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Background: Auditory brainstem response (ABR) testing is an invasive

electrophysiological auditory function test. Its waveforms and threshold can reflect

auditory functional changes in the auditory centers in the brainstem and are widely

used in the clinic to diagnose dysfunction in hearing. However, identifying its waveforms

and threshold is mainly dependent on manual recognition by experimental persons,

which could be primarily influenced by individual experiences. This is also a heavy job in

clinical practice.

Methods: In this work, human ABR was recorded. First, binarization is created to

mark 1,024 sampling points accordingly. The selected characteristic area of ABR data is

0–8ms. The marking area is enlarged to expand feature information and reduce marking

error. Second, a bidirectional long short-term memory (BiLSTM) network structure is

established to improve relevance of sampling points, and an ABR sampling point classifier

is obtained by training. Finally, mark points are obtained through thresholding.

Results: The specific structure, related parameters, recognition effect, and noise

resistance of the network were explored in 614 sets of ABR clinical data. The results

show that the average detection time for each data was 0.05 s, and recognition accuracy

reached 92.91%.

Discussion: The study proposed an automatic recognition of ABR waveforms by

using the BiLSTM-based machine learning technique. The results demonstrated that the

proposed methods could reduce recording time and help doctors in making diagnosis,

suggesting that the proposed method has the potential to be used in the clinic in

the future.

Keywords: auditory brainstem response, characteristic waveform recognition, neural network model,

bi-directional long short-term memory, wavelet transform
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INTRODUCTION

Auditory brainstem response (ABR) is a global neural activity in
the auditory brainstem centers evoked by acoustic stimulations.
It can observe the functional status of the auditory nerve and
lower auditory center and reflect the conduction ability of the
brainstem auditory pathway (1, 2). Given that patient’s hearing
impairment can be diagnosed without his active cooperation,
ABR has become one of the routine methods for adult hearing
recording (3–5). The ABR waveform usually has a range of
interwave latency, and its potential in microvolts is recorded.
Normal ABR usually has five peaks visible, i.e., waves I, II, III, IV,
and V. Wave V usually appears as the largest peak in the ABR. In
clinical diagnosis, the minimum intensity of sound stimulation
to be capable of evoking a recognized ABR is defined as ABR
threshold, which is usually dependent on wave V or wave III
(6, 7). Figure 1 shows the annotated ABR waveforms, which
are mainly identified as waves I, III, and V clinically. Other
characteristic waves are usually not displayed clearly because of
small amplitude, two-wave fusion, and noise interference. Thus,
they are rarely used as a basis for diagnosis.

In clinical diagnosis, the minimum stimulation intensity

of wave V is usually used as ABR threshold. Sometimes,

when wave III is greater than wave V, the ABR threshold is

judged by stimulation intensity of wave III (8). In determining

lesions, the location can be judged according to the interwave
latency of waves I, III, and V and the interwave latency
between waves and binaural waves (9). Furthermore, the
types of deafness of a patient can be judged by observing

FIGURE 1 | The annotated ABR waveform (legend data is selected from the datasets applied in this work).

the change characteristics of ABR waveform latency and the
special shape of the ABR waveform in the same patient
under different stimulation levels. Thus, the ABR threshold
and interwave latency of waves I, III, and V, which are of
great significance in clinical applications, can be obtained by
identifying the position of the characteristic wave of ABR.
Usually, the potential obtained from each stimulation is weak.
In a clinical testing, multiple stimulations must be performed
to superimpose, average, and obtain relatively stable waveform
results. This process is susceptible to interference by electrical
noise arising from stray myogenic potentials or movement
artifact. In addition, performing multiple tests on patients
and comparing results to avoid unobvious peaks, overlapping
peaks, and false peaks, which not only consume a lot of time
but are also prone to subjective judgment errors, are usually
necessary. Thus, identifying the waveform characteristics of
ABR and avoiding interference caused by unclear differentiation,
fuzzy characteristics, and abnormal waveforms are important
issues that need to be solved urgently and correctly in clinical
ABR recording.

The application of computer technology in assisting medical
diagnosis can effectively reduce errors caused by repetitive work
and complex waveform characteristics. This research direction
has been important for ABR consultation for a long time (10).
For example, Wilson (11) discussed the relationship between
ABR and discrete wavelet transform reconstructed waveforms,
indicating that the discrete wavelet transform waveform of ABR
can be used as an effective time–frequency representation of
normal ABR but with certain limitations. Especially in some
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FIGURE 2 | The ABR hearing diagnosis clinical collection process. (a) Skin degreasing to enhance conductivity; (b) the position of the forehead and earlobe

electrodes; (c) the positional relationship diagram of the preamplifier, electrodes, and plug-in earphones; and (d) the details of the preamplifier. The collected waveform

is stored in a server (e) and can be observed with the monitor.

cases, the reconstructed ABR discrete wavelet transform wave is
missing because of the invariance of discrete wavelet transform
shift. Bradly andWilson (12) further studied the method of using
derivative wavelet estimation to automatically analyze ABR,
which improved the accuracy of the main wave identification
to a high level. However, they also mentioned the need for
further research on the performance of waveform recognition
of abnormal subjects, and manual judgment of abnormal
waveforms is still required under clinical conditions. Zhang
et al. (13) proposed an ABR classification method that combined
wavelet transform and Bayesian network to reduce the number
of stimulus repetitions and avoid nerve fatigue of the examinee.
Important features are extracted through image thresholding
and wavelet transform. Subsequently, features were applied
as variables to classify using Bayesian networks. Experimental
results show that the ABR data with only 128 repetitive
stimulations can achieve an accuracy of 84.17%. Compared
with the clinical test that usually requires 2,000 repetitions, the
detection efficiency of ABR is improved greatly. However, wave I
and wave V are always prolonged by about 0.1ms and cause wave
range changes. Therefore, III–V/I–III would be inaccurate as
an indicator.

Thus, automatic recognition of ABR waveforms through
computer-assisted methods can assist clinicians and audiologists
in ABR interpretation effectively. It also reduces the errors
caused by subjective factors, the interference of complex
waveforms, and the burden of a large number of repetitive
tasks for the medical staff. This study proposes a method
of using the long short-term memory (LSTM) network to
identify waves I, III, and V in the ABR waveform and
proposes a new idea for the recognition of ABR characteristic
waveforms by neural networks. The structure of the study is
organized as follows: The experimental data and the detailed
description of the proposed method are presented in the
Materials and Methods section. The Results section presents the
experimental design and the corresponding results. Finally, the
Discussion section provides an elaboration of the findings of
this work.

MATERIALS AND METHODS

Data Source
The data are provided by the Department of Otolaryngology
Head and Neck Surgery, Chinese PLA General Hospital. The
SmartEP evoked potential test system developed by the American
Smart Listening Company is used for measurement and
acquisition. Figure 2 shows the clinical collection process, where
Figure 2a represents skin degreasing to enhance conductivity;
Figure 2b represents the position of the forehead and earlobe
electrodes; Figure 2c represents the positional relationship
diagram of the preamplifier, electrodes, and plug-in earphones;
and Figure 2d shows the details of the preamplifier. The collected
waveform is stored in a server Figure 2e and can be observed
with the monitor. Six hundred and fourteen subjects’ clinical
click stimuli ABR data were collected at 96 dB nHL stimulation
intensity after 1,024 repeated stimulations, which contain 181
normal and 433 abnormal hearing. The clinical dataset comprises
348 men and 266 women aged 18 to 90 years old. For data
structure, the data contain 1,024 sampling points that range from
−12.78 to 12.80ms with an average interval of 0.025ms between
every two sampling points. All data were marked by three clinical
audiologists with characteristic waves: wave I, wave III, and wave
V, and cross-validated. Finally, the data were randomly divided
into training and test sets. A total of 491 training sets were used
to train the network model, and 123 test sets were used for the
final recognition accuracy test.

Data Processing
In this work, a new data processing method is proposed. To
quantify waveform and label points, two 1,024× 1matricesA and
Bwere generated as the classification train and label, respectively.
A represents the potential of the input ABR data. The position
of the serial number corresponds to the position of the ABR
data sampling point. B represents nonfeature (0) and feature
points (1), respectively. Thus, according to the position of the
label value of the label data, the data that corresponded to the
position of the label matrix was changed to 1 to meet the binary
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FIGURE 3 | Abnormal ABR waveform and data quantization method.

classification requirements of all sampling points. However, noise
created by myogenic potential is observed in some experimental
data (Figure 3). In this ABR clinical test data, the ABR waveform
has an unusual increase in the sampling point at the end because
of the fluctuation of characteristic waves VI andVII and the result
of the external interference. To prevent the interference caused
by abnormal data, the data up to 8ms were selected uniformly to
identify the characteristic waves.

On the other hand, the starting point of the actual
stimulation is 0ms. The final potential value input data and the
corresponding training label both retained only 321 sampling
points of 0–8ms to avoid interference with neural network
training and reduce the amount of calculation in the neural
network training process. Thus, A and bf are updated as follows:

{

A (321) = {y1, y2, ..., y321}T
B (321) = {t1, t2, ..., t321}T

(1)

In actual processing, the loss function value can easily reach a
low level, and sufficient information cannot be learned because
the ratio of the labeled value to the unlabeled value in the 321
sample points is only 3:318. The manually labeled information
may also bring certain errors. Thus, this study adopted the
method of augmenting the position of the identification point in
the training label. The four points (0.1ms) before and after the
original marking point were marked as the characteristic area,
which expands the marking range of the characteristic waveform.

Network Structure
LSTM is a recurrent neural network and mainly improved on
the basis of the time step unit by adding the output of memory

cells to carry information that needs to be transmitted for a long
time. Three gate structures are also added. These gate structures
are used to select the retention of the memory cell Ct−1 value
passed from the previous time step, add new information into
the memory cell V , and predict and output the information
transmitted by thememory cell and continue to pass it to the next
time step.

Figure 4 is a schematic diagram of the LSTM structure. First,
to control the proportion of the input information retained by the
memory cells at the previous time step, the output is calculated
as follows:

ft = σ
(

Wf ht−1 + Uf xt + bf
)

(2)

ht−1 is the hidden state value passed at the previous time step;
and Wf , . . . , and bf are the corresponding weights and biases.
The activation function usually uses the sigmoid function to map
the activation value between [0, 1]. To control the proportion of
information updated into thememory cell, the sigmoid activation
function was first applied to obtain the output ii. Then, the tanh
activation function is applied to obtain, and the product of the
two is used as the information to update the memory cell. it and
at are calculated as follows:

it = σ
(

Wiht−1 + Uixt + bi
)

(3)

at = tanh
(

Waht−1 + Uaxt + ba
)

(4)

where Wi, Ui, bi, Wa, Ua, and ba are the weights and biases.
Finally, the memory cell Ct is calculated to the next time step by
using Equation (5):

Ct = Ct−1 ⊙ ft + it ⊙ at (5)
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FIGURE 4 | Schematic diagram of the LSTM network structure.

where
⊙

is the Hadamard product, which indicates that the
corresponding positions of the matrix are multiplied. The right
side refers to the output gate, and the output of the output gate is
calculated by using Equation (6):

ot = σ
(

Woht−1 + Uoxt + bo
)

(6)

where Wo, Uo, and bo are the weights and offsets. Finally,
the output value ht at the time step is obtained through
using Equation (7):

ht = ot ⊙ tanh(Ct) (7)

The predicted output weight and bias are applied to activate
the output value to obtain the predicted value, as shown
in Equation (8):

ŷt = σ
(

Vht + c
)

(8)

Finally, the loss values δt
h
and δtC of the hidden state are calculated

as follows:

δth = VT
(

ŷt − yt
)

+
(

∂ht+1

∂ht

)T

δt+1
h

(9)

δtC = δt+1
C ⊙ ft+1 + δth ⊙ ot ⊙

(

1− tanh2 (Ct)
)

(10)

In this work, BiLSTM is established as the network structure
to enable the input sequence to have a bidirectional connection
with one another (14). Figure 5 shows that another LSTM layer
that propagates backward in time is added on the basis of the
unidirectional LSTM forward propagation in time sequence. The
final output is determined by the output of the two LSTM layers:
forward and backward. Compared with the one-way LSTM, the
final output avoids the prediction at each time to only be affected
by the input of the previous time. Moreover, it can reflect the
information characteristics before and after each prediction point
better, thereby making more accurate predictions.

Wavelet Transform
In the traditional mode, wavelet transform is a commonly used
method in ABR extraction and recognition research (15). In
ABR extraction, wavelet transform can achieve the effect of
eliminating noise by selecting the detailed components of specific

frequencies for reconstruction and to make the ABR waveform
smoother. Obtaining relatively clear waveforms while reducing
repetitive stimulation is also possible. Generally, continuous
wavelet transform is defined as (16):

WT (a, τ) = 1√
a

∫ ∞

−∞
f (t) ∗ ψ

(

t − τ
a

)

dt (11)

where f (t) is the signal in the time domain, and the part of
1√
a
ψ

(

t−τ
a

)

is a wavelet function, which can also be denoted

as ψa,τ (t). Two variables, namely, scale a and translation τ ,
are available. Scale a is applied to control the expansion and
contraction of the wavelet function, and the translation amount
τ controls the translation of the wavelet function. Scale a is
inversely proportional to its equivalent frequency, which is
defined as ϕ (t). The complete wavelet expansion is as follows:

f (t) =
∑∞

k=−∞
ckϕ

(

t − k
)

+
∑∞

k=−∞

∑∞
j=0

dj,kψ
(

2jt − k
)

(12)

where c and d are the coefficients of the corresponding function,
j is the frequency domain parameter that determines the
frequency characteristics of the wavelet, and k is the time
domain parameter that controls the position of the wavelet
base in the time domain. Although the scale and wavelet
functions are complex and have different characteristics, the
process of wavelet decomposition can be regarded as using a
low-pass filter and a high-pass filter to decompose the signal
by frequency. The low-frequency components decomposed in
each layer are called approximate components, and the high-
frequency components are called detailed components. Thus,
approximate components and detailed components were applied
to the reconstructed waveform.

RESULTS

Experimental Procedure
In this study, three sets of experiments, namely, (1) comparison
between various network structures, (2) comparison experiment
of wavelet transform, and (3) comparison experiment of
different hidden layer nodes, were designed. Figure 6 shows
the experimental flowchart. The sequence input layer was used
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FIGURE 5 | Schematic diagram of the BiLSTM structure.

FIGURE 6 | Experimental flowchart.

as the input of the potential value of 321 sampling points,
and the data were passed to several LSTM or BiLSTM layers.
Subsequently, the fully connected layer was connected. The
classification probability of each time point was calculated
using the softmax function. Finally, the classification layer was
connected. The cross-entropy function (17) was used to calculate
the loss function of each time point and the overall loss function
of the sequence. Then, the time sequence was classified.

In the comparison experiment of multiple network structures,
seven network structures, namely, (1) single-layer LSTM, (2)
double-layer LSTM, (3) single-layer BiLSTM, (4) double-layer
BiLSTM, (5) three-layer BiLSTM, (6) four-layer BiLSTM, and

(7) five-layer BiLSTM network layers, were selected. In the
comparative experiment of different hidden layer nodes, a
three-layer bidirectional LSTM network was used for training,
and different numbers of hidden neurons were applied. The
experiment applied four groups of different numbers of hidden
neurons, namely, 64, 128, 256, and 512.

In the comparative experiment of the wavelet transform,
all data added noise as interference. Seven different network
structures were used for testing. For instance, the training data
preprocessed by wavelet transform were used as the experimental
group, and the training data trained using the original data were
used as the control group. In this experiment, ABR data were
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decomposed in six layers, and the approximate and detailed
components of the sixth layer and the fourth, fifth, and sixth
layers were retained to reconstruct the waveform, respectively.
The parameter configuration is consistent. The network was
trained with five K-fold cross-validation (K = 9), and the test was
performed to obtain the average value.

The output results are in the form of “region.” Figure 7

expresses the output visualization, where the curve is the original
ABR used for identification, and the red labels are the network
prediction classification results reduced by four times. The ABR
of the first 8ms is clearly divided into two different labels.
The part with 1 is the identified peak, and the other part is

FIGURE 7 | Feature labeling on the ABR, where (a) shows output by modes. (b) is result by postprocessing.

FIGURE 8 | Recognition results of four data, where (a–d) are manual labels. Also, (e–h) represent outputs of the proposed three-layer BiLSTM model.
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the identified characteristic nonpeak. Postprocessing is defined
as follows: A total of 20 sampling points (0.5ms) are set as
the threshold. The area within 20 sampling points between the
beginning and the end is the same characteristic wave area.
Finally, the time mean value of the first and last points is
calculated as the time value of the recognized characteristic wave.
The similar sampling points are calculated to obtain the unique
characteristic wave value. Finally, the recognition accuracy rate is
calculated according to the identified ABR feature wave position.

Four recognition results of ABR data were randomly selected
and presented in Figure 8. After postprocessing, output vectors
from models were converted to feature points. The identified
feature points are almost identical to those selected using
manual labeling techniques, illustrating the potential utility
of this method in clinical settings. Even in some complex
ABR data, manual annotation usually records multiple sets
of data to determine the correct peak (Figure 8d). However,
the model can directly and accurately identify the peak of
the waveform from a single waveform (Figure 8h). Therefore,
they also verify the possibility of the proposed method. To
better verify the accuracy of recognition, this work has carried
out a quantitative discussion from different network structures,
wavelet transform processing, and number of hidden neurons.
However, the model may also lead to some misjudgments. For

example, Figure 9a shows an incorrect recognition result. Since
wave I and wave III of the waveform are not obvious, enough
continuous identification points cannot be obtained. Therefore,
only relatively obvious wave V is obtained after postprocessing
(Figure 9c). Also, Figure 9b presents another wrong result. In
this case, the obtained error of wave I reached 0.67ms. This is
because the model has judged the wrong wave I (Figure 9d).
Thus, in future work, improving the model’s ability to analyze
complex waveforms is still an important direction.

Comparison Between Multiple Network
Structures
Generally, an error scale of 0.2ms is applied as a scale range of
clinically marked points. Three criterion values for the maximum
allowable error value (ME) were tested: −0.1, 0.15, and 0.2ms.
The prediction result was deemed acceptable if the prediction
point and the manually identified point were within the ME
criteria range. According to the number of correct prediction
points rp and the total marked points pn, the accuracy (ACC) rate
is calculated using rp/pn, as shown in Equation (13):

ACC = rp/pn (13)

FIGURE 9 | Two error recognition results, where (a,b) are manual labels. Also, (c,d) represent outputs of the proposed three-layer BiLSTM model.

TABLE 1 | Loss value and ACC of each network structure.

Network

structure

Training

loss

Validation

loss

Accuracy

(0.1ms) (%)

Accuracy

(0.15ms) (%)

Accuracy

(0.2ms) (%)

LSTM 0.1463 0.1635 37.08 44.92 50.37

LSTMx2 0.1123 0.1625 58.61 65.75 70.59

BiLSTM 0.1264 0.1562 61.96 72.03 77.60

BiLSTMx2 0.0849 0.1285 78.74 84.88 86.84

BiLSTMx3 0.0704 0.1275 85.46 91.06 92.91

BiLSTMx4 0.0651 0.1342 82.48 88.32 90.20

BiLSTMx5 0.0617 0.1467 83.31 88.80 90.90
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In this study, three error scales (ME) of 0.1, 0.15, and 0.2ms
were calculated, respectively, to further explore the recognition
accuracy and other related laws. Loss value of training results
with different network structures and the ACC under different
error scales are revealed in Table 1.

Figure 10A indicates data distribution to observe correlation
with different network structures visually. Notably, the ACC of
the BiLSTM network is higher than that of the LSTM network.
In addition, the ACC of the single-layer BiLSTM network and
the double-layer LSTM network is similar. The reason is due to
the fact that the two-way LSTM network has a similar structure
to the double-layer LSTM network. However, information in
the BiLSTM network has the characteristics of propagating in
forward and reverse directions, whereas the two-layer LSTM
network only propagates in the forward sequence over time.
This phenomenon leads to differences in the ACC between the
two models. The LSTM and BiLSTM networks increase ACC
with the number of superimposed layers. After the BiLSTM

network reaches three layers, the ACC will no longer increase
significantly. Network structure will gradually reach an over-
fitting state and increase computational pressure because of
excessive parameters. Thus, the three-layer BiLSTM network is a
better choice.

Wavelet Transform Experiment
When testing the ACC of the wavelet transform, ABR data
was decomposed in six layers. Also, approximate components
of the sixth layer and detailed components of the fourth, fifth,
and sixth layers were retained to reconstruct the waveform.
Figure 11 expresses an instance of filtered result by wavelet
transform. The curve processed by wavelet transform becomes
smoother. Then, unprocessed ABR data served as a control
experiment. In this work, detection and comparison were
carried out based on two error scales of 0.1 and 0.2ms
(Table 2). The results of recognition ACC are shown in
Figure 12.

FIGURE 10 | (A) ACC metrics with different network structures. In the statistical results, the three-layer BiLSTM network reached 92.91% and is the highest index

among all the networks. The single-layer LSTM, which has the lowest index, is about half of it. (B) ACC metrics with different hidden nodes, where the 512 nodes

ranked first, and the 256 and 128 quantities stood at the second and third positions. Also, the 64 nodes ranked last.

FIGURE 11 | An instance result from the wavelet transform, where (a) is the original data. An obvious interference occurred in this waveform. (b) is obtained after

smoothing.
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TABLE 2 | The ACC of each network structure with original data and wavelet transform data.

Network

structure

Original data

(0.1ms) (%)

Wavelet transform data

(0.1ms) (%)

Original data

(0.2ms) (%)

Wavelet transform data

(0.2ms) (%)

LSTM 37.08 37.95 50.37 52.94

LSTMx2 58.61 55.47 70.59 72.46

BiLSTM 61.96 59.17 77.60 76.25

BiLSTMx2 78.74 73.03 86.84 84.71

BiLSTMx3 85.46 79.00 92.91 90.50

BiLSTMx4 82.48 77.73 90.20 89.67

BiLSTMx5 83.31 78.09 90.90 89.17

FIGURE 12 | Influence of wavelet transform preprocessing on accuracy. wt represents the results obtained by wavelet transform preprocessing.

Recognition ACC values of preprocessing in the LSTM
network using wavelet transform are slightly higher than those
of the control group. However, they are not as good as those in
the control group in the BiLSTM network. Especially, the highest
ACC difference reaches 6.46% when calculated with a 0.1-ms
error scale. Also, the difference reduces to <3% when calculated
with a 0.2-ms error scale. Results indicate that wavelet transform

preprocessing does not obtain a higher ACC by smoothing
curves. Due to wavelet decomposition and reconstruction, a
slight deviation was created in the position of wave crest. Some
information was destroyed in the ABR waveform; therefore, the
results of training and recognition were affected. This means
that the BiLSTM network has noise immunity and can handle
low-quality ABR data.
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TABLE 3 | The ACC with different hidden layer nodes.

Hidden layer nodes Accuracy

(0.1ms) (%)

Accuracy

(0.15ms) (%)

Accuracy

(0.2ms) (%)

64 70.50 80.61 83.48

128 73.90 82.44 85.36

256 80.44 87.49 91.07

512 85.46 91.06 92.91

Comparative Experiments of Different
Hidden Layer Nodes
Based on the above results, the three-layer BiLSTM network is
a better choice. The ACC results with different hidden node
numbers were discussed in this work (Table 3). Figure 10B

expresses the ACC results with different hidden layer nodes of
64, 128, 256, and 512. Obviously, recognition ACC increases with
the number of hidden nodes, because enough parameters make
network fitting accurately. Also, the ACC of the 0.2-ms error scale
increases slowly during the change process of 256–512 nodes and
is basically saturated. Considering accuracy standard in practical
applications and time cost of training that may be brought by
the increasing number of hidden nodes, a network of 512 hidden
nodes is a better choice.

Furthermore, this work mainly discusses the characteristic
wave recognition process of a click ABR with a 96-dB nHL
stimulus. Also, only parameters such as latency and wave interval
can be obtained. In clinical applications, many indicators can
still be used as a diagnostic basis, such as the relationship
between potential values of different stimulus sizes, response and
disappearance of wave V, and change of interwave latency of
each characteristic wave. This also provides a new idea for the
subsequent computer-assisted ABR diagnosis and treatment.

DISCUSSION

This work proposes an automatic recognition method for ABR
characteristic waveforms using the BiLSTM network. The main
purpose is to identify positions of characteristic waves I, III, and
V, which assist the medical staff in obtaining relevant clinical test
parameters, such as interwave latency and wave interval. A data
quantification process is designed to analyze the characteristic
waveform of ABR, including selection area of potential signal and
expansion of label position. An optimal network model structure
is obtained through multiple sets of comparative experiments. In
614 sets of clinically collected ABR waveform experiments, the
network’s overall recognition of characteristic waves showed an
ACC of 92.91%.

Experimental results express that the method proposes a new
idea for the identification of ABR characteristic waveforms, and
helps professionals to obtain interwave latency parameters in
ABR waveforms. Therefore, a computer automatic identification
method can obtain deeper information, avoid subjective
judgment error by the medical staff in the manual identification
process effectively, reduce the number of repeated stimulations

during a test, and also avoid vision fatigue of the tested person.
Because of noise immunity of the proposed networkmodel, it can
effectively reduce repetitive detection of patients. In the process
of large-scale identification, the average time of each data by
using the method only takes approximately 0.05 s, which is much
faster than the speed of manual identification. Thus, it has great
advantages in repeatable work.

Some efforts have been proposed to analyze ABR waveforms
using deep learning methods. For example, Fallata and Dajani
(18) proposed a new detection method of ABR based on ANN
to reduce detection time. Before ANN calculation, discrete
wavelet transform was processed to extract features of ABR.
The reduction in recording time was expected to promote
the application of this measurement technique in clinical
practice. McKearney andMacKinnon (19) divided ABR data into
clear response, uncertain, or no response. In their work, they
constructed a deep convolutional neural network and fine-tuned
it to realize ABR classification. Results showed that the network
may have clinical utility in assisting clinicians in waveform
classification for the purpose of hearing threshold estimation.
Different from the existing works, this research proposed a new
data processing method and established an end-to-end deep
learningmodel. Themodel can also be directly calculated without
complicated mathematical transformations, so it provides a new
idea for deep learning in signal processing.
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