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Abstract: Catalytic properties of GH30 xylanases belonging to subfamilies 7 and 8 were compared
on glucuronoxylan, modified glucuronoxylans, arabinoxylan, rhodymenan, and xylotetraose. Most
of the tested bacterial GH30-8 enzymes are specific glucuronoxylanases (EC 3.2.1.136) requiring
for action the presence of free carboxyl group of MeGlcA side residues. These enzymes were not
active on arabinoxylan, rhodymenan and xylotetraose, and conversion of MeGlcA to its methyl
ester or its reduction to MeGlc led to a remarkable drop in their specific activity. However, some
GH30-8 members are nonspecific xylanases effectively hydrolyzing all tested substrates. In terms of
catalytic activities, the GH30-7 subfamily is much more diverse. In addition to specific glucuronoxy-
lanases, the GH30-7 subfamily contains nonspecific endoxylanases and predominantly exo-acting
enzymes. The activity of GH30-7 specific glucuronoxylanases also depend on the presence of the
MeGlcA carboxyl, but not so strictly as in bacterial enzymes. The modification of the carboxyl
group of glucuronoxylan had only weak effect on the action of predominantly exo-acting enzymes,
as well as nonspecific xylanases. Rhodymenan and xylotetraose were the best substrates for exo-
acting enzymes, while arabinoxylan represented hardly degradable substrate for almost all tested
GH30-7 enzymes. The results expand current knowledge on the catalytic properties of this relatively
novel group of xylanases.
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1. Introduction

Glycoside hydrolase (GH) family 30 was found to be a quite diverse family and
currently is divided into nine subfamilies [1,2]. Two of them, subfamilies GH30-7 and
GH30-8, harbor enzymes that attack β-1,4-D-xylosidic linkages. The subfamily GH30-8
consists mainly of bacterial endo-β-1,4-xylanases specialized for a degradation of xy-
lans containing 4-O-methyl-D-glucuronic acid (MeGlcA) or D-glucuronic acid (GlcA) side
residues. These so-called glucuronoxylanases cleave the second glycosidic linkage from
the uronic-acid-substituted Xylp residue towards the reducing end, generating aldouronic
acids of the general formula MeGlcA2Xyln [3,4]. Crystallographic and biochemical data
obtained with the enzymes from Bacillus subtilis (BsXyn30C) and Erwinia chrysanthemi
(EcXyn30A) provided clear evidence that a conserved arginine in the GH30-8 glucuronoxy-
lanases is crucial to determining their glucuronoxylan specificity, with the guanidine group
of the arginine establishing a pair of ionic interactions with the C6 carboxyl group of
MeGlcA [5,6]. The importance of the ionic interaction for the action of EcXyn30A was ini-
tially indicated by Hurlbert and Preston [7] and later proven on modified glucuronoxylans,
in which the carboxyl groups were either methyl esterified or reduced to 4-O-methyl-
D-glucose [8,9]. Both modifications caused a several-thousand-fold decrease in catalytic
efficiency of EcXyn30A [8]. In contrast, a substitution of the arginine by alanine caused only
18-fold reduction in the catalytic efficiency which suggested that the substrate specificity
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of the GH30-8 glucuronoxylanases is determined by an overall topology of the substrate
binding site comprising several amino acids [8,10].

The availability of the two modified glucuronoxylans deprived of the charged carboxyl
group enabled us to perform an analogous study with a larger set of other GH30-8 members
but also with a series of recently described eukaryotic GH30-7 enzymes, which show
much greater diversity in catalytic properties. In addition to specific glucuronoxylanases,
the subfamily GH30-7 includes nonspecific endoxylanases, reducing-end xylose releasing
enzymes as well as xylobiohydrolases acting on the nonreducing end. Recent determination
of the first 3D structure of the GH30-7 glucuronoxylanase/xylobiohydrolase in complex
with a ligand revealed significant differences of how uronic acid moiety is recognized by
the eukaryotic xylanases [11]. The specificity determining arginine of the bacterial specific
GH30-8 glucuronoxylanases (prokaryotic arginine) is absent in the GH30-7 members
and its role is partially substituted by another arginine (eukaryotic arginine) of which
only one nitrogen atom of the guanidine group is involved in the ionic interactions with
the C6 carboxyl oxygens of MeGlcA. Together with observed differences in β2-α2 loop
and topology within the β8-α8 region, the eukaryotic arginine influences the substrate
specificity of the GH30-7 enzymes [11,12].

In addition to the comparison of the action of the GH30 enzymes on the modified
glucuronoxylans, their activity was also examined on arabinoxylan, rhodymenan, and
xylotetraose, i.e., the substrates that do not contain charged uronic acid residues. The
results expand current knowledge of the catalytic properties of the GH30 xylanases, and
in general, further support the current view on the mode of action and the mechanism of
substrate recognition by these unique xylanases.

2. Results
2.1. Activity of GH30 Xylanases on 4-O-Methylglucuronoxylan and Its Derivatives

4-O-Methylglucuronoxylan (GX) and its two derivatives with eliminated free car-
boxyl group, 4-O-methylglucuronoxylan methyl ester (GXE) and 4-O-methylglucoxylan
(GXR), were tested as the substrates for several GH30 xylanases (Figure 1). Bacterial
GH30-8 xylanases from Erwinia chrysanthemi EcXyn30A (Ec), Bacillus subtilis BsXynC (Bs),
Ruminococcus champanellensis RcXyn30A (Rc) and Clostridium themocellum CtXyn30A (Ct)
are representatives of glucuronoxylanases (EC 3.2.1.136) requiring for action the presence
of free carboxyl group of MeGlcA attached to xylan [3,4,13]. Bacterial enzymes from
Clostridium acetobutylicum CaXyn30A (Ca) and Hungateiclostridium clariflavum HcXyn30A
(Hc) are not specialized for the hydrolysis of GX, but they represent nonspecific xylanase
and xylobiohydrolase, respectively [10,14]. Fungal GH30-7 xylanases tested were glu-
curonoxylanase TrXynVI from Trichoderma reesei (TrVI), reducing-end xylose releasing
xylanase/endoxylanase TrXynIV from T. reesei (TrIV), xylobiohydrolase/endoxylanase
AaXyn30A from Acremonium alcalophilum (Aa) and a nonspecific xylanase TlXyn30A from
Talaromyces leycettanus (Tl) [15–19]. As expected, specific activity of the glucuronoxylanases
EcXyn30A, BsXynC, RcXyn30A, CtXyn30A, and TrXynVI on GXE and GXR were con-
siderably lower than that on GX (Figure 1), confirming that these enzymes require free
carboxyl group of the uronic acid residue for their action. On the other hand, activities
of HcXyn30A, AaXyn30A and TrXynIV on all three substrates were comparable (except
of TrXynIV acting on GXR), indicating that the MeGlcA carboxyl group does not play
a significant role in the substrate recognition. It is in consonance with a predominant
exo-action of these three enzymes [14,16,17]. In the case of TlXyn30A, the activity on GXE
and GXR was approximately three times lower than on GX. This indicates that the free
carboxylate may play a certain role in substrate recognition, but it is not indispensable for
the enzyme activity. CaXyn30A was the only xylanase showing a higher activity on GXE
than on GX.
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Figure 1. Relative specific activities of GH30-8 and GH30-7 xylanases on GX, GXE and GXR.
HcXyn30A has not yet been classified to any subfamily.

GH30-8 glucuronoxylanases are known to hydrolyze GX to acidic XOs of the gen-
eral formula MeGlcA2Xyln [3,4]. TLC analysis of hydrolysis products released from GX
confirmed the presence of the same products in the hydrolysates generated by RcXyn30A,
TrXynVI, and TlXyn30A (Figure 2). The products of these three enzymes were shortened
to MeGlcA2Xyl2 upon the hydrolysis with β-xylosidase confirming that the MeGlcA sub-
stitution is on the second Xylp residue from the reducing end (Figures 2 and 3a). When
GXE or GXR were used as a substrate, RcXyn30A and TrXynVI liberated only a very low
amount of the products (Figure 2). In contrast, GXE and GXR were efficiently cleaved by
TlXyn30A. Interestingly, the products liberated from GXE and GXR by TlXyn30A were
not shortened by β-xylosidase which means that their structure was not analogous to
the products released from GX and they do not contain the side residues exclusively on
the second Xylp residue from the reducing end but also closer to the nonreducing end
(Figure 3b,c). This is in contrast to the action of EcXyn30A, for which the elimination of the
free carboxyl group did not alter the mode of action and consequently the structure of the
liberated XOs [8]. The action of HcXyn30A and AaXyn30A on GXE and GXR seems to be
similar to the action on GX. Xyl2 was the main hydrolysis product and the released longer
XOs were not attacked by β-xylosidase (Figure 2). TrXynIV generated Xyl, Xyl2 and a very
small amount of larger XOs from all three substrates.
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A more detailed analysis was carried out with the products liberated from GX, GXE
and GXR by CaXyn30A. As demonstrated by MALDI-ToF MS analysis, the enzyme gener-
ated from all three substrates linear XOs Xyl2, Xyl3, and Xyl4, as well as the branched XOs
which were identified as singly substituted Xyl2, Xyl3, Xyl4 and Xyl5 (Figure 4a–c). After
application of β-xylosidase, linear XOs disappeared, but only some of the branched XOs
were shortened to MeGlcA2Xyl2/Me-MeGlcA2Xyl2/MeGlc2Xyl2 and some remained in
the hydrolysates. This means that CaXyn30A liberated products with unsubstituted Xylp
unit (s) at the nonreducing end as well as XOs decorated at the nonreducing end.
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CaXyn30A and their subsequent hydrolysis by β-xylosidase.

2.2. Action of GH30 Xylanases on Rho, AraX and Xyl4
The specific activities of the GH30 xylanases on GX were compared with those on nat-

ural uncharged polysaccharides—linear β-1,3-β-1,4-xylan (rhodymenan, Rho) and wheat
arabinoxylan (AraX) (Figure 5, Table 1). Glucuronoxylanases RcXyn30A and CtXyn30A did
not hydrolyze Rho and AraX, and very low levels of activity were observed with TrXynVI.
HcXyn30A exhibited similar activity on GX and Rho, while the activity of TrXynIV and
AaXyn30A on Rho was about 1.6-fold higher than on GX. TlXyn30A exhibited on Rho
and AraX about 20–25% of the activity on GX, and it was the only examined xylanase
showing a significant activity on AraX. For other tested xylanases AraX represents hardly
degradable substrate (Figure 5). CaXyn30A (not tested on AraX in this study) was reported
to cleave AraX efficiently [10].
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Table 1. Performance of GH30 xylanases on Rho, AraX and GX and its uncharged modifications GXE and GXR. Abbrevia-
tions: P, presence of prokaryotic Arg; E, presence of eukaryotic Arg and N, absence of both Args.

GH30
Subfamily Arg

Specific Activity (U/mg) % of Activity on GX
* Exhibited on Products Released From

Reference
GX Rho AraX GXE GXR GX GXE GXR

EcXyn30A 8 P 46.7 nd nd 0.3 0.3 MeGlcA2Xyln
Me-

MeGlcA2Xyln
MeGlc2Xyln [8]

BsXynC 8 P 59.5 a nd nd 0.6 0.2 MeGlcA2Xyln
Me-

MeGlcA2Xyln
MeGlc2Xyln

a [3], this
study

CtXyn30A 8 P 17 b nd nd 1.4 nd MeGlcA2Xyln
Me-

MeGlcA2Xyln
MeGlc2Xyln

b [12], this
study

RcXyn30A 8 P 21.7 nd nd 0.03 nd MeGlcA2Xyln
Me-

MeGlcA2Xyln
MeGlc2Xyln this study

CaXyn30A 8 N 90.9 c nt 113 c 156 72 Xyl2-Xyl4,
MeGlcA(Xyl)2–5

Xyl2-Xyl4, Me-
MeGlcA(Xyl)2–5

Xyl2-Xyl4,
MeGlc(Xyl)2–5

c [13], this
study

TrXynVI 7 E 5.2 0.1 0.078 2.8 1.1 Xyl2-Xyl4,
MeGlcA2Xyln

Xyl2-Xyl4, Me-
MeGlcA2Xyln

Xyl2-Xyl4,
MeGlc2Xyln

this study

TlXyn30A 7 E 12.4 3.1 3.5 29.7 28 Xyln,
MeGlcA2Xyln

Xyln, Me-
MeGlcA(Xyl)n

Xyln,
MeGlc(Xyl)n

this study

TrXynIV 7 N 0.11 0.18 nd 77.4 11.8 Xyl, Xyl2,
MeGlcA(Xyl)n

Xyl, Xyl2, Me-
MeGlcA(Xyl)n

Xyl, Xyl2,
MeGlc(Xyl)n

this study

AaXyn30A 7 E 3.2 d 5.4 d 0.09 d 73.5 75.2
Xyl2,

MeGlcAn−1Xyln,
MeGlcAnXyln

Xyl2, Me-
MeGlcAn−1Xyln,

Me-
MeGlcAnXyln

Xyl2,
MeGlcn−1Xyln,

MeGlcnXyln

d [17], this
study

HcXyn30A ? N 13.4 e 10.7 e 0.011 e 80.6 78.1
Xyl2,

MeGlcAn−1Xyln,
MeGlcAnXyln

Xyl2, Me-
MeGlcAn−1Xyln,

Me-
MeGlcAnXyln

Xyl2,
MeGlcn−1Xyln,

MeGlcnXyln

e [14], this
study

nd—not detected, nt—not tested, * activity on GX was taken as 100%, a–e data from the references given in the last column.

Xyl4 was not hydrolyzed by RcXyn30A, and it was only very slowly attacked by
TrXynVI where the hydrolysis was accompanied by a generation of transglycosylation prod-
ucts (Figure 6). On the other hand, the tetrasaccharide was rapidly and exclusively cleaved
to xylobiose by AaXyn30A and HcXyn30A. TrXynIV slowly released xylose. TlXyn30A
generated Xyl2 as the main product with a small amount of Xyl and Xyl3. During this
conversion, a production of XOs having higher degree of polymerization than the substrate
was observed, indicating transglycosylation reactions. All tested enzymes released xylose
from the reducing end of MeGlcA3Xyl4 except of AaXyn30A and HcXyn30A which did not
attack this substrate (data not shown).

2.3. Effect of MeGlcA Content on an Extent of GX Hydrolysis

The action of GH30 xylanases was compared on beechwood GX with different content
of MeGlcA—0.47 µmol MeGlcA/mg and 0.1 µmol MeGlcA/mg (Figure 7). The intention
was to find out how the degree of MeGlcA substitution affects the final amount of the
reducing sugars. As expected, the amount of reducing sugars released by EcXyn30A,
RcXyn30A and TrXynVI was higher from the more substituted GX, since the action of these
enzymes is strictly dependent on MeGlcA content. On the other hand, predominantly
exo-acting enzymes released more reducing sugars from the less substituted GX, despite
its poorer solubility in comparison with the more substituted counterpart. Compared to
the other enzymes, TlXyn30A released the highest amount of reducing sugars from both
GXs (Figure 7).
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3. Discussion

The catalytic properties of the tested xylanases are summarized in Table 1. The
performance of the GH30-7 and GH30-8 members on GX, GXE and GXR confirmed the
necessity of the free carboxyl group attached to the substrate main chain for the effective
action of GH30-8 glucuronoxylanases—EcXyn30A, BsXynC, CtXyn30A and RcXyn30A, as
well as GH30-7 glucuronoxylanase TrXynVI. All these enzymes released products of the
general formula MeGlcA2Xyln which were shortened to MeGlcA2Xyl2 upon incubation
with β-xylosidase, as previously shown for other glucuronoxylanases [3,4,13,20]. The
enzymes acting predominantly by exo-fashion (HcXyn30A, AaXyn30A, TrXynIV) were
not influenced by the modification of the carboxyl group of MeGlcA and their action
was stopped at the first substitution regardless of its nature. This is in consonance with
the fact that the branched products released from all three substrates by HcXyn30A and
AaXyn30A were not shortened by β-xylosidase indicating that the side residues were
located at or close to the non-reducing end of the products. About three times higher
activity of TlXyn30A on GX than on GXE and GXR suggests that the enzyme somehow
recognizes the carboxyl group of the substrates, but its esterification or reduction does
not end the enzyme activity. TlXyn30A contains an Arg residue corresponding to the
Arg46 of TcXyn30B which was shown to interact ionically with the carboxyl group of the
substrate [11], and which may contribute to the recognition of MeGlcA substitution by
TlXyn30A. Interestingly, the products released by TlXyn30A from GXE and GXR differed
from those released from GX. They did not contain the side chain exclusively on the second
Xylp residue from the reducing end. TlXyn30A recognizes MeGlcA substitution in the
–2b subsite, but if the charged substituent is absent, the enzyme allows an accommodation
of the substituted Xylp residue also in other than the −2 subsite.

A comparison of the hydrolysis rates of MeGlcA3Xyl4 and Xyl4 by CaXyn30A showed
that Xyl4 was hydrolyzed faster than its substituted analog [10]. On the other hand, an
analogous comparison of the enzyme action on linear and Ara-substituted XOs revealed
that 2-O-arabinosylated compounds are markedly better substrates than the corresponding
linear XOs [10]. This indicates that CaXyn30A does not recognize MeGlcA substitution
of the Xylp unit in the −2 subsite but α-1,2-linked Araf on the xylose in the −2 subsite
contributes to a tighter binding of arabinosylated XOs. The activity of CaXyn30A on GX,
GXE and GXR confirms that the type of decoration at Xylp residue accommodated in the
–2 subsite affects the enzyme activity and acidic substituent may not be favorable in this
subsite. However, the partial resistance of the products released from GX, GXE and GXR to
the action of β-xylosidase suggests, that the substituents of the main chain of the substrates
may be accommodated in various subsites.

The activity of GH30 xylanases on Rho, AraX and Xyl4 further confirmed that poly-
meric and oligomeric substrates lacking MeGlcA decoration are poor substrates for glu-
curonoxylanases RcXyn30A and TrXynVI. Very low or no activity on AraX was reported
for some other glucuronoxylanases (Tables 1 and 2). Rho was better substrate than GX for
AaXyn30A and TrXynIV and equally good for HcXyn30A. Xylobiohydrolases AaXyn30A
and HcXyn30A were shown to cleave also β-1,3-linkages which may contribute to better
hydrolysis of Rho [14,17]. The lower extent of Rho and AraX hydrolysis by TlXyn30A
in comparison to GX also supports the hypothesis that MeGlcA substitution is somehow
recognized by TlXyn30A, but its presence is not crucial for the enzyme activity.
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Table 2. Specific activities of characterized GH30 xylanases on beech GX, wheat AraX and action of the enzymes on linear
XOs. Abbreviations: P, presence of prokaryotic Arg; E, presence of eukaryotic Arg and N, absence of both Args.

GH30
Subfamily Arg

Specific Activity
(U/mg)

Products and Rates of Linear XOs Hydrolysis Specificity Reference
Beech

GX AraX

BlXyn30A 8 P 7.87 nd products Xyl, Xyl2, Xyl3, very low rate glucuronoxylanase [21]

BsLC9Xyn30 8 P 36.2 nt products Xyl2, Xyl3, very low rate glucuronoxylanase [22]

PbXyn30A 8 P 30.3 nd nt glucuronoxylanase [20]

Pf Xyn30A 8 P 244 nd nt glucuronoxylanase [23]

CpXyn30A 8 N 1.1 * 1.7 products Xyl2, Xyl3 and Xyl4, Xyl6-1.19 U/mg,
Xyl5-0.36 U/mg, Xyl4-very low rate

nonspecific
xylanase [24]

TtXyn30A 7 E 6 0.07 products Xyl2 (even XOs) or Xyl and Xyl2 (odd XOs) glucuronoxylanase/
xylobiohydrolase [25]

TcXyn30B 7 E 11.3 nd products Xyl2 (even XOs) or Xyl and Xyl2 (odd XOs),
Xyl3-0.388 U/mg

glucuronoxylanase/
xylobiohydrolase [26]

TpXyn30A 7 E 24 22 product mainly Xyl2
presumably
nonspecific

xylanase
[27]

BisXYLD 7 E 2463 790 nt nonspecific
xylanase [28]

TcXyn30A 7 N 0.162 0.279 product Xyl, Xyl3-28.1 U/mg

reducing-end
xylose

releasing
exoxylanase

[29]

TcXyn30C 7 N 38 47 products mainly Xyl2 and Xyl3, Xyl6-1.6 U/mg,
Xyl5-0.42 U/mg, Xyl4-0.131 U/mg, Xyl3-0.015 U/mg

nonspecific
xylanase [30]

* Value for sweetgum glucuronoxylan, nt—not tested, nd—not detected.

From all tested enzymes, only TlXyn30A efficiently hydrolyzed AraX. The ability
to cleave AraX was reported for several GH30 enzymes (Tables 1 and 2). Four enzymes
(CaXyn30A, CpXyn30A from Ruminiclostridium papyrosolvens, TcXyn30C and TcXyn30A
from Talaromyces cellulolyticus), all lacking the prokaryotic or eukaryotic Arg, exhibited even
higher specific activities on AraX than on GX [10,24,29,30]. However, the specific activities
of these enzymes varied a lot (from 0.279 to 113 U/mg), and only AraX hydrolysis by
TcXyn30C, and particularly CaXyn30A can be designated as effective. Specific activities of
Talaromyces (Penicillium) purpurogenus TpXyn30A on GX and AraX were comparable, while
activity of XYLD from Bispora sp. on AraX was about 30% of the activity on GX [27,28].
These two enzymes seem to be nonspecific xylanases not recognizing any substitution of
the xylan main chain.

Glucuronoxylanases generally do not cleave linear XOs, and only a very high enzyme
loadings lead to a weak hydrolysis [9,21,22]. On the contrary, linear XOs were good substrates
for xylobiohydrolases HcXyn30A and AaXyn30A, glucuronoxylanases/xylobiohydrolases
TcXyn30B, TtXyn30A from Thermothelomyces thermophila, as well as for nonspecific GH30-
7 xylanases TlXyn30A, TcXyn30C, TpXyn30A, and GH30-8 xylanases CaXyn30A and
CpXyn30A (Figure 5, Tables 1 and 2). Reducing-end xylose-releasing exoxylanases TrXynIV
and TcXyn30A also efficiently cleaved linear XOs. The specific activity of TcXyn30A on Xyl3
was two orders of magnitude higher than on polymeric substrates indicating that the short
linear XOs are preferred substrates for this xylanase [29]. On the other hand, nonspecific
GH30 xylanases preferred longer XOs (Xyl5 and Xyl6) over shorter ones (Table 2).

The experiment in which the extent of hydrolysis was compared on two GXs with
different MeGlcA content showed that TlXyn30A released the highest amount of reduc-
ing sugars. In contrast to glucuronoxylanases or exo-xylanases, TlXyn30A is able to
hydrolyze substituted as well as unsubstituted parts of xylan chain, which makes it an
interesting candidate in the processes where the high extent of hydrolysis is required.



Molecules 2021, 26, 4528 12 of 14

More information about the versatile catalytic capability of TlXyn30A can be found in the
accompanying paper [19].

As a summary of this study we can say that GH30-8 members are mostly specific
glucuronoxylanases showing poor activity on the substrates without MeGlcA side residues.
The conversion of MeGlcA to its methyl ester or its reduction to MeGlc, leads to a re-
markable drop in the specific activity of these enzymes. Exceptions are CaXyn30A and
CpXyn30A, which do not contain prokaryotic Arg and of which the substrate binding
sites differ from that of bacterial glucuronoxylanases. The catalytic properties of GH30-7
members are more diverse. The mode of action and activity of GH30-7 glucuronoxylanases
is also determined by the interaction of the MeGlcA carboxyl group with another Arg;
however, this interaction does not appear to be so strong as that in GH30-8 subfamily.
The modifications of the carboxyl group do not influence the action of predominantly
exo-acting enzymes, as well as nonspecific xylanases. However, it may change the cleavage
mode of the modified polysaccharides. The catalytic properties of individual enzymes
must therefore be appraised before their specific application.

4. Materials and Methods
4.1. Substrates, Standards and Enzymes

4-O-Methylglucuronoxylan (GX), 4-O-methylglucuronoxylan methyl ester (GXE),
4-O-methylglucoxylan (GXR) and aldopentaouronic acid MeGlcA3Xyl4 were prepared as
described earlier [8,31,32]. To guarantee the same branching pattern in all three xylan
derivatives, the GXR and GX were prepared from the same batch of soluble GXE fraction
by a reduction and alkaline deesterification, respectively. Rhodymenan, an algal linear β-
1,3-β-1,4-xylan from Palmaria palmata, was a gift from the laboratory of Prof. M. Claeyssens
(University of Ghent, Ghent, Belgium). Wheat arabinoxylan (Ara:Xyl 38:62) and linear β-1,4-
xylooligosaccharides (Xyl2–Xyl6) were purchased from Megazyme International (Bray, Ire-
land). Xylose was from Serva (Heidelberg, Germany). GX with 0.1% content of MeGlcA was
from Lenzing (Lenzing, Austria). β-Xylosidase was a recombinant Aspergillus niger enzyme
from GH3 family expressed in Saccharomyces cerevisiae [33]. Enzymes EcXyn30A (42 kDa),
BsXynC (44 kDa), TrXynIV (43 kDa), TrXynVI (57 kDa), TlXyn30A (55 kDa), AaXyn30A
(58 kDa) were prepared as described previously [5,15–18,34]. CtXyn30A (54 kDa) (product
number: CZ0445) was purchased from NZYTech, HcXyn30A (58 kDa) (product number:
CZ0916) and RcXyn30A (48 kDa) (product number: CZ10281) were a generous gift of Prof.
Carlos M.G.A. Fontes (NZYTech, Lisboa, Portugal) and CaXyn30A (39 kDa) was generously
donated by Dr. F. J. St John (Institute for Microbial and Biochemical Technology, Forest
Products Laboratory, USDA Forest Service, Madison, WI, USA).

4.2. Hydrolysis of Polysaccharides and Oligosaccharides

Polysaccharides (GX, GXE, GXR, Rho, AraX) were used in a concentration of 10 mg.mL−1

in 0.05 M sodium phosphate buffer, pH 7, for RcXyn30A, CtXyn30A, BsXyn30A, AaXyn30A,
HcXyn30A, and in 0.05 M sodium acetate buffer, pH 4, for CaXyn30A, TrXynVI, TrXynIV,
TlXyn30A. Enzymes were appropriately diluted (25 nM–4.4 µM) and 1 µL was mixed with
20 µL of polysaccharide solution and incubated at 37 ◦C for 20 or 60 min. Beechwood GXs
(300 µL) containing 0.47 µmol MeGlcA/mg and 0.1 µmol MeGlcA/mg were incubated
at 37 ◦C for 7 days under a layer of toluene. The reducing sugars were determined by
the Somogyi–Nelson procedure [35]. All reactions were done in triplicate. One unit of
enzyme activity is defined as the amount of the enzyme releasing 1 µmol of reducing
sugars expressed as an equivalent of xylose in 1 min. For TLC analysis, 5 µL of the mixtures
were spotted on silica gel coated aluminum sheets (Merck, Darmstadt, Germany) after
10 min and 24 h of hydrolysis. After 24 h, the reaction was terminated by 5 min heating at
100 ◦C, followed by an overnight treatment with β-xylosidase (1 U mL−1) at 37 ◦C. pH was
adjusted to 4.0 with 4 M acetic acid in the phosphate buffered samples prior β-xylosidase
addition (due to a lower pH optimum of the β-xylosidase). 10 mM solution of Xyl4 (10 µL)
in appropriate buffer (see above) was mixed with 10 µL of 4.8 µM enzymes and 1.5 µL
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was spotted on silica gel coated aluminum sheets after 15 min and 24 h of hydrolysis at
37 ◦C. TLC plates were developed twice in the solvent system ethyl acetate/acetic acid/2-
propanol/formic acid/water 25:10:5:1:15 (v/v) and the sugars were visualized with orcinol
reagent (0.5% orcinol in 5% sulphuric acid in ethanol).

Protein concentration was determined by the Bradford method [36].

4.3. MALDI ToF MS

The hydrolysates of GX, GXE and GXR were decationized by Dowex 50 (H+ form)
and 1 µL was mixed with 1 µL of the matrix (1% solution of 2,5-dihydroxybenzoic acid
in 30% acetonitrile) directly on MS target plate. After air-drying, the samples were ana-
lyzed by UltrafleXtreme MALDI ToF/ToF mass spectrometer (Bruker Daltonics, Bremen,
Germany) operating in reflectron positive mode.
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