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Purpose: We investigated the feasibility of measuring the hydronephrosis area to renal parenchyma (HARP) ratio from ultrasound 
images using a deep-learning network.
Materials and Methods: The coronal renal ultrasound images of 195 pediatric and adolescent patients who underwent pyelo-
plasty to repair ureteropelvic junction obstruction were retrospectively reviewed. After excluding cases without a representative 
longitudinal renal image, we used a dataset of 168 images for deep-learning segmentation. Ten novel networks, such as combina-
tions of DeepLabV3+ and UNet++, were assessed for their ability to calculate hydronephrosis and kidney areas, and the ensemble 
method was applied for further improvement. By dividing the image set into four, cross-validation was conducted, and the seg-
mentation performance of the deep-learning network was evaluated using sensitivity, specificity, and dice similarity coefficients by 
comparison with the manually traced area.
Results: All 10 networks and ensemble methods showed good visual correlation with the manually traced kidney and hydrone-
phrosis areas. The dice similarity coefficient of the 10-model ensemble was 0.9108 on average, and the best 5-model ensemble had 
a dice similarity coefficient of 0.9113 on average. We included patients with severe hydronephrosis who underwent renal ultraso-
nography at a single institution; thus, external validation of our algorithm in a heterogeneous ultrasonography examination setup 
with a diverse set of instruments is recommended.
Conclusions: Deep-learning-based calculation of the HARP ratio is feasible and showed high accuracy for imaging of the severity 
of hydronephrosis using ultrasonography. This algorithm can help physicians make more accurate and reproducible diagnoses of 
hydronephrosis using ultrasonography.
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INTRODUCTION

The most frequently used method for classifying hy-
dronephrosis by ultrasonography is the Society for Fetal 
Urology (SFU) system or anteroposterior pelvic diameter 
(APD). However, the SFU system is well recognized for its 
shortcomings regarding its subjectivity and inconsistency in 
separating and reporting grades II and III hydronephrosis [1]. 
The APD varies according to hydration status, position, and 
bladder filling and sometimes misleads interpreters because 
of these dynamic variations [2]. As a more objective assess-
ment tool for evaluating hydronephrosis, the combination of 
renal parenchymal area (RPA) and hydronephrosis area has 
been successfully implemented for predicting the necessity 
of surgical treatment or renal functional recovery after sur-
gery [3]. In a recent study, the hydronephrosis area to renal 
parenchyma (HARP) ratio as a significant prognostic factor 
for renal functional deterioration after surgical treatment 
of ureteropelvic junction obstruction (UPJO) [4]. However, 
manually tracing the outline of the hydronephrotic kidney 
also creates the possibility for inter- and intra-operator vari-
ability [5]. 

Deep learning has demonstrated remarkable results in 
image data analysis, including kidney ultrasonography [6]. 
Recent advances in image segmentation, classification, and 
registration using deep-learning algorithms have shown the 
possibility of using deep-learning image interpretation as an 
adjunct or complementary to clinical interpretation of medi-
cal imaging by physicians [6]. The potential of deep-learning 
algorithms to overcome substantial inter- or intraobserver 
variability in kidney ultrasonography has been proposed in 
previous studies [6,7]. Lin et al. [8] reported the feasibility of 
deep-learning quantification of the HARP ratio in healthy 
subjects and pediatric patients with mild hydronephrosis 
without renal or urinary tract anomalies. However, deep-
learning segmentation of the kidney and hydronephrosis 
areas on ultrasonography in pediatric patients with severe 
hydronephrosis due to UPJO has not been reported in the 
literature. Therefore, this study was designed to investigate 
the feasibility of measuring the HARP ratio from ultra-
sound images using a deep-learning network in pediatric 
cohorts with severe hydronephrosis due to UPJO.

MATERIALS AND METHODS

1. Study population and definition of variable
The study design was reviewed and approved by the 

Institutional Review Board of the Asan Medical Center (ap-
proval no. 2021-1612) in accordance with the Declaration of 

Helsinki. Informed consent was waived for this retrospec-
tive study by the institutional review board because all data 
were handled with anonymity. The medical records of 171 
patients aged 0 to 18 years who underwent renal ultraso-
nography at our institution before and after pyeloplasty for 
UPJO between August 2002 and May 2016 were included 
in this study. Coronal renal ultrasound images with the 
greatest longitudinal dimension obtained before and after 
pyeloplasty were collected and analyzed for developing algo-
rithms. We excluded images showing significant differences 
in image texture from deep-learning segmentation. Finally, 
168 ultrasound images were included. The serum creatinine 
level within 2 days of pyeloplasty was collected. The esti-
mated glomerular filtration rate (eGFR) was calculated us-
ing the following equation: eGFR=k×height (cm)/serum cre-
atinine (mg/dL), where k=0.45 for infants, 0.70 for pubertal 
males, and 0.55 for all other children [9]. 

2. Sonography acquisition and label process 
The manufacturer of the ultrasound systems was Phil-

ips (models: iU22, ATL HDI 5000, and EPIQ 5G; Bothell, WA, 
USA). All images were obtained in B-mode using abdominal 
convex probes with the patients in a supine position. The 
ultrasound images were cropped to fit in the ultrasonogra-
phy field of view and then resized to a resolution of 512×512 
pixels using zero padding. The boundaries of  the dilated 
pelvicalyceal and renal regions on ultrasonography were 
manually annotated by an experienced urologist (SHS) using 
ImageJ software (National Institutes of Health, Bethesda, 
MD, USA, http://rsb.info.nih.gov/ij/). The RPA was estimated 
by subtracting the pelvicalyceal area from the total kidney 
area as pixel unit values. The HARP ratio was calculated by 
dividing the total hydronephrosis area by the RPA as pre-
viously demonstrated and designated as the ground truth 
HARP ratio [4]. Pixel information from the annotations was 
extracted using a custom Python script to build a labeled 
dataset for deep-learning segmentation models.

3. Networks
For the segmentation of  the kidney contour and hy-

dronephrosis area, 10 models were evaluated by combining 
novel networks, such as DeepLabV3+ [10] and UNet++ [11] 
(Fig. 1A). The combined outputs using a majority-voting 
ensemble of 10 networks [10-20] were also assessed. To deter-
mine the hydronephrosis and kidney areas, pixel-wise voting 
was performed using the outcomes from base models. With 
two sets of base models, ensemble models were constructed: 
all individual models and the five best-performing models.

Input images of 512×512 pixels were normalized using 

http://rsb.info.nih.gov/ij/
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Fig. 1. (A) Schematic diagram for deep-learning segmentation of ultrasonography. (B) Representative examples of hydronephrotic kidney seg-
mentation. The boundaries of the kidney and hydronephrosis area are colored yellow and red, respectively. At the bottom of the images in the 
third to fifth columns, the dice similarity coefficients are presented in order of average, kidney boundary, and hydronephrosis area. The “best 
model” in the third column indicates the combination of DeepLabV3+ and EfficientNet-B4. (C) Scatter plots of deep-learning prediction (ensemble 
model) versus manually traced label: best model (combination of DeepLabV3+ and EfficientNet-B4 in the first row); ensemble of the five best 
models (second row); ensemble of all models (third row). HARP, hydronephrosis area to renal parenchyma.
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two-dimensional min/max normalization, and the initial 
weight was adopted from ImageNet for transfer learning, 
except for UNet++ [11]. The two output channels produced 
the probability maps for the kidney contour and hydro-
nephrosis area, respectively. The nephrosis area predicted 
using deep-learning models was corrected to be bounded 
inside the kidney area. In the post-processing stage, the holes 
in the predicted masks were filled, and small blobs in the 
kidney area prediction were removed. Dice loss was applied 
for training the segmentation models, which was defined 
as 1 - dice similarity coefficient (DSC), where DSC=2×TP/
(2×TP+FN+FP). TP, FN, and FP were the number of pixels 
corresponding to true positive, false negative, and false posi-
tive, respectively. 

4. Training setup
Prediction models for the HARP ratio (predicted HARP) 

were trained for 400 epochs at maximum with a mini-batch 
size of 12. Data augmentation was performed using rotation 
(-20° to 20°), shift limit (0%–10% of image size in horizontal 
and vertical axes), and scale limit (0%–20%). For training, an 
Adam optimizer was applied with β1=0.9 and β2=0.999, and 
the learning rate, which was set to 10-3. The deep-learning 
networks were implemented in Python using PyTorch and 
trained on a workstation with Ryzen 5950X and two NVID-
IA Geforce GTX 3090Ti graphics processing units. Four-fold 
cross-validation was performed to assess the sample bias. 
The first fold contained 42 images. In the cross-validation, 
the fold ratio of training, validation, and test sets was 2:1:1, 
and their composition was changed in the order of cyclic 
permutations. 
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Fig. 1. Continued.
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5. Statistical analysis 
Segmentation performance was measured using sensitiv-

ity, specificity, and DSC by comparing the manual annota-
tions and the segmentations derived from deep-learning net-
works. Continuous data were reported as the mean±standard 
deviation and were compared using the Mann–Whitney U-
test and Kruskal–Wallis test. Correlations were analyzed us-
ing Pearson’s correlation coefficient and demonstrated using 
scatter plots. Linear regression analysis was performed to esti-
mate the regression equation. All data were calculated using 
PASW Statistics (version 18.0, SPSS Inc., Chicago, IL, USA).

RESULTS

1. Patient characteristics
In this study, 168 patients with a mean age of 32.6 months 

were included. The mean APD was 31.6 mm (range, 7.0–73.0 
mm), and the SFU grade was III in 19 patients (11.3%) and 
IV in 149 patients (88.7%) (Table 1). The mean APD and 
ground truth HARP ratio were significantly higher in pa-
tients with SFU grade IV hydronephrosis than in patients 
with SFU III (Fig. 2). The ground truth HARP ratio was 
inversely correlated with differential eGFR of the affected 
kidney with a Pearson coefficient of 0.327 (p<0.001), and the 
linear regression formula was as follows: y=9.97x+36.77. RPA 
was positively correlated with the differential eGFR with a 
Pearson correlation coefficient of 0.318 (p<0.001) and a linear 
regression prediction line of y=0.0013x+23.75 (Fig. 3).

2. Segmentation performance 
Deep-learning network models and their prediction 

Table 1. Patient characteristics (n=168)

Variable Value
Age, mo 32.6±54.6
Sex 
   Female 
   Male 

42 (25.0)
126 (75.0)

Laterality 
   Right
   Left

43 (25.6)
125 (74.4)

Society for Fetal Urology grade
   III
   IV

19 (11.3)
149 (88.7)

Anteroposterior pelvis diameter, mm 31.6±12.5
Hydronephrosis area to renal parenchyma ratio 1.35±0.89
Serum creatinine, mg/dL 0.42±0.23
Estimated glomerular filtration rate, mL/min/1.73 m2 107.0±38.1
Differential renal function on renal scan, % 46.6±22.1

Values are presented as mean ± standard deviation or number (%).
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Fig. 2. Bar graph of the mean anteroposterior pelvic diameter (APD) 
and hydronephrosis area to renal parenchyma (HARP) ratio in patients 
with Society for Fetal Urology (SFU) grade III and IV hydronephrosis. 
The mean APD, predicted HARP, and ground truth HARP were signifi-
cantly different between patients with SFU grade III and IV. Asterisk 
indicates a statistical difference of the mean value in the Kruskal–Wal-
lis test with a p-value of less than 0.01.
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Fig. 3. Scatter plot of the ground truth (GT) hydronephrosis area to renal parenchyma (HARP) ratio and differential estimated glomerular filtration 
rate (eGFR) with a linear regression prediction line (y=9.97x+36.77) (A) and renal parenchymal area and the differential eGFR with a linear regres-
sion prediction line (y=0.0013x+23.75) (B). The Pearson correlation coefficients were 0.327 (p<0.001) (A) and 0.318 (p<0.001) (B).
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time are summarized in Table 2. The deep-learning models 
showed good visual correlation with the manually traced 
kidney and hydronephrosis areas (Fig. 1B). The relationship 
between the predicted and actual HARP ratios was visual-
ized using a scatter plot (Fig. 1C). Three deep-learning models 
achieved DSCs higher than 0.9, and the remaining models 
scored higher than 0.87 (Table 3). DeepLabV3+ [10] with Ef-
ficientNet-B4 [12] scored the highest with an average DSC of 
0.9087, of which the hydronephrosis segmentation and kid-
ney outlines scored 0.8949 and 0.9226, respectively. The DSC 
of the 10-model ensemble was 0.9108 on average, and the best 
5-model ensemble had a DSC of 0.9113 on average.

DISCUSSION

To the best of our knowledge, this is the first study that 
has demonstrated the feasibility of using a deep-learning 
network for automatically calculating the HARP ratio by 
use of ultrasonography in children with UPJO. The deep-
learning network model for automated segmentation of 

renal parenchymal and hydronephrosis areas showed excel-
lent performance in terms of sensitivity, specificity, and ac-
curacy in patients with severe hydronephrosis. Moreover, we 
achieved a DSC of 0.9 in the segmentation of hydronephrosis 
pelvicalyceal areas, which is the highest performance re-
ported in the literature. Using this method, we may expect a 
more objective and accurate evaluation of hydronephrosis in 
patients with UPJO by minimizing the possibility of intra- 
and interobserver variability. 

In studies on deep-learning algorithms to grade hydrone-
phrosis severity, the performance was reported to be compa-
rable to or less than that reported in this study. Smail et al. 
[7] explored the capability of deep convolutional neural net-
works to classify hydronephrosis according to the SFU sys-
tem. They showed that the model discriminated low grades 
from high grades with an average DSC of 0.78. However, 
their model achieved an accuracy of 51% and an average 
DSC of 0.49 when it classified SFU grade in five scales (grade 
0 to V). Lin et al. [8] used an attention-Unet to segment the 
kidney and pelvicalyceal system and showed a DSC of 0.92 

Table 3. Segmentation performance of deep-learning modelsa

Ranking Network (encoder) Average Hydronephrosis in kidney Kidney outline
1 DeepLabV3+ [10] (EfficientNet-B4 [12]) 0.9087 0.8949 0.9226
2 UNet [17] (Res2Net-50 [18]) 0.9043 0.8915 0.9171
3 FPN [20] (EfficientNet-B4 [12]) 0.9027 0.8909 0.9146
4 UNet [17] (DenseNet-121 [16]) 0.89947 0.8855 0.9135
5 UNet++ [11] (ResNet-34 [13]) 0.89945 0.8839 0.9150
6 LinkNet [15] (ResNet-34 [13]) 0.8976 0.8815 0.9137
7 DeepLabV3+ [10] (ResNet-34 [13]) 0.8931 0.8853 0.901
8 UNet++ [11] (EfficientNet-B4 [12]) 0.8899 0.8864 0.8936
9 PSPNet [14] (ResNet-34 [13]) 0.8839 0.8717 0.896

10 DeepLabV3+ [10] (Xception [19]) 0.8714 0.8662 0.8767
Ensemble (best 5) 0.9113 0.8988 0.9239
Ensemble (all) 0.9108 0.9000 0.9217

a:Models are ordered according to the ranking determined by the average dice similarity coefficient value.

Table 2. Summary of deep-learning networks

No. Encoder Decoder/base architecture Total parameter (million) Prediction time per image (ms)
1 ResNet-34 [13] PSPNet [14] 21.44 46.7
2 ResNet-34 [13] LinkNet [15] 21.77 52.8
3 ResNet-34 [13] DeepLabV3+ [10] 22.43 51.6
4 ResNet-34 [13] UNet++ [11] 26.07 55.9
5 DenseNet-121 [16] UNet [17] 13.60 73.6
6 Res2Net-50 [18] UNet [17] 31.63 62.1
7 Xception [19] DeepLabV3+ [10] 37.77 67.1
8 EfficientNet-B4 [12] FPN [20] 19.35 76.2
9 EfficientNet-B4 [12] DeepLabV3+ [10] 18.62 68.1

10 EfficientNet-B4 [12] UNet++ [11] 20.81 80.0
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and 0.83 for the kidney and pelvicalyceal system, respective-
ly. However, they excluded patients with congenital kidney 
and urinary tract anomalies from their study. Therefore, 
their algorithm studied only minimal or mild hydronephro-
sis. In contrast, our study included patients who underwent 
pyeloplasty for UPJO, all of whom showed hydronephrosis 
with an average APD of 31.6 mm (range, 7.0–73 mm). Thus, 
we suggest that our deep-learning algorithm is more broadly 
applicable and predictive for the automated calculation of 
the HARP ratio in a wide range of hydronephrosis severity. 

The prediction performance of the deep-learning mod-
els showed a larger deviation for the kidney area than for 
the hydronephrosis area. Because ultrasonography of high-
grade hydronephrosis lacks the imaging features necessary 
to determine the renal boundary, the prediction errors were 
mostly found at the lower boundary of the kidney, affecting 
the predictability of the hydronephrosis area. The complex 
structures of hydronephrosis inside the kidney were accu-
rately predicted, including small blobs. Among the individual 
models, the combination of DeepLabV3+ and EfficientNet-
B4 exhibited the best performance in terms of DSC and 
demonstrated a high correlation with the manual traces in 
the HARP ratio (Fig. 1). From a practical perspective, the 
deep-learning model had advantages in terms of model size 
and prediction time (Table 2).

The ensemble method is a frequently used technique to 
ameliorate the segmentation performance by combining the 
prediction outcomes from multiple deep-learning models in 
various medical imaging modalities [21]. The ensemble ap-
plication has been demonstrated to improve the accuracy 
of ultrasound images in diagnosing prostate [22] and breast 
cancers [23]. In this study, the highest DSCs for the kidney 
and pelvicalyceal system were achieved using ensemble 
models (i.e., 10 deep-learning models with different charac-
teristics). The ensemble of the five best-performing models 
also showed the highest correlation with the manual trace 
in the prediction of hydronephrosis (Fig. 1). Adding a poor-
performing model to the ensemble could degrade the predic-
tion performance compared with that of a single model with 
the highest performance (kidney outline in Table 3) and 
increase the prediction time (Table 2).

The ultimate goal of monitoring patients with hydrone-
phrosis and those who undergo surgical treatment for UPJO 
is to preserve renal function. The standard method for 
evaluating renal function, such as serum creatinine mea-
surement and radioisotope renal scan, is invasive, which is 
a considerable hurdle, especially for children. Moreover, the 
eGFR may not be an accurate estimate for predicting recov-
ery in patients with urinary tract obstruction [24]. The RPA 

on ultrasonography has been evaluated to detect reflux 
nephropathy, UPJO, and risk of end-stage renal disease in 
the posterior urethral valve and was suggested to be a sur-
rogate predictor of renal function [25]. The HARP ratio is a 
parameter of the severity of hydronephrosis, in which RPA 
is a denominator in its calculation [4]. We demonstrated that 
the HARP ratio and RPA are similarly correlated with the 
differential eGFR (Fig. 2). However, the predictive ability 
of the HARP ratio for renal function estimation should be 
validated in a larger cohort. 

This study indicated that the deep-learning calculation 
of the HARP ratio is feasible for pediatric patients with 
UPJO; however, there were several limitations. Inherent 
limitations of this study are its retrospective design and the 
limited sample size. Although we retrospectively collected 
longitudinal renal ultrasound images performed by multiple 
radiologists without standardizing the image acquisition pro-
tocol, we could minimize the selection bias by selecting spe-
cific images obtained to measure the maximal longitudinal 
diameter of the affected kidney. However, in some patients, 
images of the entire coronal kidney were not secured, and a 
small portion of the upper pole kidney was cropped off the 
ultrasonic window. Therefore, the HARP ratio may be exag-
gerated by omitting a small portion of the renal parenchy-
ma. To overcome the sample size limitation, we used a four-
fold cross-validation method. Nevertheless, a larger number 
of  patients is necessary to validate the good predictive 
performance of deep-learning models. We included patients 
with severe hydronephrosis; therefore, the performance of 
the proposed algorithm should be validated in patients with 
lower-grade hydronephrosis. We manually selected coronal 
kidney images, which underwent preprocessing for training. 
For the further and wider application of this method for 
automatically calculating the HARP, an investigation of the 
feasibility for full automation of this process with real-time 
segmentation and calculation is warranted. 

CONCLUSIONS

Deep-learning-based calculation of the HARP is feasible 
and showed high performance with high accuracy. This 
algorithm can help physicians make more accurate and re-
producible diagnoses of the severity of hydronephrosis using 
ultrasonography. 
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