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Overcoming barriers to the registration of new
plant varieties under the DUS system
Chin Jian Yang 1, Joanne Russell2, Luke Ramsay2, William Thomas2, Wayne Powell1 & Ian Mackay 1,3✉

Distinctness, Uniformity and Stability (DUS) is an intellectual property system introduced in

1961 by the International Union for the Protection of New Varieties of Plants (UPOV) for

safeguarding the investment and rewarding innovation in developing new plant varieties.

Despite the rapid advancement in our understanding of crop biology over the past 60 years,

the DUS system has changed little and is still largely dependent upon a set of morphological

traits for testing candidate varieties. As the demand for more plant varieties increases, the

barriers to registration of new varieties become more acute and thus require urgent review to

the system. To highlight the challenges and remedies in the current system, we evaluated a

comprehensive panel of 805 UK barley varieties that span the entire history of DUS testing.

Our findings reveal the system deficiencies such as inconsistencies in DUS traits across

environments, limitations in DUS trait combinatorial space, and inadequacies in currently

available DUS markers. We advocate the concept of genomic DUS and provide evidence for a

shift towards a robust genomics-enabled registration system for new crop varieties.
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Crop breeding involves a considerable investment of time,
resources, and money by seed companies to produce
improved varieties of plants. Plant Variety Rights (PVR) is

a form of intellectual property introduced in 1961 by the Inter-
national Union for the Protection of New Varieties of Plants
(UPOV) to protect the breeders’ investment in creating new
varieties, support innovation, and serve market demand1. For
almost 60 years, the protection of new plant varieties through the
award of PVR relied on passing two tests: Distinctness, Uni-
formity, and Stability (DUS), and Value for Cultivation and Use
(VCU). DUS requires the new variety to be distinct from the
common knowledge varieties, uniform across seeds that con-
stitute the variety, and stable across environments2. DUS is
usually defined by a set of morphological traits, although isozyme
electrophoresis and molecular markers are occasionally used3. On
the other hand, VCU requires the new crop variety to demon-
strate improvement in yield, biotic or abiotic resistance, and
quality characteristics4. Unlike VCU traits such as yield and
disease resistance that have been the center of attention in crop
breeding5, the DUS system has received relatively little attention
despite its pivotal role in the registration of new varieties6,7.

The pressure on the current DUS system stems from multiple
issues. As more new varieties arise, the DUS trait combinatorial
space becomes more limited and requires additional effort in
breeding unique DUS trait combinations. Many DUS traits have
low heritabilities7 which means more trait variability due to
environmental fluctuations and limited reliability of DUS trait
scores outside of the trial environment. While the current system is
well established for major crops, it is hard to implement in minor or
orphan crops since the traits for DUS are hard to determine8,9.
Furthermore, the current DUS system is largely designed for inbred
species or varieties which is hardly practical in outbreeding species
or hybrid varieties10. Lastly, the current definitions of new varieties2

and essentially derived varieties11 rely on a fine line concerning
which characteristics are considered essential, which complicates an
objective evaluation of a candidate variety12,13.

Over the years, many attempts at improving the DUS system
have met with little success. Suggestion for the use of molecular
markers in DUS traces back to at least 1990 using minisatellites in
soft fruits14. Since then, more molecular markers have been
proposed for DUS, for example, 28 SSR markers in maize15, 25
SNP markers in barley16, and 5 SSR markers in rice17. However,
the number of available DUS markers that have been proposed
thus far is too few and low throughput. More recently, larger
marker sets using SNP arrays have been suggested, including
3,072 SNP markers in maize18 and 6,000 SNP markers in soy-
bean19. As of now, none of these have been officially adopted by
the UPOV. Instead, UPOV currently requires the use of mole-
cular markers only when they correlate with the DUS traits
perfectly20, which does not reflect the advances in genotyping
technologies and understanding of DUS trait genetics.

Using the UK barley DUS system as a test case (panel of
805 spring, winter, and alternative barley varieties that have been
accepted into the UK national list (NL), as well as 28 DUS traits),
we demonstrate both the challenges and opportunities for the
creation of a new DUS system. We show that the current DUS
system is lacking in consistencies across the environment, limited
in trait combinatorial space, and impaired by a non-optimal
marker system. We suggest the idea of genomic DUS for over-
coming various issues in the current DUS system and demon-
strate its advantages in plant variety registration.

Results and discussion
DUS trait and marker data. The 28 barley DUS traits include the
seasonal type and 27 above-ground morphologies, including

leaves, ears, and spikelets (Table 1). Currently, within the UK,
barley DUS trait data are publicly available from the National
Institute of Agricultural Botany (NIAB) in England and the Sci-
ence and Advice for Scottish Agriculture (SASA) in Scotland. We
obtained the data from these two sources and supplemented it
with additional data from Cockram et al.7. The NIAB data serves
as our primary data as it is more complete than the SASA data,
which was only used for comparative analysis. 21 DUS traits are
scored on a scale of 1 to 9 or a smaller subset of the scale, and
seven traits are scored on a binary scale, all of which were based
on criteria defined in Supplementary Data 1. Of the 27 traits
excluding seasonal type, two traits are not segregating in spring
barley and one in winter barley (Supplementary Fig. 1). The
missing rate in the DUS trait data ranges from 0 to 78%, with
only 5 traits above 10%. In addition, our analysis included marker
data for 805 varieties from the IMPROMALT collection (http://
www.barleyhub.org/projects/impromalt/), of which 710 had DUS
trait data.

DUS trait inconsistencies across environments. Comparison
across DUS trait scoring organizations (NIAB vs. SASA) showed
an overall consistency in two-thirds of the DUS trait scores
(Fig. 1a and b). For each variety, the consistency was measured as
the proportion of DUS traits that are exact matches between the
two organizations, and the overall consistency was derived from
the means of all variety consistencies. In most cases, the trait
score differences within each variety are small (mean= 0.55, sd
= 0.28, n= 395, two-sided t-test p < 0.05) (Fig. 1a, Supplementary
Fig. 2). These differences are expected given that the DUS traits
were scored in different environments by different DUS inspec-
tors. There is little to no bias in trait score differences between
NIAB and SASA (Supplementary Fig. 2) except for trait 6 (flag
leaf: glaucosity of the sheath) and trait 25 (grain: spiculation of
inner lateral nerves of the dorsal side of lemma). On average, trait
6 is about 1 score higher in NIAB compared to SASA while trait
25 is about 1 score lower in NIAB, which may reflect the envir-
onmental effects on these traits. Regardless, with the reduction in
DUS trait combinatorial space as measured by shrinkage in DUS
trait Manhattan distances over time (Fig. 1c & d), especially in
spring barley, small trait score differences can easily complicate
variety identification. Manhattan distances are the sums of
absolute differences between any two variables and lower dis-
tances imply reduced variation in DUS traits among the com-
pared varieties. This may risk some barley varieties failing DUS
testing in one country but not another due to variations in DUS
traits. Besides, the inconsistencies are present in the majority
(392/395) of the barley varieties compared, which suggests that
the inconsistencies are common and excludes the possibility of
poor data handling by either organization. Given the roles of the
DUS system in granting PVR, a two-third consistency across
organizations is inadequate and risky.

Of all 28 barley DUS traits, 15 have low heritabilities (h2 < 0.50)
(Table 1, Supplementary Table 1) and are thus contradictory for
DUS purposes. As previously defined by Falconer and Mackay21,
heritability is a measure of “degree of correspondence between
phenotypic value and breeding value”. Therefore, for any given
variety, traits with low heritabilities have little replicability in trait
values obtained from different environments (e.g. year, location).
As expected, the DUS trait inconsistencies across scoring
organizations are negatively correlated (−0.67) with heritabilities
(Fig. 1e). Similar results were observed when the heritabilities
were calculated from spring and winter barley separately.
Consequently, instead of a fair evaluation of the genetic merits
underlying new varieties, the current DUS system simply
determines new varieties based on environmental stochasticity.
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Limitations to DUS trait combinatorial space due to genetic
gain in yield. 12 out of 21 barley DUS traits have non-zero
genetic correlations with yield in spring barley (Fig. 2), which risk
undesirable correlated responses upon selecting for either DUS
traits or yield. Non-zero genetic correlations are the hidden cost
in exchange for the genetic gain in yield. In traits with low
phenotypic correlations, the unintended selection for DUS traits
may not be immediately apparent to breeders. For instance, both
DUS traits 10 (ear: attitude) and 11 (plant: length) are negatively
correlated with yield, which translates to semi-dwarf barley plants
with erect ears having a higher yield than tall barley plants with
recurved ears. Such correlations could help define ideal crop
ideotypes22, however, they are not ideal for DUS purposes
because high-yielding plants are more likely to be semi-dwarf
with erect ears. As the genetic gain in yield increases over time23,
it is inevitable that DUS trait combinatorial space gets more
limited (Fig. 1c and d) due to correlated selection responses. On
the other hand, selection away from DUS trait combinatorial
space risks losing the genetic gain in yield. While we have only
considered correlations between DUS traits and yield, there are
other VCU traits that may also constrict DUS trait combinatorial
space.

Flaws in the current DUS marker system in capturing complex
trait genetic architecture. GWAS results showed that 14 of 28
barley DUS traits are likely regulated by few major loci and some
of these loci are likely fixed in either spring or winter barley
populations (Table 2). Of the total 32 GWAS loci, 30 were
identified in the combined dataset (Supplementary Table 2,
Supplementary Fig. 3), 12 in the spring-only dataset (Supple-
mentary Table 3, Supplementary Fig. 4), and 16 in the winter-
only dataset (Supplementary Table 4, Supplementary Fig. 5). Part
of the explanation for the difference is due to the individual

datasets having a smaller sample size and thus lower power.
Another reason is that some traits are not segregating or are rare
in either spring or winter germplasm. Examples of these traits are:
3 (lowest leaves: hairiness of leaf sheaths), 12 (ear: number of
rows), 23 (grain: husk), 26 (grain: hairiness of ventral furrow),
and 27 (grain: disposition of lodicules). A major QTL for trait 3 is
tightly linked to Vrn-H2, a major vernalization locus24 while
traits 12, 23, and 27 are largely monomorphic in the UK barley
breeding pool due to preferences for two-rowed barley with
hulled grains and clasping (collar type) lodicules. In comparison
with previous work on DUS traits GWAS7, the number of loci
increased from 16 to 32 with 12 loci in common.

In accordance with the UPOV guidelines20, molecular markers
can only be used in DUS if they confer a direct relationship with
the DUS traits. This might work well with those 14 traits with
known major loci, although there is a risk of ignoring effects from
minor or exotic loci. One such example would be anthocyanin-
related traits in flag leaf (trait 4) and awn (trait 8), where
anthocyaninless 1 (ant1) and ant2 are segregating in winter but
not spring barley varieties in the UK (Table 2). Unless the DUS
markers for ant1 and ant2 are in perfect linkage with the
causative polymorphisms, these markers would give misleading
results if used in spring barley. To complicate this issue further,
we identified a locus at ant2 for an anthocyanin-related trait in
grain (trait 24) in spring barley, which may suggest an
additionally linked locus that is segregating in spring barley
responsible for grain-only anthocyanin pigmentation. On the
other hand, it is improbable to create molecular markers that
would tag any of the other 14 traits without major loci.

To extend beyond locus-specific markers, a small marker set
for DUS has been proposed25 although our evaluation showed
limited distinguishing power. By simulating F6 progeny from
known parent pairs, we compared the marker set from these

Table 1 DUS trait names and heritabilities, standard errors in parentheses.

Trait Name h2

Combined Spring Winter

1 Kernel: colour of the aleurone layer 0.78 (0.04) 0.16 (0.06) 0.79 (0.06)
2 Plant: growth habit 0.25 (0.05) 0.17 (0.06) 0.24 (0.07)
3 Lowest leaves: hairiness of leaf sheaths 0.75 (0.04) NA 0.69 (0.07)
4 Flag leaf: intensity of anthocyanin colouration of auricles 0.74 (0.05) 0.19 (0.06) 0.84 (0.08)
5 Flag leaf: attitude 0.28 (0.13) 0.28 (0.19) 0.25 (0.16)
6 Flag leaf: glaucosity of sheath 0.12 (0.04) 0.05 (0.03) 0.10 (0.05)
7 Time of ear emergence (first spikelet visible on 50% of ears) 0.28 (0.05) 0.20 (0.06) 0.26 (0.07)
8 Awns: intensity of anthocyanin colouration of tips 0.67 (0.05) 0.09 (0.04) 0.83 (0.08)
9 Ear: glaucosity 0.42 (0.05) 0.45 (0.07) 0.33 (0.08)
10 Ear: attitude 0.25 (0.05) 0.26 (0.07) 0.17 (0.06)
11 Plant: length (stem, ear and awns) 0.17 (0.04) 0.13 (0.05) 0.14 (0.06)
12 Ear: number of rows 1.00 (0.01) NA 1.00 (0.03)
13 Ear: shape 0.10 (0.04) 0.04 (0.03) 0.09 (0.05)
14 Ear: density 0.23 (0.05) 0.14 (0.05) 0.24 (0.07)
15 Ear: length (excluding awns) 0.18 (0.05) 0.05 (0.04) 0.29 (0.08)
16 Awn: length (compared to ear) 0.18 (0.04) 0.15 (0.05) 0.11 (0.05)
17 Rachis: length of first segment 0.34 (0.05) 0.32 (0.07) 0.28 (0.07)
18 Rachis: curvature of first segment 0.26 (0.05) 0.25 (0.07) 0.20 (0.07)
19 Ear: development of sterile spikelets 1.00 (0.04) 1.00 (0.06) 1.00 (0.09)
20 Sterile spikelets: attitude (in mid-third of ear) 0.64 (0.06) 0.63 (0.08) 0.49 (0.10)
21 Median spikelet: length of glume and its awn relative to grain 0.15 (0.04) 0.07 (0.04) 0.18 (0.06)
22 Grain: rachilla hair type 1.00 (0.01) 1.00 (0.02) 0.84 (0.05)
23 Grain: husk 0.01 (0.02) 0.04 (0.03) 0.00 (0.02)
24 Grain: anthocyanin colouration of nerves of lemma 0.69 (0.05) 0.31 (0.07) 0.78 (0.07)
25 Grain: speculation of inner lateral nerves of dorsal side of lemma 0.74 (0.04) 0.49 (0.07) 0.78 (0.06)
26 Grain: hairiness of ventral furrow 0.96 (0.02) 0.65 (0.07) 0.94 (0.04)
27 Grain: disposition of lodicules 0.91 (0.02) 0.99 (0.03) NA
28 Seasonal type 1.00 (0.00) NA NA

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01840-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:302 | https://doi.org/10.1038/s42003-021-01840-9 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


simulated progeny to their parents, actual variety (progeny of the
parent pairs), and other simulated progeny. While most of these
simulated progeny remained unique in older varieties, this is not
true for newer varieties (Fig. 3a and b, Supplementary Data 2),
especially in spring barley. For example, LG Goddess matched
perfectly with 7.5% of the simulated progeny, and its parents
Octavia and Shada matched perfectly with 8.0% and 7.8% of the
simulated progeny, respectively (Supplementary Data 2). Further-
more, 88.4% of the simulated progeny have over 1% probability of
matching with other simulated progeny (Supplementary Data 2).

A small marker set for DUS is problematic in a crop in which
genomic diversity progressively gets narrower over time. Of the
total 39 markers25, only 4 to 22 markers are segregating between
the parents analyzed. Besides, these markers are not randomly
distributed as there are some in strong linkage disequilibrium
(LD) which would not informative.

As a follow-up, we investigated the number of markers
required for proper separation of varieties in DUS and
determined that approximately 500–1000 markers are likely the
minimum (Fig. 4a). By comparing the Manhattan distances

Fig. 1 DUS trait discrepancies and combinatorial space. a Boxplots of the proportion of DUS trait score differences between NIAB and SASA data. Center
line indicates median, lower and upper hinges indicate first and third quartile, while lower and upper whisker indicates 1.5 times the interquartile range from
the hinges. b Proportion of DUS trait score differences for each variety, with the oldest variety (1963) on the left and the newest variety (2007) on the
right. c Rolling mean distances of 20 spring barley varieties calculated from DUS traits with an increment of one new variety at a time. The leftmost point
on the “Time” axis indicates the mean from the 20 earliest varieties, while the rightmost point indicates the mean from the 20 latest varieties. d Rolling
mean distances of 20 winter barley varieties calculated from DUS traits with an increment of one new variety at a time. e Relationships between the
proportion of DUS trait score differences and heritabilities, separated by all (spring and winter combined), spring only and winter only groups. Each point is
shown as its trait number, which is available in Table 1.
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Fig. 2 Genetic and phenotypic correlations between DUS traits and yield. Genetic and phenotypic correlations, along with their standard errors, are
shown for each DUS trait and yield. No correlation is available for traits 3, 5, 12, 19, 22, 26, and 28 because of either a high missing rate or lack of variation
in the DUS trait.

Table 2 GWAS results.

Trait GWAS peaka Allele frequency Known gene/locus

Chr Pos (Mb) Effect −log10p Popb C S W Name Pos (Mb)

1 4H 525.07 0.74 96.02 C,S,W 0.19 0.02 0.37 MbHF35c (Blx1)45 534.04
2 3H 631.83 −0.69 6.40 C 0.49 0.05 0.98 HORVU3Hr1G090910d,46 633.53
3 1H 473.27 −0.25 4.92 C 0.16 0.01 0.32 NA NA
3 4H 631.68 3.32 116.93 C,W 0.44 0.00 0.91 HORVU4Hr1G085920d, HORVU4Hr1G085590d (Hsh1)24 633.03
4 2H 676.76 −2.25 42.77 C,W 0.25 0.00 0.53 HORVU2Hr1G096810 (Ant2)7 676.85
4 7H 73.55 −0.80 10.67 C 0.10 0.02 0.19 HORVU7Hr1G034630 (Ant1)47 72.92
8 2H 675.76 −2.27 55.97 C,W 0.25 0.00 0.53 HORVU2Hr1G096810 (Ant2)7 676.85
8 6H 536.07 0.57 6.75 S 0.30 0.16 0.45 NA NA
8 7H 73.55 −0.69 11.01 C,W 0.10 0.02 0.19 HORVU7Hr1G034630 (Ant1)47 72.92
9 1H 0.29 −0.52 6.23 C,S,W 0.07 0.07 0.06 EAR-G_148 0.50e

9 2H 6.18 −0.33 6.98 C 0.43 0.52 0.34 NA NA
11 4H 608.43 −0.30 5.93 C 0.45 0.49 0.41 NA NA
12 2H 663.88 0.04 6.05 C,W 0.30 0.24 0.37 HORVU2Hr1G092290 (Vrs1)49 651.03
12 5H 579.73 −0.04 6.11 C 0.42 0.00 0.89 HORVU5Hr1G081450 (Vrs2)50 564.41
13 3H 437.24 0.63 5.56 C 0.05 0.00 0.11 NA NA
15 4H 608.38 −0.22 4.76 S 0.45 0.49 0.41 4_551 618.00e

19 2H 652.42 −0.49 146.59 C,S,W 0.29 0.24 0.34 HORVU2Hr1G092290 (Vrs1)52 651.03
20 1H 404.92 −0.38 11.39 C,S,W 0.30 0.02 0.60 HORVU1Hr1G051010 (Vrs3)53 378.41
20 2H 655.81 −0.63 19.19 C,S,W 0.22 0.20 0.25 HORVU2Hr1G092290 (Vrs1)52 651.03
20 3H 659.54 −0.19 4.12 C 0.16 0.01 0.32 NA NA
20 5H 488.46 −0.16 4.37 C 0.06 0.02 0.11 NA NA
21 7H 47.56 0.17 7.93 C,W 0.08 0.07 0.08 NA NA
22 5H 542.50 −0.16 24.72 C,S,W 0.36 0.52 0.18 Srh7 547.24e

23 7H 612.52 −0.31 6.71 C,S 0.06 0.10 0.02 HORVU7Hr1G089930 (Nud)54 546.59
24 2H 676.20 −1.45 44.08 C,S,W 0.34 0.14 0.56 HORVU2Hr1G096810 (Ant2)7 676.85
24 7H 72.97 −0.56 8.46 C,W 0.22 0.03 0.43 HORVU7Hr1G034630 (Ant1)47 72.92
25 2H 638.37 1.97 57.54 C,S,W 0.17 0.09 0.26 Gth17 647.46e

26 6H 0.33 3.85 152.61 C,W 0.14 0.00 0.29 11_208817 5.20e

27 2H 724.71 −0.10 24.45 C,S 0.48 0.05 0.95 HORVU2Hr1G113880 (Cly1)55 730.03
28 1H 511.92 −0.51 47.74 C 0.48 0.00 1.00 HORVU1Hr1G076430 (Ppd-H2)56 514.1
28 4H 643.68 −0.63 63.95 C 0.48 0.00 1.00 Vrn-H257 NA
28 5H 571.03 −0.34 38.29 C 0.46 0.00 0.98 HORVU5Hr1G095630 (Vrn-H1)58 599.09

Significant GWAS peaks (FDR < 0.05) are summarized here along with their closest known gene or locus.
aIf the GWAS peak is found in more than one population, only the results from the combined (C) analysis are shown here.
bThis column indicates which populations (C: Combined, S: Spring, W: Winter) showed significance for any given GWAS peak.
cMbHF35 is a cluster of 3 linked genes: HvMYB4H (HORVU4Hr1G063760), HvMYC4H (NA), and HvF35H (HORVU4Hr1G063780).
dUnverified candidate genes.
eApproximated physical positions based on genetic positions.
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calculated from all 28 DUS traits against a series of randomly
sampled markers, the correlation between these two distances
begins to plateau at about 500–1000 markers. The correlation
maxes out at about 0.60, which is similar to the value previously
observed by Jones et al.10. This is not surprising given that the
correlation depends on the DUS trait heritabilities. Manhattan
distances determined from DUS traits with high heritabilities (h2

> 0.50) showed a stronger correlation with Manhattan distances
from the marker data than DUS traits with low heritabilities (h2 <
0.50) (Fig. 4a). In addition, the distribution variances stabilize at a
similar range too (Supplementary Table 5), which affirms that
any marker set smaller than 500 markers is insufficient.

Genomic DUS: concept and practices. Given the various issues
we have described in the DUS system so far, the remaining option
is to use genomic markers. There are multiple ways to implement
genomic markers in DUS, and we will provide a simple example
here using Manhattan distances, which is one of many measures
of dissimilarities among varieties. Under haploid marker coding
of 0 and 1, the Manhattan distance between any two varieties is
equivalent to 2 × (1− similarity) where similarity is measured as
the proportion of exact marker matches between two varieties.
Similar to the current DUS system, we will need a reference panel
(common knowledge varieties set) and the genomic marker data
for the reference panel. As an example, we set all 805 barley
varieties as our reference panel and computed the Manhattan
distances among these varieties. The distances are divided by
within and across seasonal types, as the values ranged from 0.04
to 0.69 within spring barley, 0.04 to 0.87 within winter barley, and
0.44 to 0.97 between spring and winter barley (Fig. 4b). To
demonstrate how genomic markers work in DUS, we simulated
1000 F6 and BC1S4 progeny from two pairs of parents in spring
barley. The first parent pair is Propino and Quench, which has a
distance of 0.20 and thus represents the “low” distance between

parents. The second parent pair is Riviera and Cooper, which has
a distance of 0.59 and thus represents the “high” distance parents.
Given an arbitrary minimum threshold of 0.05 for distinctness,
13.0% of F6 progeny and 59.6% of BC1S4 progeny from the low
parents would be rejected for lack of distinctness, while none of
the F6 progeny and 4.9% of the BC1S4 progeny from the high
parents would be rejected (Fig. 4c).

Another important consequence of using genomic markers in
DUS is the regulation of essentially derived varieties (EDVs)11. As
of the current standard, the definition of EDVs is unclear12 and it
often involves complicated and expensive court proceedings to
determine EDVs13. Furthermore, the information on whether a
market variety is an EDV is not available in any of the current
literature, and it is possible that no EDV ever makes it into the
market. With genomic markers, any varieties submitted for DUS
evaluation that failed to pass the minimum distance threshold
would be considered for EDVs. Curiously, among the varieties in
our reference panel, four varieties did not pass our arbitrary
minimum threshold of 0.05 (Fig. 4b). Spring barley Class, and
winter barley KWS Joy, Mackie, and Angora all had distances of
0.04 with their previously submitted parents Prestige, Wintmalt
and KWS Tower and full sib Melanie, respectively. Since only 4
out of a total of 326,836 pairwise comparisons had a distance
below the minimum threshold, it is not possible to visualize them
in Fig. 4b. In addition, of these 4 pairs, Angora and Melanie were
previously deemed indistinguishable in their DUS traits and had
to be separated by either microsatellite markers26 or electrophor-
esis of hordein storage proteins27.

Ultimately, time and cost determine the feasibility of the current
and alternative DUS methods. Here, we evaluated four methods:
(1) morphological trait DUS28, (2) speed DUS29, (3) trait-specific
marker DUS16, and (4) genomic DUS. Among these methods, the
current DUS system with morphological traits takes the longest
time as it usually requires one to two years of field or glasshouse
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trials. Recently, Jamali et al.29 proposed a speed DUS system by
combining the current system with speed breeding30. While this
idea is novel and interesting in regards to its purposes in DUS, it
still requires experimental validation for every DUS trait since
speed breeding alters plant development and many of the DUS
traits are indeed developmental features. Both trait-specific marker
and genomic marker methods require the least amount of time,
and it is possible to shorten the time to days provided there is a
routine demand. From the monetary aspect, both trait-specific and
genomic marker methods cost only a small fraction of the current
DUS trait method. Trait-specific markers using Kompetitive
Allele-Specific PCR (KASP) cost approximately £11 for 100
markers31 while genomic markers using the barley 50k iSelect SNP
array32 cost approximately £40 for over 40,000 markers33. While
no cost information is available for speed DUS, it is unlikely to be
less than the current DUS trait evaluation which costs £1040 per
candidate variety34. Given all considerations, genomic markers
remain the best method forward for DUS.

Being in the genomic era, we have access to great genomic
resources in major crops like the barley 50k SNP array32, wheat
90k SNP array35, and maize 600k SNP array36 for application in
DUS. In crop species where SNP arrays are not readily available,
one may consider using genotype-by-sequencing (GBS)37 or
similar methods as a starting point. As an example, we have
illustrated how genomic markers can be used to evaluate the

distinctness, uniformity, and stability of new varieties (Fig. 5).
Instead of relying on morphological trait differences from
common knowledge varieties in the reference panel, we can
determine a distance threshold based on genomic markers that
would allow us to decide if a variety is sufficiently distinct. By
sampling multiple seeds (or multiple pools of seeds), we can also
test for uniformity based on the distances among these seeds or
pools. For instance, uniformity could be defined such that the
distances among the seeds from a candidate variety cannot be
more than its distances with common knowledge varieties. We
can quantify stability by measuring the genomic heterogeneity of
the variety seed pool since a fully homogenous seed pool ensures
genomic stability in subsequent generations of seed production.
In an inbred species, this can be achieved by checking for
genomic heterogeneity between seeds in the initial DUS
application and final commercial seed lot. In an outcrossing
species, this could be done by evaluating the change in allele
frequencies between the initial and final seed lots after accounting
for possible genomic drift. Overall, genomic markers provide a
robust and effective option for improving DUS testing.

Genomic DUS as a solution to address shortcomings in the
current DUS system. Our analysis of the current DUS system
using UK barley as an example has shown that morphological
traits are not fit for DUS purposes. The trait combinatorial space
gets narrower over time and is likely worse in crop species with
limited genetic variation. DUS traits with low heritabilities are not
replicable outside the DUS trial and hence these traits have
limited meaning to variety fingerprinting. As a consequence,
there is no easy way for farmers to verify the identities of the
varieties sown in their field. Genetic correlations between DUS
and yield are detrimental to crop breeding due to the constraints
imposed on selecting for higher yield and away from the common
DUS trait combinatorial space. Besides, the current DUS process
is time-consuming and costly, which is non-ideal for small
breeding companies. Unfortunately, alternatives like trait-specific
markers and small marker sets are inadequate for DUS.

It is evident that the current DUS system is due for an update
as we have shown that genomic markers are the best way forward.
Aside from being able to address various shortcomings in the
current system, it also opens up opportunities for incorporating
molecular editing into breeding systems and clarifies the
boundary between new and essentially derived varieties. Given
the role of the DUS system in granting varietal rights, it is the
perfect setup for addressing the lack of genetic diversity in
modern crops which threatens food security38. This, obviously, is
only possible with genomic markers. In addition, with the
impacts from Brexit (in the UK and EU) and Covid-19 looming
for an unforeseeable future, there may be heavy restrictions on
seed movement that impede the process of getting varieties into
the market. Such limitations are non-ideal since only a small
fraction of the candidate varieties end up passing the DUS test
while the rest end up as a waste of time and money. With
genomic markers for DUS, it is trivial for testing centers to either
receive DNA samples from breeders or marker data from another
testing center in a different country. Lastly, genomic DUS will
unlock a new opportunity for an improved seed certification
system to better protect breeders, farmers, and customers.

Methods
DUS trait and marker data. DUS trait data from the UK national list were
downloaded from the National Institute of Agricultural Botany (NIAB) and Science
and Advice for the Scottish Agriculture (SASA) websites on 30th April 2020. NIAB
data is available at https://www.niab.com/uploads/files/Spring_Barley_Descriptions_
2019_V1.pdf and https://www.niab.com/uploads/files/
Winter_Barley_Descriptions_2019_V1.pdf while SASA data is available at https://
barley.agricrops.org/varieties. The NIAB data had a total of 287 barley varieties and
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the SASA data had a total of 728 varieties. Additional DUS trait data from NIAB were
taken from Cockram et al.7, which had 577 varieties. After merging the different
sources of NIAB data, there were 827 varieties remaining. The original DUS trait data
were stored as text descriptions and had to be converted into numerical scales using
the key provided by APHA28. Both NIAB and SASA data had all 28 DUS traits,
although some of the traits had a high missing rate, especially in the SASA data.
Therefore, we used the NIAB data for our primary analyses and the SASA data for
only comparative analysis between the two. While we attempted to source as many
varieties with DUS trait data as possible, we did not have an exhaustive list of all UK
barley varieties to date as we were limited to those which are available publicly.

Marker data from the UK national list were obtained from the IMPROMALT
project (http://www.barleyhub.org/projects/impromalt/). The original marker data
contained 809 varieties with 43,799 SNP markers genotyped on the barley 50k
iSelect SNP array32. This contrasts with a previous DUS study by Cockram et al.7

which had 500 varieties and 1536 SNP markers. Since a large proportion of the
markers did not have any missing data, we removed any marker with missing data
which left us with 40,078 SNP markers. In addition, we also obtained a year of
national listing and pedigree information of all varieties from the IMPROMALT
project. Within these 809 varieties, 432 are spring barley, 372 are winter barley and
5 are alternative barley. We removed four varieties that did not have an Application
for Protection (AFP) number, which left us with 805 varieties. Since there are only
a few alternative barley varieties, we excluded them from any analysis that requires
separation of the data by seasonal types. The trait and marker data were merged by
their AFP numbers. Unlike the various names that are occasionally recycled, the
AFP numbers are unique for each variety. They are also ordered by the date of
submission for DUS testing. Overall, we had 710 varieties that are in common
between the DUS trait and marker data, which serves as our primary data for
analysis.

DUS trait comparative analysis. We calculated the DUS trait discrepancies
between NIAB and SASA by taking the absolute values of the trait score differ-
ences. A total of 395 varieties were in common between the NIAB and SASA
datasets. Most of the traits were scored on a scale with an increment of 1, except for
traits 3, 23, and 26 which were scored as either 1 or 9. To maintain a fair com-
parison across all traits, we converted those trait scores from 1 or 9 to 1 or 2. All
DUS trait comparisons were performed only when there is complete pairwise data
between NIAB and SASA.

In addition, we subset the DUS trait data into spring and winter barley,
respectively, to calculate the change in trait combinatorial space over time. This
analysis was done by first sorting the barley varieties by their AFP number. Next,
we computed the rolling mean of 20 varieties’ Manhattan distances using the dist
function in R39 with an increment of one variety at a time. The lower the mean
distance, the narrower the trait combinatorial space.

Univariate mixed linear model analyses of DUS traits. By leveraging the
genomic relationship among the varieties, we partitioned the DUS phenotypic

variance into additive genetic and residual variances using mmer function in the
“sommer” package40 in R39. Briefly, the mixed model is described as:

y ¼ Xβþ g þ e ð1Þ
For any DUS trait with n varieties, y is an n × 1 vector of DUS trait, X is an n ×

n incidence matrix relating to fixed effects β, β is an n × mmatrix of m fixed effects,
g is an n × 1 vector of random additive genetic effect and e is an n × 1 vector of
residual effect. The m fixed effects included intercept, year of entry into the
national listing, and seasonal type, although the last effect was dropped when
spring and winter barley datasets were analyzed separately. The random additive
genetic effect g was restricted to a normal distribution of mean 0 and variance σg2A,
where σg2 is the additive genetic variance and A is an n × n additive genetic
relationship matrix calculated using A.mat function in “sommer”. Similarly, the
residual effect followed a normal distribution of mean 0 and variance σe2I, where
σe2 is the residual variance and I is an n × n identity matrix. For every DUS trait, we
fitted the model using data from the spring barley dataset (n= 370), winter barley
dataset (n= 335), and combined dataset (n= 710). We then extracted the genetic
(σ2g ) and phenotypic (σ2y) variances and calculated heritabilities (h2) as follows:

σ2y ¼ σ2g þ σ2e ð2Þ

h2 ¼ σ2g
σ2g þ σ2e

ð3Þ

Calculating best linear unbiased estimates (BLUEs) for yield. We obtained the
raw dry matter yield data for spring barley from Mackay et al.23 and the Agri-
culture and Horticulture Development Board (AHDB) website for 509 varieties
that were included in the VCU trials from 1948 to 2019. These varieties were trialed
in multiple environments and years. The dry matter yield data from 1983 and
onwards were taken from fungicide-treated trials, and the data prior to that were
taken from “best local practice” trials which meant that fungicide usage was left to
the discretion of managers at each trial. To account for this difference, we created a
“management” variable. Varieties from 1983 and onwards were scored as 1 and the
varieties prior to that were scored as 0 for this variable.

The raw dry matter yield data were fitted into a mixed linear model using lmer
function in the “lme4” package41 in R39. Briefly, the raw dry matter yield was set as
the response variable, with variety as fixed effects, and management, management-
by-year, management-by-year-by-variety, and management-by-year-by-location as
random effects. Next, we calculated the best linear unbiased estimates (BLUEs) for
yield using the emmeans function in “emmeans” package42 in R39.

Bivariate mixed linear model analyses of DUS traits and yield. We merged the
DUS traits and yield data by the variety AFP numbers, which left us with
192 spring barley varieties in common. Unfortunately, we did not have access to
older winter barley dry matter yield data, so the analysis here is limited to spring
barley. Similar to the univariate analyses, we fitted each DUS trait and dry matter
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yield BLUE into a mixed linear model using mmer function in “sommer” package40

in R39. Briefly, the bivariate models can be written as the following:

y1 ¼ Xβþ g1 þ e1 ð4Þ

y2 ¼ Xβþ g2 þ e2 ð5Þ
For any pair of DUS trait and yield with n varieties, y1 is an n × 1 vector of DUS

trait, y2 is an n × 1 vector of yield, X is an n × n incidence matrix relating to fixed
effects β, β is an n × m matrix of m fixed effects, g1 is an n × 1 vector of random
additive genetic effect for DUS trait, g2 is an n × 1 vector of random additive
genetic effect for yield, e1 is an n × 1 vector of residual effect for DUS trait and e2 is
an n × 1 vector of residual effect for yield. The m fixed effects included intercept
and year of entry into the national listing. Unlike the univariate analyses, here the
random additive genetic effect g1 and g2 were restricted to a multivariate normal

distribution of mean 0 and variance
σ2g1 ρgσg1σg2

ρgσg1σg2 σ2g2

�
�
�
�
�

�
�
�
�
�
� A, where σ2g1 is the

additive genetic variance for DUS trait, σ2g2 is the additive genetic variance for yield,
ρg is the additive genetic correlation between DUS trait and yield, ⊗ is a Kronecker
product and A is an n × n additive genetic relationship matrix calculated using A.
mat function in “sommer”. Similarly, the residual effect followed a multivariate

normal distribution of mean 0 and variance
σ2e1 ρeσe1σe2

ρeσe1σe2 σ2e2

�
�
�
�

�
�
�
�
� I, where σ2e1 is

the residual variance for DUS trait, σ2e2 is the residual variance for yield, ρe is the
residual correlation between DUS trait and yield and I is an n×n identity matrix.
From the bivariate mixed models, we extracted the genetic correlation as ρg and
phenotypic correlation as ρy where:

ρy ¼
ρgσg1σg2 þ ρeσe1σe2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2g1 þ σ2e1

� �

σ2g2 þ σ2e2

� �
r ð6Þ

GWAS on DUS traits. We performed GWAS on each DUS trait using data from
the spring barley dataset (n= 370), winter barley dataset (n= 335), and combined
dataset (n= 710). We used a similar model as the univariate mixed linear model
for GWAS as provided by the GWAS function in “sommer” package40 in R39.
Briefly, the GWAS model is described as below:

y ¼ Xβþmiki þ g þ e ð7Þ
For any trait y, mi is an n × 1 vector of marker genotype, ki is the marker effect

and i is the marker index from one to the total number of markers. The other terms
are the same as previously described in Eq. 1. We evaluated the GWAS results for
significant markers by using a threshold of false discovery rate (FDR) of 0.05, as
determined from qvalue function in “qvalue” package43 in R39. Since barley is an
inbreeding species, linkage disequilibrium (LD) can complicate GWAS results
especially when there is a highly significant marker. Therefore, for any trait where
the marker significance exceeded −log10p of 10, we performed a follow-up GWAS
with the most significant marker as a fixed effect. The re-evaluation threshold was
chosen as 10 to minimize the number of GWAS runs as we were only interested in
identifying any potential peaks that are masked due to major segregating loci. If
any of the markers on other chromosomes were initially significant due to LD with
the causative locus, then these markers should drop below the significance
threshold in the second GWAS.

Evaluation on the usefulness of small marker set in DUS via simulation. To
evaluate the 45 DUS markers in Owen et al.25, we simulated these markers in the
progeny of known parent pairs. We used 39 out of the 45 markers for simulation as
six of the markers were either absent or low quality in our dataset. Based on the
pedigree information, there were 212 varieties with marker data available for their
parents and these varieties were generated from an intercross between the parents.
For each variety and its parents, we simulated 10,000 F6 progeny using “Alpha-
SimR” package44 in R39. We then compared the simulated progeny to the known
progeny (variety) and its two parents and counted the number of exact matches in
the DUS markers. In addition, we bootstrapped the comparisons 1000 times to get
a better estimate of the mean count of exact matches. For comparison within the
simulated progeny, we tabulated the number of occurrences of each progeny with a
unique DUS marker haplotype.

Comparing Manhattan distances from DUS traits against different number of
markers. To evaluate the number of markers needed for DUS, we randomly
sampled one to the maximum number of markers with an increment of log10 of 0.1.
We then calculated the Manhattan distances from DUS traits and markers using
dist function in R39. For each set of markers, we computed the correlation between
the Manhattan distances from DUS traits and marker data. In addition, we also
separated the DUS traits into a high heritability group (h2 > 0.5) and low herit-
ability group (h2 < 0.5), and computed the correlations similarly.

Demonstrating the use of genomic markers in DUS via simulation. To test how
genomic markers can be used in DUS, we chose two known spring barley parent
pairs with low and high genomic distances. Acumen’s parents, Propino and
Quench with a distance of 0.20 represents the low distance option, while Berwick’s
parents, Riviera and Cooper with a distance of 0.59 represent the high distance
option. From each of these parent pairs, we simulated 1000 F6 and BC1S4 progeny
using the “AlphaSimR” package44 in R39. We then computed the Manhattan dis-
tances from each simulated progeny group using dist function in R39.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The compiled DUS trait data from NIAB and SASA and BLUEs for dry matter yield are
available in Supplementary Data 3, 4, and 5, respectively. The IMPROMALT marker data
is available at http://www.barleyhub.org/projects/impromalt/ subject to permission from
the James Hutton Institute. All source file website links have been archived at https://web.
archive.org/.

Code availability
The custom R scripts for all analyses are available at https://github.com/cjyang-sruc/
DUS. R version 4.0.2 was used and the associated R packages include reshape2_1.4.4,
ggplot2_3.3.2, ggrepel_0.8.2, lme4_1.1-23, emmeans_1.5.2-1, sommer_4.1.1,
AlphaSimR_0.12.2 and qvalue_2.20.0.
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