal temperature, heart rate, respiratory rate, systolic and mean blood 
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pressure, oxygen saturation (SpO2), packed cell volume (PCV), total proteins (TP), blood glucose, blood lactate, 
venous partial pressure of CO2 (pCO2), complete blood count and serum biochemistry data, and presence of cavi-
tary effusion based on point of care ultrasound. Illness severity score at the time of admission was calculated using 
the Acute Patient Physiological and Laboratory Evaluation (APPLE) score (APPLE

full
 and APPLE

fast
) [51]. Results of 

cytology, bacterial culture, histology, and point-of-care effusion analysis (PCV, glucose, lactate) were also recorded 
when performed. Anesthetic records of dogs that underwent surgery during the study period were reviewed for time 
and duration of surgery.

The volume and type of IV fluids (isotonic or hypertonic crystalloids, synthetic colloids, and blood products) adminis-
tered during the study, including fluids administered in surgery, were retrieved from the patients’ medical and anesthetic 
records. Total drug volumes administered as a continuous rate infusion exceeding 0.25 mL/kg/h were also recorded 
throughout the study period. Cumulative fluid volume was calculated for each patient at each blood collection timepoint. 
Fluids administered before presentation to our hospital were also recorded as much as possible but were not included in 
the total fluid volume due to inability to report the precise volume and time course for many of these patients.

The visit outcome (alive at discharge, dead, or euthanized) was recorded for all dogs. For euthanized patients, the rea-
son for euthanasia was categorized as financial or due to poor prognosis.

Sample collection and biomarker measurement

Blood (3 mL) was collected from each dog at predefined time points: on presentation (T0), after 2 + /- 1 hours (T2), after 
6 + /- 1 hours (T6), after 24 + /- 12 hours (T24), and after 48 + /-12 hours (T48). The initial sample was collected during 
placement of an IV catheter on admission to the hospital, prior to fluid administration. Subsequent samples were collected 
via an indwelling sampling catheter (jugular catheter or arterial catheter) if available, or via jugular or saphenous venipunc-
ture. Timepoints were set such that the T2 sample would be collected prior to surgery and T6 would be collected post- 
operatively for most of the enrolled dogs where surgical intervention was indicated (e.g., hemoperitoneum, septic 
 peritonitis). Samples for T24 and T48 were collected at times when other blood samples were requested by the attending 
clinician to reduce need for repeat venipuncture.

Blood was collected in a vacuum-sealed plastic tube without additives. Whole blood was allowed to clot for 2 hours at 
room temperature before being centrifuged at 1000xg for 30 minutes. The serum was separated, aliquoted into microcen-
trifuge tubes, and stored at −80°C for later batch analysis.

Biomarker measurements were conducted at a different site (The Ohio State University). All samples were transported 
via overnight courier on dry ice. Upon arrival the frozen samples were transferred into a −80°C freezer until later batch 
analysis. Biomarker measurements were performed using commercial ELISA kits validated for use in dogs following 
manufacturer’s instructions. The kits used included HA (QuantikineTM ELISA Hyaluronan Immunoassay, R&D Systems, 
Minneapolis, MN, United States), ANP (ANP BioAssayTM ELISA kit (canine), US Biological, Salem, MA, United States), 
and inflammatory cytokine IL-6 (QuantikineTM ELISA IL-6, R&D Systems, Minneapolis, MN, United States). All measure-
ments were performed in duplicate. Samples were diluted if the measured biomarker concentration was above the limit of 
detection of the assay. The assay’s lower limits of detection reported by the manufacturer were 0.068 ng/mL for HA, 0.031 
ng/mL for IL-6, and 0.012 ng/mL for ANP.

Statistical methods

Data were checked for normality by examination of the residuals, quantile-quantile plots and normality tests that included 
the Shapiro-Wilk test, Kolmogorov-Smirnov test, Cramer-von Mises test, and Anderson-Darling test. When necessary, 
data was log-transformed for analysis to meet the assumption of normality. Data was normally distributed after log- 
transformation. For presentation of means and 95% confidence intervals, the data was back-transformed. For repeated 
measures, Akaike’s information criterion was used to determine the best covariance structure.
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To compare the volume of fluid administered in the different groups, the cumulative fluid volume was computed for each 
animal at each time point and the means compared between groups using an ANOVA for repeated measures. The total 
cumulative fluid volumes and total cumulative fluid volumes divided by time were also compared between groups using 
an ANOVA. Post-hoc Tukey test was applied when the overall f test for the group was significant. An ANOVA and post-hoc 
Tukey test were also used to compare the concentrations of HA, IL-6, and ANP between the three groups at each time 
point and an ANOVA for repeated measures was used to compare HA concentrations between time points.

A Pearson correlation test was used to test for an association between ANP concentration and cumulative fluid volumes 
administered during the study.

To investigate possible predictors of HA concentration at T0, a general linear model was built. Parameters included 
group (HEM, NPS, and PS), the presence of malignancy as a comorbidity, the administration of IV fluids before hospital 
admission, and T0 APPLE

fast
 score, IL-6 and ANP concentrations. APPLE

fast
 was used over APPLE

full
 due to fewer missing 

data for their respective calculations. This analysis determined covariates of HA at T0. Then, to investigate determinants 
of HA concentration during hospitalization (after presentation), a mixed effect linear model for repeated measures was 
applied to the data for time points starting at T2. Possible explanatory variables included HA concentration at T0 and its 
covariates determined in the previous analysis. Fixed effects of time, surgery, cumulative fluid volume administered during 
the study time (over 48 hours for all dogs except 7 dogs who were only included in the study for 24 hours), and IL-6 and 
ANP concentrations were modelled, including interactions. Time was included in the model as a continuous variable with 
the exact time of sampling rather than the predefined time points where variation was accepted a priori. Quadratics for 
continuous parameters and interactions were also included in the models. To account for repeated measures, the first 
order autoregressive AR(1) was the best fit for the covariance structure. The random effect of animal (within group) gave 
the lowest Akaike’s information criterion when compared to other tested correlation structures. Models were reduced by 
removing non-significant effects (p > 0.05).

A logistic regression was used to determine if HA at T0, maximal HA concentration, and the difference between HA at 
T0 and HA at T24 were predictors of outcome.

A commercial software (SAS/STAT® 9.4, SAS Institute, Cary, NC) was used for statistical analysis.

Table 1. Inclusion criteria for the three study groups.

Pulmonary sepsis (PS) Non-pulmonary sepsis (NPS) Spontaneous hemoperitoneum (HEM)

At least 2 of the following SIRS criteria on 
presentation:
• T > 39.4°C or < 37.8°C
• HR > 140 beats/min
• RR > 30 breaths/min,
 pCO2 < 30 mmHg
• WBC > 16 or <6 x10^9/L; Bands > 3%

At least 2 of the following SIRS criteria on 
presentation:
• T > 39.4°C or < 37.8°C
• HR > 140 beats/min
• RR > 30 breaths/min, pCO2 < 30 mmHg
• WBC > 16 or < 6 x 10^9/L; Bands > 3%

Presence of a spontaneous hemoperitoneum:
• Hemorrhagic abdominal effusion (PCV > 12%)
• No history of trauma
• No primary coagulopathy

Suggestion of pneumonia on thoracic imaging:
• Cranioventral pulmonary consolidation on 

thoracic radiographs or CT imaging
• OR presence of B-lines and/or shred signs 

with a ventral pattern on point-of-care 
ultrasound

Confirmation of an infectious process:
• Observation of overt intestinal leakage or 

necrotic bowel during surgery (septic peritonitis)
• OR presence of at least 1 of the following 

criteria:
• positive results on bacterial culture of the 

source
• identification of intracellular bacteria during 

cytologic examination of the source

Evidence of cardiovascular decompensation on 
presentation:
• Heart rate > 140 beats/minute
• OR respiratory rate > 40 breaths/minute
• OR mean arterial pressure < 75 mmHg
• OR systolic blood pressure < 90 mmHg
• OR lactate > 2 mmol/L

A previous publication was used for sample size determination [14]. Based on the mean difference and variance in HA in a group of dogs hospitalized 
with septic peritonitis, the number of dogs required to detect a change in HA of 30 ng/mL between groups with a power of 80%, was 18 dogs per group 
using a paired t-test with a p-value of < 0.05.

https://doi.org/10.1371/journal.pone.0325809.t001

https://doi.org/10.1371/journal.pone.0325809.t001
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Results

Patient characteristics

Fifty-five dogs were enrolled in the study. One dog was later excluded from analysis due to two missed samples, leaving 54 
dogs included (18 per group). Most dogs were mixed breed dogs (11), and among pure breed dogs, Labrador Retrievers 
(7) and Golden Retrievers (6) were the most represented. Other breeds included German Shepherd (3), Great Dane (3), 
Bernese Mountain Dog (2), Cane Corso (2), English Bulldog (2), Mastiff (2), Portuguese Water Dog (2), Standard Poodle 
(2), Airedale Terrier (1), Australian Shepherd (1), Basset Hound (1), English Sheepdog (1), Flat Coated Retriever (1), Rott-
weiler (1), Schnauzer (1), Shetland Sheepdog (1), Springer Spaniel (1), Vizsla (1), and Weimaraner (2). There were 24 
neutered males, 19 spayed females, 8 intact males and 3 intact females. Severity of illness and comorbidities for dogs in 
each group are presented in Table 2. Based on available data, APPLE

full
 and APPLE

fast
 were calculated for 47/54 and 51/54 

dogs, respectively. Septic shock was diagnosed in 4 patients based on the need for vasopressors to maintain mean arterial 
pressure (MAP) ≥ 65 mmHg. There were eight patients with hyperglycemia where blood glucose measured between 8–16 
mmol/L at one or two timepoints of the study (4 in the NPS group and 4 in the HEM group). Etiology and final diagnosis for 
dogs in each group are summarized in Fig 1. Final diagnosis could not be determined for one dog in the HEM group due to 
technical issues with histology. An underlying cause could not be determined for the dog with pyothorax.

Data was recorded and samples collected for all time points except the T48 time point in 7 dogs because 5 dogs with 
HEM had been discharged and 2 dogs with PS were deceased.

Therapy provided

In 21 dogs, IV fluids had been administered before referral to our hospital. In-hospital fluid administration consisted of 
isotonic balanced crystalloids (Plasmalyte-A, Baxter), hypertonic saline solution (5% Sodium Chloride, B Braun), synthetic 
colloids (6% hydroxyethyl starch 130/0.4, Voluven, Fresenius Kabi), and blood products (packed red blood cells, whole blood 
and fresh frozen or stored plasma). Fluid types and total cumulative volumes in each group are presented in Table 2. Total 
cumulative fluid volume was calculated at T48 for all dogs except those who were no longer enrolled in the study at T48 
(5 discharged, 2 deceased), for which total cumulative fluid volumes were calculated over 24 hours (at T24). Based on the 
ANOVA, patients in the NPS group received significantly more fluids than patients in the PS group (p < 0.0001), and than 
patients in the HEM group (p = 0.013) (Fig 2). The cumulative fluid volume was higher in dogs with HEM than dogs with PS, 
however this difference did not reach statistical significance (p = 0.056). To account for the fact that 5 dogs with HEM and 2 
dogs with PS were discharged or deceased, respectively, at T48, and that their total cumulative fluid volumes were calcu-
lated over 24 hours rather than 48 hours, the analysis was also repeated after dividing the total cumulative fluid volume by 
the duration of inclusion in the study for each dog (Table 2). This cumulative fluid volume divided by time was independent of 
study duration for each dog. It was still significantly higher in NPS than PS (p < 0.0001), but it was also significantly higher in 
HEM than PS (p = 0.0019) and there was no significant difference between NPS and HEM (p = 0.492).

Surgical intervention was required during the study time in 33/54 dogs. Timing of surgery is presented in Table 2. 
Three dogs with NPS were managed medically: a dog with parvoviral enteritis, a dog with mastitis and a dog with fasciitis. 
Surgery due to NPS was delayed beyond the 6-hour sampling time point in one dog with pyothorax where surgery was 
performed 12 hours after presentation, and in another dog with septic peritonitis initially operated at the referring veterinar-
ian where intestinal dehiscence was noted 30 hours after presentation with subsequent emergency surgical revision at our 
hospital.

Biomarkers

All samples were successfully collected except for those dogs no longer in the study at T48 (7/54 dogs). These dogs were 
still included in the analysis for the remaining sample times.
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Table 2. Signalment, severity of illness, comorbidities, timing of surgery, types and volumes of intravenous fluids received throughout the 
study, and outcome for patients in each group.

Spontaneous 
hemoperitoneum 
(HEM) (n = 18)

Non-pulmonary 
sepsis (NPS) 
(n = 18)

Pulmonary sep-
sis (PS)
(n = 18)

Total (n = 54)

Signalment Age (years) 8.4 (7.3-10.1) 3.0 (2.0-6.2) 3.4 (2.4-8.5) 6.6 (2.5-9.1)

Weight (kg) 33.0 (28.8-39.7) 31.5 (29.0-39.3) 32.9 (23.4-37.3) 32.6 (27.2-39.0)

Severity of illness APPLE
full

 scorea 35.0 + /- 7.7 36.5 + /- 12.0 31.4 + /- 9.0 33.8 + /- 10.1

APPLE
fast

 scoreb 27.7 + /- 8.0 29.3 + /- 5.6 22.3 + /- 4.7 26.4 + /- 6.9

Septic shock 0 (0) 3 (16.7%) 1 (5.6%) 4 (7.4%)

Comorbidities Malignancy 15 (83.3%) 2 (11.1%) 3 (16.7%) 20 (37.0%)

Hyperglycemia 4 (7.4%) 4 (7.4%) 0 (0) 8 (14.8%)

Liver disease 0 (0) 1 (5.6%) 0 (0) 1 (1.9%)

Surgery per-
formed (time after 
presentation)

2-6 hours 17 (94.4%) 13 (72.2%) 0 (0) 30 (55.6%)

6-12 hours 1 (5.6%) 1 (5.6%) 0 (0) 2 (3.7%)

30 hours 0 (0) 1 (5.6%) 0 (0) 1 (1.9%)

No surgery 0 (0) 3 (16.7%) 18 (100%) 21 (38.9%)

Fluids received 
pre-referral

Yes 5 (27.8%) 9 (50%) 7 (38.9%) 21 (38.9%)

No 13 (72.2%) 9 (50%) 11 (61.1%) 33 (61.1%)

Types of intrave-
nous fluid products 
received during the 
study

Isotonic crystalloids 18 (100%) 18 (100%) 18 (100%) 54 (100%)

Hypertonic crystalloids 4 (22.2%) 7 (38.9%) 1 (5.6%) 12 (22.25)

Synthetic colloids 1 (5.6%) 0 (0) 0 (0) 1 (1.9%)

Packed red blood cells 11 (61.1%) 0 (0) 0 (0) 11 (20.3%)

Whole blood 2 (11.1%) 0 (0) 0 (0) 2 (3.7%)

Fresh Frozen Plasma 1 (5.6%) 7 (38.9%) 0 (0) 8 (14.8%)

Cumulative fluid 
volumec

Cumulative volume at 24 hours (mL/kg) 97.1
(85.3–117.4)

119.0
(91.3–170.5)

54.1
(39.1–61.2)

87.6
(57.8-119.3)

Total cumulative volume during study  
(mL/kg)c

129.5
(98.8–154.7)θ*

183.2
(136.3-230.4)*

86.2
(69.9–116.5)θ

127.8
(91.6-162.5)

Total cumulative volume divided by study 
duration (mL/kg/h)

3.8
(2.7–4.7)θ

4.0
(2.9-6.0)*

2.1
(1.7–2.6)θ *

3.1
(2.3-4.7)

Rate of fluids administered between 0 and 
24 hours (mL/kg/h)

5.1
(3.6-7.6)

5.6
(4.7-8.7)

2.2
(1.8-2.7)

4.7
(2.5-7.1)

Rate of fluids administered between 24 
and 48 hours (mL/kg/h)

1.7
(1.4-2.1)

2.0
(1.5-4.0)

1.7
(1.4-2.4)

1.8
(1.5-2.7)

Outcome Dead 0 (0) 1 (5.6%) 0 (0) 1 (1.9%)

Alive at discharge 18 (100%) 15 (83.3%) 13 (72.2%) 46 (85.2%)

Euthanized (prognosis) 0 (0) 2 (11.1%) 4 (22.2%) 6 (11.1%)

Euthanized (financial) 0 (0) 0 (0) 1 (5.6%) 1 (1.9%)

Duration of hospital-
ization (days)

Alive at discharge 2.0 (1.3-2.0) 5.0 (3-6.5) 3.0 (3.0-4.0) 3.0 (2.0-4.5)

Dead or euthanized – 3.0 (3.0-3.5) 3.0 (2.0-4.0) 3.0 (2.8-4.0)

Whole population 2.0 (1.3-2.0) 4.0 (3.0-5.0) 3.0 (2.3-4.0) 3.0 (2.0-4.0)

Data are presented as number (%) of dogs, median (Q1-Q3), or mean + /- SD.
aAPPLE

full
 score calculated on 13 patients with spontaneous hemoperitoneum, 18 patients with pulmonary sepsis, and 16 patients with non-pulmonary sepsis.

bAPPLE
fast

 score calculated on 17 patients with spontaneous hemoperitoneum, 18 patients with pulmonary sepsis, and 16 patients with non-pulmonary 
sepsis.
cCumulative fluid volumes were calculated over the study period. In patients who were no longer enrolled in the study at the last time point T48 (5 dis-
charged, 2 deceased), total cumulative fluid volumes were calculated over 24 hours (until the fourth time point T24).

Total cumulative fluid volumes divided by study duration are also presented to account for the effect of dogs removed before the last time point (T48) 
sampling.
θ, * Statistically significant difference between the volumes (p < 0.05).

https://doi.org/10.1371/journal.pone.0325809.t002

https://doi.org/10.1371/journal.pone.0325809.t002
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The progression of mean HA in time was plotted for all patients (Fig 3). Overall, HA concentration was significantly 
higher at T24 than at T0 (p = 0.010) and at T6 (p = 0.003) for all groups combined.

When using an ANOVA, HA concentration was not significantly different between groups at any time point (Table 3), 
which refuted our primary hypothesis. The overall mean HA for all time points was significantly lower in PS than in NPS 
(p = 0.021) but there were no statistically significant differences between HEM and NPS or between HEM and PS. IL-6 
concentration was significantly higher in NPS than HEM (p = 0.003) and tended to be higher in NPS than PS (p = 0.052) 
(Table 4). There were no significant differences in ANP concentration between the groups at any time point and no asso-
ciation between group and ANP concentration (p = 0.1360). There was no correlation of ANP with cumulative fluid volume 
(p = 0.362).

Fig 1. Etiology and final diagnosis for dogs in each group. SH: spontaneous hemoperitoneum, NPS: non-pulmonary sepsis, PS: pulmonary sepsis.

https://doi.org/10.1371/journal.pone.0325809.g001

Fig 2. Cumulative fluid volumes in each group: total cumulative fluid volumes (A) and total cumulative fluid volumes divided by duration of 
inclusion in the study (B). *, θ: Statistically significant difference (p < 0.05) between the corresponding two groups. HEM: spontaneous hemoperito-
neum, NPS: non-pulmonary sepsis, PS: pulmonary sepsis.

https://doi.org/10.1371/journal.pone.0325809.g002

https://doi.org/10.1371/journal.pone.0325809.g001
https://doi.org/10.1371/journal.pone.0325809.g002
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Fig 3. Mean hyaluronic acid concentration in time in patients with spontaneous hemoperitoneum (A), non-pulmonary sepsis (B), pulmonary 
sepsis (C), and all groups combined (D). The bolded line represents the mean value of hyaluronic acid and the underlying shadow represents the 
95% confidence interval. *, θ: Statistically significant difference (p < 0.05) between the corresponding time points.

https://doi.org/10.1371/journal.pone.0325809.g003

Table 3. Mean hyaluronic acid concentration in each group at each time point.

HEM NPS PS p-value NPS vs. HEM p-value
NPS vs. PS

p-value
HEM vs. PS

T0 77.2
(53.4-111.5)

93.3
(64.6-134.7)

59.7
(41.3-86.2)

0.474 0.092 0.330

T2 92.1
(63.6-133.0)

103.5
(71.7-149.6)

64.0
(44.3-92.4)

0.656 0.070 0.169

T6 86.6
(60.0-125.1)

107.4
(74.4-155.1)

61.2
(42.3-88.3)

0.415 0.123 0.188

T24 141.2
(97.6-203.7)

136.3
(94.4-196.9)

85.8
(59.4-123.9)

0.897 0.080 0.060

T48 115.5
(76.6-174.1)

144.0
(99.7-208.0)

74.3
(50.7-108.9)

0.429 0.095 0.123

Overall 100.1
(76.4-131.1)

115.3
(88.2-150.7)

68.3
(52.2-89.4)

0.738 0.021 0.120

T0: on presentation to the hospital, T2: 2 + /- 1 hours after presentation, T6: 6 + /- 1 hours after presentation, T24: 24 + /- 12 hours after presentation, T48: 
48 + /-12 hours after presentation.

HEM: spontaneous hemoperitoneum, NPS: non-pulmonary sepsis, PS: pulmonary sepsis.

Data is presented as mean (95% confidence interval).

Concentrations are in ng/mL. The bolded p-value is < 0.05.

https://doi.org/10.1371/journal.pone.0325809.t003

https://doi.org/10.1371/journal.pone.0325809.g003
https://doi.org/10.1371/journal.pone.0325809.t003
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In order to investigate factors having a significant effect on HA at T0, a mixed model was built. The group, the presence 
of malignancy, and ANP concentration were not found to have a significant effect on HA at T0 and were excluded from the 
model. The concentration of IL-6 and APPLE

fast
 score had a significant positive effect on HA concentration at T0 (p = 0.026 

and p = 0.015, respectively) (Fig 4). Patients who had received IV fluids before hospital admission had a higher HA concen-
tration at T0 (p = 0.015) than those not having received IV fluids before. The concentration of IL-6 at T0, the APPLE

fast
 score 

at T0, and the administration of IV fluids before admission were therefore independent predictors of HA concentration at T0.
To investigate the factors having an effect on HA concentration during hospitalization, beyond T0, a second mixed 

model was built, including HA concentration at T0 as well as its previously listed covariates, time, the cumulative volume 
of intravenous fluids administered in hospital, and IL-6 and ANP concentrations during hospitalization (starting at T2). In 
this model, when accounting for HA concentration at T0, the effect of the covariates: group, the administration of IV fluids 
before hospital admission, the presence of malignancy, IL-6 and ANP concentrations at T0 were not significant and they 
were removed from the model. The model identified that the cumulative volume of fluids had a significant positive effect on 
HA (p = 0.0002) (Fig 5). This effect did not change among groups. The concentration of ANP and IL-6 during hospitaliza-
tion, time, and group did not have a significant effect on HA concentration during hospitalization.

Outcome

Forty-six dogs (85%) survived to discharge. Outcome and duration of hospitalization for dogs in each group are presented 
in Table 2. Among the patients with septic shock, 3 out of 4 did not survive to discharge.

Hyaluronic acid concentration at T0, maximum HA concentration, and the difference in HA concentration between T0 
and T24 were not significant predictors of outcome based on a logistic regression (p = 0.258, p = 0.503, and p = 0.393, 
respectively).

Discussion

This study was designed to investigate potential associations between IV fluid administration, inflammation, and EG deg-
radation. In order to study these factors, predefined groups of dogs were selected to reflect anticipated differing delivered 

Table 4. Mean IL-6 concentration in each group at each time point.

HEM NPS PS p-value NPS vs. HEM p-value
NPS vs. PS

p-value
HEM vs. PS

T0 71.3
(34.3-148.0)

399.0
(192.2-828.5)

191.8
(92.4-398.2)

0.012 0.163 0.160

T2 72.0
(34.6-149.4)

481.8
(232.0-1000.2)

193.7
(93.3-402.2)

0.003 0.191 0.129

T6 106.3
(51.2-220.7)

658.9
(317.4-1368.1)

153.3
(73.8-318.2)

0.004 0.025 0.720

T24 68.5
(33.0-142.3)

137.4
(66.2-285.3)

106.5
(51.3-221.1)

0.291 1.000 0.600

T48 36.8
(16.9-80.2)

81.0
(39.1-168.2)

29.4
(13.9-62.0)

0.380 0.137 1.000

Overall 67.2
(36.0-125.7)

269.1
(144.3-501.9)

112.2
(60.1-209.5)

0.003 0.052 0.250

T0: on presentation to the hospital, T2: 2 + /- 1 hours after presentation, T6: 6 + /- 1 hours after presentation, T24: 24 + /- 12 hours after presentation, T48: 
48 + /-12 hours after presentation.

IL-6: interleukin-6, HEM: spontaneous hemoperitoneum, NPS: non-pulmonary sepsis, PS: pulmonary sepsis.

Data is presented as mean (95% confidence interval).

Concentrations are in pg/mL. The bolded p-values are < 0.05.

https://doi.org/10.1371/journal.pone.0325809.t004

https://doi.org/10.1371/journal.pone.0325809.t004
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IV fluid volumes during the resuscitative and early hospitalization period (conservative in PS and more liberal in NPS and 
HEM). Similarly, groups were also selected to compare and contrast variable degrees of inflammation (less inflammation 
anticipated in HEM and more inflammation in NPS and PS). The study results demonstrate that, in our hospital, dogs 
with PS received significantly less IV fluids over the duration of the study than dogs with HEM and NPS. Our hypothesis 
was also met in that dogs with HEM had lower inflammatory cytokine IL-6 concentrations than dogs with NPS, although 
there was no statistical difference in IL-6 concentration between dogs with HEM and dogs with PS. The distribution of IL-6 
concentration in patients with PS was very wide, reflecting heterogeneous inflammation in this group and likely explain-
ing the lack of statistically significant difference with the HEM group. Despite these differences in both volume of IV fluids 

Fig 4. Predicted mean hyaluronic acid concentration at T0 based on IL-6 concentration at T0 (A) and APPLE
fast

 score at T0 (B). HA concentra-
tions were back-transformed from the logarithmic transformation. The concentration of IL-6, the APPLE

fast
 score, and the administration of IV fluids before 

hospital admission have a significant positive effect on HA concentration at T0 (p = 0.026, p = 0.015, and p = 0.015, respectively). HA: hyaluronic acid, 
IL-6: interleukin-6.

https://doi.org/10.1371/journal.pone.0325809.g004

https://doi.org/10.1371/journal.pone.0325809.g004
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administered and inflammation, no significant difference in HA concentration was identified between the groups at any 
time point when assessed by simple ANOVA. When looking at overall HA concentration including all time points, HA 
concentrations were significantly higher in dogs with NPS than with PS. This finding may be attributed to larger volumes 
of IV fluids administered to the NPS group or to more severe inflammation in the NPS group than the PS group based on 
higher IL-6 concentrations, although only statistically significant at T6.

The lack of significant difference in HA concentration between groups at each time point may be explained by the 
smaller number of samples available when looking at separate time points, however other factors could also have been 
involved. Since this is an observational study, several parameters were likely at play both between and within groups, 
potentially affecting HA concentrations, which were investigated in mixed models. This study identified some interesting 
findings based on the mixed model analyses. First, APPLE

fast
 score and IL-6 concentration at T0, along with the adminis-

tration of IV fluids before hospitalization, were identified to have a significant effect on HA concentration at T0. Thereafter, 
during hospitalization (starting at T2), HA concentration was determined by its concentration at T0 and the cumulative 
volume of IV fluids administered during. Thus, the overall findings of these analyses were that HA concentration was 
determined by the inflammatory status (IL-6 concentration), the severity of illness (APPLE

fast
 score), and the administra-

tion of IV fluids both before hospitalization and during hospitalization, for which the effect was volume-dependent. The 
effects of the degree of inflammation and disease severity were most predominant on presentation. This could indicate 
that, although patients were presented with a certain degree of EG degradation caused by the disease process, ongoing 
EG degradation may have been caused by IV fluids administered in hospital. The disease group did not have a significant 
effect on HA concentration, which could be explained by the fact that levels of inflammation, disease severity, and admin-
istered volumes of IV fluids were heterogeneous within groups.

Interestingly, HA concentration in the NPS group was not significantly different from HA concentration in dogs with 
HEM, indicating that patients with hemorrhagic shock might have a similar degree of endotheliopathy as patients with 
sepsis, although evaluated with a single biomarker in this study. Biomarkers of EG degradation have repeatedly been 
reported to be higher in patients with sepsis than in healthy controls and patients with simple infection [12,30,52,53]. 
However, a comparison between patients with sepsis and patients with hemorrhagic shock is not currently available in the 
human medical literature. Studies evaluating people with severe trauma and experimental rodent models demonstrate that 

Fig 5. Predicted mean hyaluronic acid as a function of cumulative fluid volume for time points T2 to T48. HA concentrations were back- 
transformed from the logarithmic transformation. The cumulative fluid volume has a significant positive effect on HA from T2 to T48 (p = 0.0002). 
HA = hyaluronic acid.

https://doi.org/10.1371/journal.pone.0325809.g005

https://doi.org/10.1371/journal.pone.0325809.g005
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patients with hemorrhagic shock can have markedly elevated biomarkers of EG degradation as well [10,20,22,23,54–56]. 
In the veterinary literature, HA, as a biomarker, has only been explored in hemorrhagic shock models in healthy dogs 
with experimentally induced hemorrhage. Results are contradictory, with one study showing an increase in HA following 
60 minutes of hemorrhagic shock [15] and another failing to show an increase in HA following 10 minutes of hemorrhagic 
shock [57].

Our study also aimed to explore the pattern of HA biomarker concentrations in dogs with systemic illness and to inves-
tigate the timing of peak HA concentration based on predefined sampling times. In our study, HA concentration increased 
progressively from T0 to T24 in patients with NPS and HEM, before reaching a plateau. The differences were only statis-
tically significant between T24 and T0, and T24 and T6. The concentration of HA at T48 was more variable in NPS, which 
is consistent with the heterogenous progression of disease in this group compared to the other two groups. Unfortunately, 
due to the study design, no data was available beyond 48 hours. In previous human studies, different EG biomarkers were 
found to have different variations over time [12,53] and HA did not change significantly over 4 days in 8 dogs with septic 
peritonitis [14]. Therefore, expected changes in HA are non-predictable when reviewing the human and veterinary litera-
ture and may be related to the individual patient’s disease progression. The increase in HA concentrations over the first 24 
hours in the NPS and HEM groups could be due to initial fluid resuscitation, with de-escalation of IV fluids progressing into 
the second day of hospitalization. This would be supported by the difference in the rate of fluid administration during the 
first day and the second day of the study.

The effect of IV fluid volumes on EG degradation has been documented in people, with an increase in EG biomarkers 
(HA, heparan sulfate) associated with the volume of fluids delivered during resuscitation in septic patients [29,30,58]. 
However, in other human studies, the volume of fluids administered did not seem to have an effect on EG biomarker 
concentrations and the effect of IV fluids on the EG should therefore be interpreted cautiously, especially in patients with 
sepsis [27,59–62]. Studies in veterinary medicine exploring the effects of IV fluids on the EG are limited. A study con-
ducted in healthy dogs undergoing elective surgery reported an increase in HA following anesthetic IV fluid administration 
(at 5 mL/kg/hr and 10 mL/kg/h) [17] and a retrospective case series of 8 dogs with septic peritonitis followed daily during 
their recovery reported a significant effect of cumulative IV fluid volume on HA concentration when accounting for IL-6 
concentration [63]. In an experimental model of canine hemorrhagic shock, resuscitation with high volumes of crystalloids 
(80 mL/kg) was also associated with an increase in HA concentration [15]. To date, our results are consistent with previ-
ous findings that IV fluid therapy may have an effect on the EG.

Interleukin-6 is a pro-inflammatory cytokine which is a well-known diagnostic and prognostic marker of sepsis in people 
[64,65] and dogs [14,66–68]. Our study identified higher IL-6 concentrations in sepsis, most notably of non-pulmonary ori-
gin, as well as a positive effect of IL-6 on HA at T0 in all groups. Interleukin-6 has been reported to be positively correlated 
with EG biomarkers in people with sepsis and trauma [52,69,70] and was a significant predictor of HA concentration in the 
previously referenced series of 8 dogs with septic peritonitis [14]. Elevated IL-6 has also been reported in a recent publi-
cation in dogs with organ dysfunction secondary to sepsis and evidence of EG degradation [16]. The subsequent lack of 
association between IL-6 and HA concentrations during our study period (at times after T0), may be caused by a predom-
inant effect of cumulative fluid volumes, masking the effect of IL-6. The effect of inflammation on the EG might also have 
been attenuated by treatments aiming at controlling the source of inflammation and reversing shock.

Atrial natriuretic peptide is a protein secreted by the atrial myocytes in response to wall stretch, which promotes natri-
uresis and vasodilation [71]. It has also been shown to increase capillary permeability, which has been hypothesized to be 
mediated by EG degradation [41]. This hypothesis was supported by two experimental studies on guinea pigs [41,42] and 
a few human studies [32,44,72]. However, other studies in pigs, dogs, and people have found no correlation between ANP 
and EG degradation [15,29,31,39,61]. A true association between ANP and HA therefore remains uncertain. In our study, 
ANP did not have a significant effect on HA concentration. The concentration of ANP was also not significantly different 
between disease groups and not correlated with cumulative fluid volume in our groups, which could indicate that volume 
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loading was possibly not achieved despite administration of IV fluids in our study (in the face of hemorrhage and vascular 
leak). Moreover, although the ANP assay used has been validated for dogs and previously used in a canine study [15] 
and the manufacturer’s instructions were followed, the coefficient of variability for ANP was moderately high in our study 
(mean + /- SD: 13.8% + /- 14.1), which could have led to inaccurate results. Therefore, our ANP results should be inter-
preted with caution.

Interestingly, in this canine study, no major increase in HA concentration was noted between T2 and T6, which is when 
the vast majority of patients underwent surgery. This finding is in agreement with previous human studies showing an 
increase in syndecan-1 was much less pronounced with surgery (by 1.3-1.5-fold) [72–75] than with sepsis and trauma (up 
to 20-fold) [12,20,56].

In this study, the illness severity score APPLE
fast

 had a significant effect on HA concentration, which could suggest 
that the severity of disease and endotheliopathy are associated, although causality is not established. The concen-
tration of HA has been associated with disease severity in multiple human studies [12,23,76,77]. However, in our 
study, HA concentration was not associated with patient outcome. The concentration of HA on presentation and the 
progression of HA during hospitalization has been associated with outcome in people with sepsis [12,52,76,78] and 
trauma [23,69]. Since the overall mortality rate in our study was low (15%), it is possible that significant predictors of 
outcome could not be identified. Other studies have also failed to find an association between EG biomarkers and 
outcome [77].

Our study had several limitations. Due to its observational nature, treatments were not standardized, and several 
factors changed concomitantly, including patient signalment, underlying disease, disease severity, volume and type of 
intravenous fluids administered, as well as other interventions (e.g., surgery and administration of IV fluids prior to referral/ 
study enrolment). By using a multivariate model, we tried to account for as many parameters as possible, however some 
could not be included and might have affected the results. Patient subgroups were too small to investigate the individual 
effects of these factors on HA results. Although disease severity was heterogeneous, our patient population was overall 
not very critically ill, with an overall mortality rate of 15%, and mean + /- SD APPLE

full
 score of 33.8 + /- 10.1 out of 80 and 

APPLE
fast

 score of 26.4 + /- 6.9 out of 50. The applicability of these results to more critically ill patients is unknown. In addi-
tion, we did not include a control group to compare HA concentrations in sick dogs with healthy dogs and dogs who did 
not receive IV fluids, however patients acted as their own controls. Some patients had comorbidities which are known to 
affect HA concentrations, such as malignancy, liver disease, and hyperglycemia [79–82]. While malignancy was included 
in our multivariate model and was found not to have a significant effect on HA concentration, an insufficient number of 
dogs had liver disease and hyperglycemia to include these factors in the model, and they could have affected HA con-
centrations [80,81]. However, in our study only one patient had underlying liver disease and 8 patients had mild- moderate 
hyperglycemia (8−16 mmol/L) which was limited to 1 or 2 time points. Other limitations unfortunately include that the 
individual effect of fluid boluses, hypertonic saline, and transfusions could not be assessed due to the small number of 
patients that received each of these interventions. This should be investigated in a study designed for this purpose. In 
addition, the potential effects of hemodilution on HA concentrations were not explored. Hemodilution may have caused 
a decrease in measured HA concentration. The measured HA concentration could have been normalized to albumin 
concentration or hematocrit to address this, however these parameters are also likely to change due to hemorrhage and 
critical illness and not only hemodilution. The effect of hemodilution would be expected to underestimate the increase in 
HA concentration induced by cumulative volume of IV fluids, and more significant differences might have been observed 
without the effect of hemodilution. Finally, the study only investigated HA as a single biomarker of EG degradation, and 
other biomarkers of endothelial damage such as syndecan-1, heparan sulfate, VE-cadherin, vascular endothelial growth 
factor, plasminogen activator inhibitor-1, and von Willebrand factor might have led to different results [16,57]. Validation 
of assays to measure other EG biomarkers (syndecan-1, heparan sulfate) in dogs is warranted and multiple biomarkers 
should be used in future studies.
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Conclusion

In this study, HA concentrations were not significantly different between patients with HEM, NPS, and PS at different 
predetermined time points. The study did however establish that administration of increasing cumulative IV fluid volumes 
is associated with EG degradation in critically ill dogs with sepsis and hemorrhagic shock. Patients with more severe 
inflammation based on elevated IL-6 concentrations also appear to be at higher risk of EG degradation. The results add to 
growing concerns about endothelial damage caused by liberal fluid resuscitation, particularly in patients with sepsis and 
hemorrhagic shock. Future research could include trials comparing the effects of different types of fluid strategies on EG 
biomarkers to better characterize the safest approach to fluid resuscitation. Beyond the cumulative volume of fluids, inves-
tigating the effect of fluid boluses, hypertonic saline, colloids, and transfusions specifically would be interesting.
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