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The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt
interface increases. This relationship is most often modelled by a Gibbs–Thomson law, with the decrease in
melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface
tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in
the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a
Stefan-type continuum model is problematic because it leads to a physically unrealistic form of
mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of
nonequilibrium interface kinetics in the Gibbs–Thomson law regularises the continuum model, so that the
mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the
corresponding melting temperature remains finite for all time. The results of the adjusted model are
consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime
appears to be closely related to the problem of melting a superheated particle.

T
he size-dependent nature of melting nanoscaled metal particles has received attention from a number of
experimental studies1–3. A well accepted model for the melting temperature T�melt is given by the Gibbs–
Thomson formula
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where R* is the radius of the spherical particle and T�bulk is the bulk melting temperature, which is the temperature
at which the material would melt if the interface was flat. The behaviour T�melt{T�bulk*{const=R� has been
verified experimentally for a number of different metals including silver1, gold4, lead5, tin6,7 and aluminium8 (see
Mei and Lu9 for a more complete summary of experimental results). The physical constants rs, L and s* are,
respectively, the density of the material in the solid phase, the latent heat of fusion, and a parameter proportional
to surface energy effects acting on the solid-melt interface.

The effect of equation (1) is that for small R*, the melting temperature of the spherical particle is significantly
reduced. This size dependence on melting temperature is a consequence of nanoparticles having a much larger
surface-to-volume ratio than bulk materials, and occurs for both for round and facetted particles. Since both the
solid and liquid molecules on a curved surface are more weakly bonded than their counterparts in the solid and
liquid bulk, the difference between the binding of liquid and solid molecules on the surface is a driving factor for
this reduced melting temperature. Thus, ultimately the size dependence on melting temperature of a nanoscaled
spherical particle is due to the very high surface-to-volume ratio and lower interfacial energy of the liquid phase.
We note that there is no observable reduction in melting temperature for macrosized particles; this is a small-scale
phenomenon only, as the length scale v in equation (1) is typically of the order of nanometres (see data in Table 1
for various metals).

The constant s* in equation (2) is a measure of the surface energy effects, also referred to as surface tension.
One long-standing model for s* is
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where s�sv and s�‘v are the surface energies of the particle in the solid
and liquid states, respectively14,15. The Gibbs–Thomson relation (1)–
(3) has been shown to be consistent with the experimental data for a
variety of metals1,2,4,16. To take one example, in Fig. 1 we show a
comparison of this model against melting temperatures of gold part-
icles, measured by Dick et al.2. Note that gold particles with a radius
of 10 nm have a melting temperature of approximately 1250 K,
which is noticeably lower than the bulk melting temperature
(T�bulk~1337 K for gold). For smaller particles we see the agreement
in Fig. 1 is still quite good, even down to a radius of less than 1 nm.

There are several other models for s* (including Kofman et al.5,
Semenchenko17 and Wronski18) with some agreeing better with the
experimental data than others13. These different models can lead to
varying values of s*. For example, equation (3) for lead gives s* 5

0.11 Jm22 (using the values provided in Table 1), while other mod-
els19,20 give s* 5 0.031 Jm22 or 0.046 Jm22 , s* , 0.145 Jm22. In
fact, there is a whole series of theoretical models for v in equation (1)
(see the summary by Guisbiers21.), some of which do not follow
equation (2). To take one example, there is a model due to
Guisbiers, Wautelet and coworkers10,22,23 which predicts higher
values of v, as demonstrated in Table 1. We revisit the uncertainty
in these measures in the Discussion section.

In a continuum model for the melting of a free-standing nanos-
caled particle, the Gibbs–Thomson rule (1) acts as a boundary con-
dition on the moving solid-melt interface r* 5 R*(t*)12,24–29. This
approach brings with it a number of issues that need addressing.
First, as it is, the melting temperature (1) is singular as R* R 0,
and indeed implies that for a sufficiently small radius (R* , v),
the melting temperature must drop below 0 K. Thus any use of

equation (1) must be applied with the understanding that there is a
limiting radius below which equation (1) can never hold. Second, one
must question the reliability of a continuum model that involves
classical notions of melting and thermodynamics for very small radii,
especially when the particle size is of the order of a couple of nano-
metres. Lastly, the continuum model for melting a spherical particle
is known to exhibit a form of mathematical blow-up, which predicts
that the speed of the solid-melt interface increases without bound as
the radius reaches a critical value R�cw026. According to the model,
the flux of heat into the interface also blows up in this limit.
Mathematical solutions of this form may be interpreted as modelling
a type of abrupt melting that has been observed when melting nanos-
caled particles9. Here, when the particle’s radius reaches a critical
value, the melting process for the remaining core appears to occur
instantly. This phenomenon is known to occur for particles of lead9,13

and gold30, for example. Despite this natural phenomenon, a more
satisfactory output from a continuum model should be that solutions
are mathematically well behaved for all time.

The Gibbs–Thomson effect (1) can be derived by considering the
temperature at which a solid sphere of radius R* is in equilibrium
with its melt31,32, but this derivation requires the system to be in
equilibrium; that is, a key assumption behind equation (1) is that
the interface is not moving. In practice this implies that equation (1)
is valid when the departure from equilibrium is small, while in reality,
equation (1) should include a correction for nonequilibrium kinetic
effects. The most simple form of this correction is a linear additive
term so that the adjusted Gibbs–Thomson rule becomes

T�melt~T�bulk 1{
v

R�

� �
{ � dR�

dt�
, ð4Þ

where the length scale v is given in equation (2) (or calculated using
one of the many other models21) and we may refer to the parameter �

as the kinetic coefficient32,33. Note that a more general correction
term which is not linear in the interface speed is discussed in a
number of studies33–36.

Given the material properties of a particular metal, we are unable
to simply plot the melting temperature T�melt against the particle
radius R* with equation (4) without information about the speed
of the solid-melt interface dR*/dt*, which itself will have some com-
plicated dependence on the size of the particle and other experi-
mental conditions. For moderate interface speeds we may expect
the kinetic parameter � to be sufficiently small that the magnitude
of the second term on the right-hand side of equation (4) is much
smaller than the first, so that in practice the melting temperature will
be well approximated by equation (1). However, as noted above,
solutions to the continuum model with equation (1) have interface
speeds that continue to grow without bound26, and on the experi-
mental side there are observations of particularly high interface
speeds for very small particles9,13. Thus, regardless of how small �

is, there is a small-particle regime in which the full condition (4)
appears more appropriate than equation (1).

Table 1 | Approximate thermodynamic constants used to calculate the nondimensional parameters (16) including references, except for
T�bulk and rs,, which are well known. The constant v has been calculated with equations (1)–(3), except when values for s�sv and s�‘v could
not be found. The column vG reproduces the values of Guisbiers et al.10 for an alternative model to equation (2)

L 3 103

(Jkg21)
rs 3 103

(kgm23)
r, 3 103

(kgm23)
s�sv

(Jm22)
s�‘v

(Jm22)
v

(nm)
vG

10

(nm)
cs

(Jkg21K21)
c,

(Jkg21K21) k,/ks

T�bulk

(K) b

Ag 10256 10.5 9.3 1.2157 0.9057 0.42 0.94 233 29258 0.4811 1234 0.35
Au 62.74 19.3 17.31 1.384 1.144 0.26 0.92 12912 1694 0.3312 1336 0.36
Pb 22.913 11.34 10.66 0.6113 0.4813 0.85 1.45 12812 14812 0.4612 600 0.30
Sn 58.93 7.18 6.98 0.667 0.557 0.47 1.02 22759 505 0.51
Al 3968 2.7 2.385 0.9160 1.28 89759 108058 0.4258 933 0.47
Cu 20556 8.96 8 0.82 38559 48058 0.8558 1358 0.39
Ti 29659 4.5 4.11 0.89 52459 70058 0.9158 1940 0.29

Figure 1 | The size dependent nature of the melting temperature of gold
nanoparticles demonstrated by experiment data (#) from Dick et al.2.
The measurements are in good agreement with the Gibbs–Thomson

relation equations (1)–(3), plotted here (dashed) with the thermodynamic

constants for gold2,4.
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In this paper, we consider a continuum model for melting a sphere
that imposes equation (4) as the relevant boundary condition on the
solid-melt interface, and find that the resulting solutions exhibit
features that shed light upon the issues listed above. By numerical
simulation, we show that including a nonzero kinetic term ( �w0 in
equation (4)) in the model acts to suppress the mathematical blow-
up, so that the solution naturally continues for all time until the
particle is completely melted. By treating the regime in which the
nondimensional kinetic parameter is much less than one, we show
that solutions are consistent with the notion of abrupt melting.
Further, with numerical solutions to the full continuum model, we
are able to plot equation (4) and show that, even with a small kinetic
parameter, the melting temperature is well behaved for all particle
radii; in particular, with �

w0 we no longer have the unphysical
prediction that T�melt?{? as R* R 0. Thus when we include the
correction term for nonequilibrium interface kinetics, we no longer
need to cut off the model at an arbitrary particle radius.

The present study is similar in nature to the recent work of the
authors24, which also considers the effect of interface kinetics on the
melting of a sphere. Two minor differences are that the problem in
Back et al.24 is formulated on a finite domain, which is slightly arti-
ficial from an experimental perspective, and the nondimensionalisa-
tion is not the same. However, the key difference is that the
mathematical model in Back et al.24 is a simplified one-phase
approximation that arises under the assumption that heat conduc-
tion occurs much more easily in the liquid phase than the solid phase.
This assumption is not appropriate for melting nanoparticles (espe-
cially metals such as gold, leads, silver, etc.). While the results in that
paper are instructive as they deal with regularising mathematical
blow-up via a kinetic term, it is important to treat the full two-phase
problem formulated without unrealistic simplifications.

In the Results section, we outline the continuum model for melting
a spherical particle. This model includes the linear heat conduction
equation in both the liquid and solid phases, and a dimensionless
version of equation (4) imposed on the moving boundary r* 5

R*(t*). We then document numerical results for the cases in which
the kinetic term is zero and nonzero. These results demonstrate how
the inclusion of nonequilibrium kinetic effects in the Gibbs–
Thomson rule acts to prevent the mathematical blow-up, mentioned
above, from occurring. In the Discussion section, we summarise the
implications of our results on the use of the Gibbs–Thomson rule
and, more generally, in terms of mathematical modelling of nanos-
caled particles. Finally, we discuss how abrupt melting is driven by a
counter-intuitive heat flux from the particle into the solid-melt inter-
face. We argue that this process is closely related to melting a super-
heated particle, even without the effects of surface tension or
interface kinetics.

Results
Continuum model. We consider a single radially symmetric solid
nanoparticle of radius r�~R�init, initially at a temperature
T�s,init r�ð ÞvT�melt. This particle is suspended in an infinite liquid
with the temperature at infinity held at a constant T�‘,? for all
time. The liquid has an initial temperature T�‘,init r�ð Þ with the
property T�‘,init?T�‘,? as r* R ‘. If T�‘,?wT�melt, the particle will
melt. In this model, we assume that the inner solid core and the
outer semi-infinite liquid region are separated by a distinct
boundary, the solid-melt interface r* 5 R*(t*), which moves
inwards towards the centre of the sphere as the particle melts. We
seek to solve for the temperatures in the solid and liquid regions,
T�s r�,t�ð Þ and T�‘ r�,t�ð Þ, respectively, as well as for the position of the
interface R*(t*).

A dimensional continuum model for this idealised scenario is as
follows. Assuming the heat diffuses through each phase via conduc-
tion only, we have

R�vr�v? :
LT�‘
Lt�

~
k‘
rc‘

1
r�2

L
Lr�

r�2
LT�‘
Lr�

� �
, ð5Þ

0vr�vR� :
LT�s
Lt�

~
ks

rcs

1
r�2

L
Lr�

r�2
LT�s
Lr�

� �
, ð6Þ

where, despite the use of equation (3) to compute s*, we now assume
the density r is constant during the phase change process. On the
solid-melt interface r* 5 R* we have the boundary condition

k‘
LT�‘
Lr�

{ks
LT�s
Lr�

~r
dR�

dt�
cs{c‘ð Þ T�melt{T�bulk

� �
{L

� 	
, ð7Þ

referred to as the Stefan condition31, which models how the solid at
the interface absorbs latent heat to phase change into liquid. This
coupling of the temperature gradient on the interface and the speed
of the moving front shall be important later when we discuss finite-
time blow-up and abrupt melting. The thermodynamic constants in
each phase are the thermal conductivity k,,s, specific heat c,,s and
latent heat of fusion L. A second boundary condition on the moving
interface is that the temperature is continuous between the two
phases, and that the temperature here is equal to the melting tem-
perature. That is, T�‘~T�s ~T�melt on r* 5 R*, where T�melt comes
from the Gibbs–Thomson law (4). Lastly, we have a no-flux bound-
ary condition at the centre of the sphere and the condition at infinity,
as well as initial condition for the position of the moving front, which
we write as R�~R�init at t* 5 0.

It proves particularly insightful to scale the problem using the
following dimensionless variables:

r~
r�

v
, R~

R�

v
, t~

kst�

rcsv2
, T‘,s~

T�‘,s
T�bulk

: ð8Þ

With these new variables, equations (5)–(6) become

Rvrv? :
LT‘
Lt

~
k
c

1
r2

L
Lr

r2 LT‘
Lr

� �
, ð9Þ

0vrvR :
LTs

Lt
~

1
r2

L
Lr

r2 LTs

Lr

� �
, ð10Þ

subject to the Stefan condition

r~R : k
LT‘
Lr

{
LTs

Lr
~

dR
dt

1{cð Þ T‘{1ð Þ{b½ �, ð11Þ

and the remaining relevant initial and boundary conditions

r~R : T‘~Ts~1{
1
R

{
dR
dt

, ð12Þ

r~0 :
LTs

Lr
~0, ð13Þ

r?? : T‘?T‘,?, ð14Þ

t~0 : Ts~Ts,init, T‘~T‘,?, R~Rinit: ð15Þ

Here, the dimensionless parameters

k~
k‘
ks

, c~
c‘
cs

, b~
L

csT�bulk

, ð16Þ

are the ratio of thermal conductivity, the ratio of specific heat, and the
Stefan number, which is a measure of the latent heat absorbed by the
solid phase during melting. By nondimensionalising our continuum
model according to equation (8), in which the representative length,
time and temperature scales are unique for each material, the result-
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ing dimensionless parameters in equation (16) can be determined
using available data such as that listed in Table 1 and do not depend
on the boundary or initial conditions. This property will be import-
ant later, when we discuss universal features of the model.

The final parameter in the model (9)–(13) is the dimensionless
kinetic parameter

~
�ks

rcsv�T�bulk

: ð17Þ

A nonzero value of in the model is required to implement the
adjusted Gibbs–Thomson rule (4), which accounts for nonequili-
brium kinetic effects. While, in principle, values of the parameter
may be determined for a given material, we shall argue in what
follows that, regardless of its value, solutions to the continuum model
that include nonequilibrium kinetic effects have a number of appeal-
ing features. A further important remark on the scalings (8) is that,
since the standard Gibbs–Thomson law (1) can never hold for R* ,
v, our dimensionless continuum model with ~0 cannot ever be
used for the dimensionless regime R , 1 (see equation (12)). On the
other hand, with w0, the boundary condition (12) does not neces-
sarily lead to the same restriction. Indeed, provided the magnitude of

dR/dt is large enough, mathematical solutions for w0 can continue
until the particle is completely melted.

The model governed by equations (9)–(15) is commonly known as
a two-phase Stefan problem with surface tension and a kinetic term
(referred to as ‘kinetic undercooling’ in the Stefan problem literat-
ure). Without the effects of interface kinetics (setting ~0 but keep-
ing s . 0), variations of this spherically-symmetric melting problem
have been studied mathematically by a number of authors using a
variety of numerical and analytical techniques12,25–29,37,38. Neglecting
both the kinetic term and surface tension leads to the classical prob-
lem of melting a macroscaled sphere (see McCue et al.39 and the
references therein). One-dimensional Stefan problems with kinetic
undercooling ( w0) but without surface tension (s 5 0) have also
received attention in the applied mathematics literature, both to
model solidification or melting processes35,36,40,41 and in the context
of diffusion through glassy polymers42,43. In numerical studies of two-
and three-dimensional models for instabilities and pattern formation
in crystal growth phenomena, it is common to include both surface
tension and nonequilibrium interface kinetics in the Gibbs–
Thomson law44–46. As far as we are aware, with the exception of the
recent work of Myers and coworkers12,47, there has been no in-depth
discussion in the physics literature on the use of two-phase models
like equations (9)–(15) for melting nanoscaled metal particles. While
we acknowledge that metal particles are not always spherical (nanos-
caled particles can be polyhedral in shape48,49), our radially-symmet-
ric model is significantly easier to handle than its three-dimensional
counterpart (cf. the detailed asymptotic study of melting a three-
dimensional body50), and we expect the key results will carry over.

Numerical results. The dimensionless problem (9)–(15) is solved
computationally using the numerical scheme detailed in the
methods section. To illustrate our numerical results, we have
chosen to use the (dimensionless) parameter values b 5 0.30, k 5

0.46 and c 5 1.16, which corresponds to melting a pure lead
nanoparticle. Temperature profiles are shown in Fig. 2, while the
dependence of the solid-melt interface on time is illustrated in Fig. 3.

As we argue below, there are universal features of the model (9)–
(15) that are independent of the initial conditions and far-field con-
dition. With this in mind, we note that for the results shown in Figs. 2
and 3, we have chosen to use Ts,init 5 0.9 and T,,init 5 T,,‘ 5 1.25,
which correspond to the dimensional temperatures T�s,init~540 K
and T�‘,init~T�‘,?~750 K. Further, we use Rinit 5 23.65, which is
chosen to correspond to R�init~20 nm if we use the length scale v
from equations (2)–(3). However, as discussed in the Introduction,
using other models for v would provide different dimensional

lengths (for example, the model of Guisbiers and Wautelet10,22,23

would lead to the larger initial radius R�init~34:3 nm).
No kinetic term, ~0. Before considering the effects of interface

kinetics, it proves useful to summarise the results found by setting
~0 in equation (12) (see also McCue et al.26). These are represented

in Figs. 2 and 3 by the (green) solid curves.
The solutions for ~0 are well described qualitatively by dividing

the dimensionless time domain into two regimes; 0 , t , tI and tI , t
, tc. Here tI is defined to be the time at which heat ceases to flow from
the solid-melt interface into the solid, while tc is the critical time at
which finite-time blow-up occurs. Regime I (0 , t , tI) can be
thought of as ‘normal melting’: heat flows from the outer liquid phase
R(t) , r , ‘ into the solid-melt interface r 5 R(t), providing enough
latent energy there to transform the solid into liquid. This behaviour
is demonstrated by schematic (a) in Fig. 2 (top). The surplus of heat
energy then flows from the solid-melt interface into the solid 0 , r ,

R(t), raising the temperature of the solid. Temperature profiles for
Regime I are shown in Fig. 2 (top).

At early times, the radius of the particle is large enough such that
the Gibbs–Thomson effect is relatively small and the size-dependent
melting temperature is approximately equal to the bulk melting tem-
perature (which is consistent with the experimental data in Fig. 1). As
time increases and the particle size decreases, the Gibbs–Thomson
effect lowers the melting temperature on the moving boundary,
which in turn decreases the temperature gradient in the inner solid
phase at the interface. This trend continues until hTs/hr(R, t) 5 0 at
the time we define to be tI. Thus, at the precise moment t 5 tI, there is
no flux of heat from the interface into the solid (see the inset in Fig. 2
(top), as well as schematic (b)).

In Regime II (tI , t , tc), we have that the temperature gradient
hTs/hr(R, t) , 0 (see Fig. 2 (bottom) and schematic (c)), which means
that now heat is flowing from the solid phase into the solid-melt
interface and that the temperature in the solid phase in the neigh-
bourhood of the interface is higher than the melting temperature
itself. In this sense the solid can be thought of as being locally super-
heated (although the temperature here is still less than the bulk
melting temperature). As heat is still flowing into the interface from
the liquid phase, the melting process accelerates quickly, leading to a
dramatic increase in interface speed jdR/dtj via equation (11) (see
Fig. 3). The reduced melting temperature results in an ever decreas-
ing temperature gradient hTs/hr(R, t) , 0, until the solution blows up
at the critical time tc. This form of mathematical blow-up is char-
acterised by hTs/hr(R, t) R 2‘, dR/dt R 2‘ and R?Rz

c as t?t{c ,
where Rc . 0 is the critical radius (see schematic (d)). As a con-
sequence, according to the continuum model (9)–(15) with ~0, the
particle does not melt completely.

An interesting and insightful feature of this mathematical model
(for ~0) is that the behaviour of the solutions near blow-up appears
to be largely independent of the initial and boundary conditions. As a
means to test this idea, for a fixed set of parameter values for c, k and
b, we ran many simulations for a variety of different initial temper-
ature profiles T,,init and Ts,init, including constant values and spa-
tially-dependent functions. Further, we have used a number of
different values for the initial radius Rinit. Performing this exercise
leads to vastly different temperature profiles for sufficiently small
times, as would be expected, since small time behaviour is heavily
dependent on initial conditions. However, for times close to the
blow-up time tc, we found that regardless of the initial or boundary
conditions, the temperature profiles appear almost identical. Thus,
for example, the temperature profiles for Fig. 2 (top) would not be
replicated if the initial or boundary conditions were different. On the
other hand, we found that the profiles in Fig. 2 (bottom), especially
those near the blow-up time t 5 tc, were essentially reproduced (with
some very small quantitative differences) for a large number of initial
and boundary conditions. This apparently universal near blow-up
behaviour for ~0 was not observed by McCue et al.26 because the

www.nature.com/scientificreports
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problem there was not scaled according to equation (8) (or some
equivalent scaling that involves only material parameters).

Nonzero interface kinetics, w0. We now consider what happens
to our model when we include a kinetic term, so that both s . 0 and
w0 in equation (12). To illustrate the main results, we choose the

specific value ~0:012, together with our parameter values for lead.
This value of is not taken from experimental data, but is used to
demonstrate representative behaviour for small values.

Figure 2 (top) shows that in Regime I, the effect of turning on a
kinetic term with a small kinetic parameter w0 is negligible, as the
temperature profiles for w0 ((black) dashed lines) are virtually
indistinguishable from the ~0 solutions described in the subsection
‘‘No kinetic term, ~0’’. As such, the melting process appears to
enter Regime II at essentially the same particle radius.

For much of Regime II the effects of the kinetic term are still small.
In Fig. 2 (bottom) we see the temperature profiles for when w0
follow those for the ~0 case very closely. However, close to the
blow-up regime, the speed of the interface becomes sufficiently large
that the kinetic term changes the qualitative behaviour. The melting
temperature (12) for w0 is increased, and the blow-up is avoided. In
particular, we see in the inset of Fig. 2 (bottom) that the profiles for
w0 have a finite slope, so that the flux of heat from the solid into the

solid-melt interface does not increase without bound. While not
shown in this figure, the solutions for w0 continue and remain
regular. These features are also visible in Fig. 3, where the inclusion

of interface kinetics in the melting temperature (12) has prevented
the interface speed from blowing up at a finite particle radius.

Now that finite-time blow-up is avoided for w0, the moving
boundary r 5 R(t) continues towards the centre into a third extremely
short regime tc , t , te, where te is the extinction time characterised by
R(te) 5 0. As we see in Fig. 3, the interface speed during this regime is
large but finite. In summary, we see that the addition of a small kinetic
parameter has regularised the singular behaviour, so that the solution
continues through the blow-up regime until complete melting occurs.

Discussion
This work concerns the use of a standard Stefan-type continuum
model for melting a sphere, but with a non-classical size-dependent
melting temperature that is motivated by experiments on melting
nanoscaled metal particles. This form for the melting temperature is
often taken to be the Gibbs–Thomson law (1). One obvious limita-
tion of equation (1) is that it is unphysical for R* , v (predicting
negative temperatures), thus results from any mathematical model
with equation (1) must be invalid for some small-particle regime.
Further, the continuum model itself will lose its validity for very small
particles, as we discuss below.

It turns out that the two-phase Stefan problem with equation (1)
undergoes a form of mathematical blow-up before melting is com-
pleted, so the issue of cutting off the model at some arbitrary R* does
not necessarily arise. This form of blow-up is interesting as it appears

Figure 2 | Temperature profiles for b 5 0.30, k 5 0.46, c 5 1.16 and Rinit 5 23.65. The initial temperatures are shown by the (blue) dot-dashed lines. The

lead particle is initially at Ts,init 5 0.9, while the surrounding liquid melt is at T,,init 5 T,,‘ 5 1.25, except near Rinit where the initial condition is

chosen such that the temperature is continuous, as discussed in the methods section. The (green) solid lines are for ~0 while the (black) dashed lines are

for ~0:012, and the (red) thin solid lines and the (red) thin dashed lines are the melting temperatures calculated from equation (4) for each case.

(top) Temperature profiles for Regime I, 0 , t , tI 5 103.34, are shown (from right to left) for times corresponding to R 5 22 and R(tI) 5 18.26. The inset

gives a magnified view of the temperature near the moving boundary, where hTs/hr R 01 as t?t{I . (bottom) Temperature profiles for Regime II, tI , t ,

tc, are shown (right to left) for times equivalent to R(tI), R 5 8, 4, 2 and the critical radius Rc 5 1.32. Finite-time blow-up occurs for the ~0 case at tc 5

400.98. From the inset we see that finite-time blow-up is avoided for the w0 case at the time tc, as the flux hTs/hr is finite.

www.nature.com/scientificreports
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to be universal in the sense that the behaviour of the mathematical
solution at times just before blow-up is essentially independent of
boundary or initial conditions. In addition, this blow-up behaviour
involves the speed of the solid-melt interface increasing without
bound, which appears to be consistent with experimental observa-
tions13 and results from molecular-dynamics simulations30 of nanos-
caled metal particles melting abruptly9.

In order to appreciate the physics behind this form of blow-up, it is
worth comparing with the idealised problem of melting a super-
heated solid. Using the language of the subsection ‘‘No kinetic term,
~0’’, we see that once the melting process has entered Regime II,

there is a counter-intuitive heat flux from the bulk of the particle into
the solid-melt interface, which is acting like a heat sink. This is pre-
cisely what occurs when one melts a superheated solid, even on a
macroscale without the effects of surface tension. A very simple
model for melting a superheated solid is41,51–53

0vrvR :
LTs

Lt
~

1
r2

L
Lr

r2 LTs

Lr

� �
, ð18Þ

r~R :
LTs

Lr
~b

dR
dt

, ð19Þ

r~R : Ts~1, ð20Þ

r~0 :
LTs

Lr
~0, ð21Þ

t~0 : Ts~Ts,init rð Þw1, R~Rinit: ð22Þ

For this well-studied problem one can consider the quantities

Q1 tð Þ~4p
ðR tð Þ

0
Ts r,tð Þ{Tmelt rð Þð Þr2dr, ð23Þ

Q2 tð Þ~ 4p
3

bR tð Þ3: ð24Þ

The term Q1 describes the amount of dimensionless heat energy
that needs to be removed from the superheated ball in order to reduce

the temperature from Ts(r, t) to the melting temperature (which, for
the idealised problem, is Tmelt 5 0). The second term, Q2, is the
dimensionless latent heat energy required to melt the solid ball. If
Q 5 Q1(0) 2 Q2(0) . 0, then there is initially more heat energy in the
solid than is required to melt it. There is nowhere for this heat to
escape and, as such, the condition Q . 0 necessarily leads to finite-
time blow-up51 with R?Rz

c , _R?{?, as t?t{c .
Returning to our problem, equations (9)–(15) with ~0, we can

construct a similar argument, although the details are slightly more
complicated. In this case we use Tmelt(r) 5 1 2 1/r in our definition of
Q1. From the time t 5 tI, the melting proceeds with Ts . 1 2 1/R(t)
for 0 , r , R(t), and so have the lower bound Q1 . 2pR(t)2/3. Now,
some straightforward algebra shows that Q2 , 2pR(t)2/3 for R(t) ,

1/(2b), so we conclude that there is a finite particle radius (1/(2b))
below which it is certain that Q1 . Q2. This excess in heat energy is
amplified by the additional heat that is conducting in from the liquid
phase. Thus we see that, while it is likely that Q1 , Q2 initially, and
even for much of the melting process, it is unavoidable that Q1 . Q2

at some point in time. Therefore, for the problem (9)–(15) with ~0,
blow-up is inevitable.

With all this in mind, our main result from the full model (9)–(15)
with w0 is that including interfacial kinetic effects in the Gibbs–
Thomson equation regularises the singularity at R 5 Rc so that the
solution does not blow-up, but is instead regular for all time up until
complete melting.

In practice, is it likely to be difficult to measure the precise value of
, however we can assume that it is small, and so its effects only come

into play when the interface speed is very large. In terms of math-
ematical modelling, the key point is that the unphysical singular
behaviour that occurs in the model for ~0 can be regularised by
including some kinetic term, no matter how small. Thus by including
some =0 in the model, we find results that are physically acceptable
for all time, but are still consistent with observations of abrupt
melting.

This regularisation is reminiscent of what happens when equival-
ent kinetic effects are included in the simple model (18)–(22)
described above41. From a mathematical perspective, we expect the
formal asymptotics of the singular limit ?0z to follow the work of
King & Evans41, although the details are likely to be even more
cumbersome. We do not pursue these issues further here.

Figure 3 | The radius of the particle R(t) versus time t for the same parameter values as in Fig. 2. The (green) solid line is for the case ~0, while the

(black) dashed line is ~0:012. For the ~0 case, we have that the speed of the boundary blows up at Rc 5 1.32, corresponding to tc 5 400.98. The solution

with a nonzero kinetic term w0 follows that for ~0 very closely, except for times near the blow-up (inset). Here, the solution deviates away from the

~0 case, so that the moving boundary propagates inwards past the critical radius and through the blow-up regime. The speed of the boundary increases

dramatically until the boundary reaches the centre, and complete melting is achieved.
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Much of the predictive capability of using the continuum model
considered here relies on the accurate measurement of the quantity v
in the Gibbs–Thomson rule (1), which depends on the surface ten-
sion s* if using the model (2). We use this quantity as our repres-
entative length scale, so each dimensionless unit of length in our
results is equivalent to the dimensional length v. Our time scale
defined in equation (8) is proportional to v2. As mentioned in the
Introduction, there are a range of models for s* that are used in the
literature, not all of which agree with the others (for lead there are
suggested19,20 values for s* between s* 5 0.031 Jm22 and
0.145 Jm22). Indeed, there are many other models for v that do
not follow equation (1)21. A welcome advance would be experimental
procedures to refine our quantitative understanding of equation (1)
(and v in particular), especially for metal particles.

This point also goes to the issue of whether it is appropriate to
apply our continuum model to nanoscaled phenomena. While it is
obvious that a continuum model cannot hold when the metal part-
icles contain only a few atoms, it is not clear what the minimum
number of atoms or molecules needs to be. Arguments about which
factors affect the limitations of continuum models are summarised
by Font & Myers12, who themselves choose to truncate their results
for gold particles at R* 5 1 nm. Detailed discussion about the valid-
ity of thermodynamic arguments is provided in Guisbiers et al.48,
while Aguado & Jarrold.54 contains a review of the physics of melting
metal clusters on a very small scale (a couple of hundred of atoms or
less per cluster). The precise relationship between our dimensionless
results and real dimensional quantities depends heavily on the mea-
sured values of v. More certainty about these measurements will
inform the applicability of our predictions regarding abrupt melting,
and so on.

We close by mentioning the effects of density on our model.
Instead of including kinetic effects in the Gibbs–Thomson rule, we
may attempt to regularise the singular behaviour by allowing the
model to account for different densities in the liquid and solid phases.
In this case, the governing equations are generalised to include an
advective term in equation (9) and an additional term in the Stefan
condition (11). The Gibbs–Thomson condition (1) remains the
same. Indeed, a very recent study focuses on such a generalised
model with different densities47, but does not elaborate on temper-
ature profiles or consider the near blow-up regime. We may expect
that the density difference would regularise the blow-up described in
this study, however such a model with equation (1) (and no kinetic
term) would still carry with it the same limiting features, such as
predicting negative melting temperatures, and the need to cut off
the model at an arbitrary particle radius. We leave the study of these
issues for further research.

Methods
The dimensionless problem defined by equations (9)–(15) is solved numerically by
first applying front-fixing transformations, and then using the method of lines with
finite difference spatial discretisations. We approximate the semi-infinite liquid
domain R , r , ‘ with the finite domain R , r , rout, making sure that rout is large
enough such that all results are independent of it (typically, if Rinit < 24 then we
choose rout *> 80), and the far field condition (14) is approximated with

r~rout : T‘~T‘,?: ð25Þ

The initial conditions Ts,init in 0 # r # Rinit and T,,init in Rinit # r # rout can lead to
unusual effects, such as the development of a ‘chilled region’ where the solid region
first swells, before melting. While interesting, this phenomenon is not the focus of the
current study, and we choose an initial condition such that this does not occur. The
initial temperature is chosen to be as follows: in the inner and outer phases, the
temperatures are predominantly at the constant temperatures Ts,init and T,,init,
respectively, except in the interior layer r{R tð Þj j=1 where we choose the temper-
ature to smoothly transition to the melting temperature (12).

The Landau-type transformations

j~
r

R tð Þ , f~
r{R tð Þ

rout{R tð Þ ð26Þ

with

w j,tð Þ~Ts r,tð Þ, y f,tð Þ~T‘ r,tð Þ ð27Þ

have the effect of fixing the shrinking solid domain 0 # r # R(t) to 0 # j # 1 and the
expanding liquid domain R(t) # r # rout to 0 # f # 1. Next, a uniform mesh is
introduced in each domain, and we replace the spatial derivatives in the new trans-
formed system with second order finite difference approximations. We use one-sided
differences to discretise the spatial derivatives at the centre of the solid core j 5 0 and
on the moving boundary j 5 1, f 5 0. The Dirichlet boundary condition at rout

provides the temperature at f 5 1.
The result is a semidiscrete system of coupled nonlinear ordinary differential

equations in time, which is solved using the built in fully implicit MATLAB solver
ode15i for the temperature at the mesh points, as well as the position of the moving
interface. Typically the temporal stepsize is approximately Dt 5 1023, but the solver
allows for a variable stepsize. This is particularly useful for later times where the solver
can decrease the stepsize to Dt 5 10211 if need be, such as near blow-up where large
rates of change are encountered. While we are solving for the transformed tem-
peratures w and y in the fixed domains 0 # j # 1 and 0 # f # 1, recall that the
original temperatures Ts and T, are on the time varying domains 0 , r , R(t)
(shrinking) and R(t) , r , rout (expanding), respectively. This means that as time
progresses, the mesh in the outer domain becomes more coarse. Further, the reso-
lution of the mesh in the inner shrinking domain will become more fine, which is
important as it is this inner phase which encounters rapid changes in temperature and
large spatial derivatives, particularly during the onset of finite-time blow-up. For
these reasons, all results were generated with 10000 nodes in each phase, and the
solutions were observed to have converged within visual accuracy for both the tem-
perature and interface profiles.

The solver ode15i allows the user to specify the sparsity pattern of the Jacobian
matrix, so that it may be formed efficiently using shifted evaluations and forward
difference quotients55. With this option in place, accurate simulations with tens of
thousands of mesh nodes can be performed with less than two minutes of runtime on
a standard desktop machine.
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