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The pathogenesis of cerebral malaria (CM) includes compromised microvascular perfu-
sion, increased inflammation, cytoadhesion, and endothelial activation.These events cause
blood–brain barrier disruption and neuropathology and associations with the vascular
endothelial growth factor (VEGF) signaling pathway have been shown. We studied this
pathway in mice infected with Plasmodium berghei ANKA causing murine CM with or
without the use of erythropoietin (EPO) as adjunct therapy. ELISA and western blotting was
used for quantification of VEGF and relevant proteins in brain and plasma. CM increased
levels ofVEGF in brain and plasma and decreased plasma levels of solubleVEGF receptor 2.
EPO treatment normalized VEGF receptor 2 levels and reduced brain VEGF levels. Hypoxia-
inducible factor (HIF)-1α was significantly upregulated whereas cerebral HIF-2α and EPO
levels remained unchanged. Furthermore, we noticed increased caspase-3 and calpain
activity in terminally ill mice, as measured by protease-specific cleavage of α-spectrin and
p35. In conclusion, we detected increased cerebral and systemic VEGF as well as HIF-1α,
which in the brain were reduced to normal in EPO-treated mice. Also caspase and calpain
activity was reduced markedly in EPO-treated mice.
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INTRODUCTION
Cerebral malaria (CM) is one of the most severe complications
of malaria causing substantial morbidity and mortality mainly
in Sub-Saharan Africa (1). At present, the pathogenesis remains
incompletely understood but includes cytoadhering, infected ery-
throcytes, leukocytes, and platelets as well as dysregulated inflam-
mation and coagulation cascades (2). Due to the apparent cerebral
hypoxia in human and murine CM (3–6), adjunctive strategies,
which aim to overcome this, could potentially improve outcome.

The physiological response to hypoxia is stabilization of
hypoxia-inducible factor (HIF)-1α and HIF-2α, which will dimer-
ize with the β subunit and via binding to hypoxia responsive
elements adapt the cell to low oxygen levels (7). HIF-1α and HIF-
2α upregulate the transcription of a multitude of cytokines and
growth factors (8, 9), but the two transcription factors induce
expression of different proteins (10). One of the HIF-regulated
proteins is the pleiotropic cytokine erythropoietin (EPO) mainly
regulated by HIF-2α (11). EPO has been associated with protec-
tion of cells and tissue beyond the hematopoietic lineage (12, 13).
Furthermore, it improves survival in murine CM (5, 14–16) and
is a safe adjunctive treatment in Malian children (17). Also, the
cerebral hypoxia detectable in terminally ill CM mice was reversed
by exogenous EPO treatment (5).

Besides EPO, the expression of vascular endothelial growth
factor-A (VEGF) is HIF-dependently upregulated in response to

hypoxia (18), mainly by HIF-1α (19). VEGF is a survival factor for
the endothelium but also stimulates opening of the blood–brain
barrier (BBB) to facilitate angiogenesis and tissue oxygenation
(20). This event is essential in developmental angiogenesis when
organs are vascularized. Thus, hypoxia may stimulate unwanted
BBB disruption during CM and pathological angiogenesis (21).
Increased levels of VEGF and its cleaved receptors (VEGFR1/Flt-
1 and VEGFR2/Flk-1) have been found in plasma and brains
from CM patients (22–27) suggesting an association with cere-
bral pathology. On the other hand, high levels of EPO have been
associated with a lower risk of neurological sequelae in children
suggesting a neuroprotective effect (23).

Plasmodium berghei ANKA was recently shown to induce high
VEGF levels in plasma promoting acute lung injury in mice (28).
Despite noticeable cerebral hypoxia in murine CM using P. berghei
ANKA (5), it is not known how hypoxia affects angiogenic sig-
naling in murine CM. Here we assess the hypoxia-associated
transcription factors and proteins in the brain in terminally ill
CM mice as well as the plasma levels of angiogenesis-associated
proteins.

MATERIALS AND METHODS
MICE, PARASITES, AND INFECTION
Forty, 7 weeks old, female C57BL/6 mice (Taconic, Ejby, Denmark)
were used for the experiment. The mice were randomly assigned
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to one of four experimental groups: uninfected and saline-treated
(UninfSal), uninfected and EPO-treated (5000 IU/kg, day 4–7 post
infection (p.i.)) (UninfEPO), infected with 104 P. berghei ANKA
and saline-treated day 4–7 p.i. (InfSal) or infected with 104 P.
berghei ANKA and EPO-treated day 4–7 p.i. (InfEPO). Injections
of parasites and treatments were performed intraperitoneally (i.p.)
and the volume was in all cases 200 µl. Cryo-preserved parasites
were passed once in C57BL/6 mice counting viable parasites only
for the experimental infection, as previously described (14). Unin-
fected mice received isotonic saline, which was used as diluent
for the parasite inocula. EPO was also diluted in saline and thus
vehicle-treated mice received saline only. Parasitemia was deter-
mined using flow cytometry by staining circulating cells with
acridine orange as previously described (29). Body temperature
was measured with a rectal probe (Ellab, Denmark) during the
infection. A drop below 32°C was used as a proxy for death as pre-
viously described (30, 31). Animal experiments were approved by
the Danish Animal Inspectorate (license number 2006/561-1128).

TERMINATING THE ANIMAL EXPERIMENT AND TISSUE PROCESSING
At day 8, InfSal mice showed clinical signs of CM including
decreased body temperature, impaired movement, convulsions,
and loss of coordination and all mice were killed. Behavioral
changes were assessed qualitatively by placing mice on a 1 cm
thin bar and by placing the mice on the cage lid and gradually
increasing steepness. In deep anesthesia (mixture of 63 µg fen-
tanyl, 2 mg fluanisone, and 1 mg midazolam pr. mouse), blood was
collected in heparin from the orbital sinus and plasma was sepa-
rated by centrifugation and stored at −20°C until use. The mice
were transcardially perfused with heparinized (15000 IU/l, Leo
Pharma, Denmark) isotonic saline and brain tissue was removed,
snap-frozen in liquid nitrogen, and stored at−20°C until used.

WESTERN BLOTS
Frozen brains were thawed on ice and homogenized in ice cold
lysis buffer [50 mM Tris–HCl, 5 mM EDTA, 1% Triton X-100,
1 mM dithiothreitol (DTT)] with added protease inhibitors (Com-
plete Mini, Roche, Denmark) using a Heidolph disperser (Silent-
Crusher M, Heidolph Instruments, Germany). Protein content
of the lysates was determined using the Lowry assay (DC pro-
tein assay, Bio-Rad, CA, USA). The proteins were reduced in

Laemmli buffer with 200 µM DTT (Sigma-Aldrich, Copenhagen,
Denmark) and boiled for 5 min before separation on 10% poly-
acrylamide gels (BisTris, Life Technologies, Carlsbad, CA, USA) at
150 V (constant V, EPS2A200, Amersham Biosciences, Ge Health-
care, Brondby, Denmark) for 60–70 min using MES or MOPS
buffer (Life Technologies) depending on protein size (Table 1).
Thirty micrograms protein was loaded into each well. Proteins
were transferred to polyvinylidene membranes (Immun-Blot, Bio-
Rad) at 30 V (constant V, Amersham Biosciences) for 60 min.
Membranes were blocked with 5% skimmed milk powder (Fluka,
Sigma-Aldrich) or 5% bovine serum albumin (Sigma-Aldrich)
in tris-buffered saline (TBS, Sigma-Aldrich) depending on the
protein being detected (Table 1) for 60 min at room tempera-
ture. Proteins were detected with primary antibodies diluted in
blocking solution (Table 1) over night at 4°C. After washing in
TBS supplemented with 0.05% Tween-20 (Sigma-Aldrich), horse
radish peroxidase (HRP)-conjugated secondary antibodies (Dako,
Glostrup, Denmark) diluted in blocking solution were applied for
60 min at room temperature. Antibody binding was visualized
with chemiluminescent substrates: Super Signal or West Femto
(Pierce, Thermo-Fischer Scientific, IL, USA) on a gel-doc imager
(Bio-Rad XRS, Bio-Rad) depending on abundance. Expression
levels were normalized to β-tubulin levels (Abcam, UK).

ELISA
Plasma was analyzed for VEGF, soluble Flt-1 (sFlt-1), and soluble
Flk-1 (sFlk-1) according to manufacturer’s instructions (Quan-
tikine, R&D Systems, UK). Angiopoietin-1 levels were measured
in 25–50 µl plasma according to manufacturer’s instructions with
the modification that blocking was achieved with 5% BSA (Quan-
tikine DuoSet, R&D Systems). Brain homogenates (diluted to 2 mg
protein/ml) were analyzed for VEGF content according to man-
ufacturer’s instructions (Quantikine, R&D Systems). Brain VEGF
levels were adjusted to pg VEGF/mg total protein.

STATISTICAL ANALYSES
When data followed a normal distribution and had similar vari-
ances they were analyzed by one-way ANOVA followed by post hoc
t -tests with Holm correction. When data did not display normal
distribution and equal variance, Kruskal–Wallis test with pair-
wise Wilcox tests with Holm correction was applied. These data

Table 1 | Overview of antibodies used for western blots.

Antibody Company Catalogue

number

Dilution for

WB (×)

Blocking agent Running buffer Luminescent

substrate

HIF-1α Novus Biologicals NB100-131A1 2000 Skim milk MOPS Femtosignal

HIF-2α Thermo Scientific PA1-16510 500 Skim milk MOPS Femtosignal

Erythropoietin Santa Cruz Sc-7956 250 Skim milk MES ECL Plus

α-Spectrin Millipore MAB1622 1000 Skim milk MOPS Femtosignal

P35/25 Cell Signaling Technology C64B10 1000 BSA MES ECL Plus

β-tubulin Abcam Ab6046 2000 Depending on target Depending on target Depending on target

Antibodies were diluted in 5% skimmed milk powder in TBS (FLUKA) for WB and in 5% BSA in TBS (Sigma-Aldrich). Depending on size of the protein of interest,

samples were separated with either a MES or MOPS based running buffer (Life Technologies). Depending on antigen abundance, the antibody recognition was

assessed with either ECL plus or femtosignal enhancement (Pierce).
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are shown as median with interquartile ranges in box plots. All
statistics was carried out using R for windows version 2.15.2 (32).

RESULTS
CLINICAL PARAMETERS
The infection progressed in a similar manner to what has been
described before (5, 33). At day 8 p.i. the majority of the Inf-
Sal mice were terminally ill with clinical signs of murine CM.
Ninety percentage had impaired movement and coordination.
Thirty percentage had convulsions. InfEPO mice showed only
minor clinical signs of CM (only 20% had ruffled fur). Statisti-
cal analyses revealed a significant change in body temperature on
day 7 p.i. (Figure 1A, p < 0.001) and day 8 p.i. (p < 0.001), but
not earlier (p > 0.10). At day 7 p.i., InfEPO mice had significantly
higher body temperature than both groups of uninfected mice
(p < 0.003) and InfSal mice had significantly higher body temper-
ature than UninfSal mice (p= 0.008). At day 8 p.i., InfSal mice
had significantly lower body temperature than any other group
of mice (p < 0.005). Parasitemia rose gradually to similar levels in
both infected groups until day 5 (Figure 1B, p= 0.8). From day
7 p.i. and onward, InfSal mice had significantly increased para-
sitemia compared with InfEPO (day 7 p.i.: p= 0.002; day 8 p.i.:
p < 0.001).

INCREASED CEREBRAL LEVELS OF VEGF, EPO AND THEIR
TRANSCRIPTION FACTORS IN TERMINAL CM
From western blotting, we detected a significant increase of HIF-
1α in terminal CM (Figure 2A, p= 0.04). Only InfSal mice were
significantly different from UninfSal mice (p= 0.04).

Correspondingly, we detected a change in cerebral VEGF levels
(Figure 2B, p= 0.008). In terminally ill CM mice, cerebral VEGF
content was increased significantly compared to UninfSal mice
(p= 0.02). Other groups were statistically indistinguishable from
UninfSal mice. In contrast to HIF-1α, the main transcriptional reg-
ulator of EPO, cerebral HIF-2α, was expressed at comparable levels
in all four experimental groups (Figure 2C, p= 0.1). Similarly,
cerebral EPO levels were comparable in all groups (Figure 2D,
p= 0.2).

CALPAIN AND CASPASE-3 ACTIVITY IN TERMINAL CM
We used non-erythroid α-spectrin as a marker of protease activity,
since it contains distinct cleavage sites for calpain- and caspase-
3 activity (34). α-Spectrin is cleaved by calpain, resulting in
additional bands at 150 and 145 kDa, and by caspase-3 activ-
ity (apoptosis pathway) resulting in a band at 120 kDa. While
total α-spectrin levels remained unaltered (results not shown),
one band associated with calpain activity was significantly upreg-
ulated in InfSal mice (150 kDa, Figure 3A, p= 0.04) while the
other was not (145 kDa, Figure 3B, p= 0.07) compared with
UninfSal mice. Also caspase-3 activity was significantly increased
(Figure 3C, p= 0.001) in InfSal mice as compared to the other
groups (p < 0.01).

The activation of calpain activity was confirmed by assessing
p35 levels, since calpain activity results in cleavage of p35 into a
smaller protein at 25 kDa (p25) (34). p35 levels were indistinguish-
able between groups (p= 0.2, data not shown), while p25 levels
were significantly different (Figure 3D, p= 0.02). InfSal mice had
significantly higher p25 levels than other groups (p < 0.05) and
p25 levels were not detectable above background in UninfEPO
mice.

INCREASED PLASMA LEVELS OF VEGF AND DECREASED SOLUBLE
FLK-1 LEVELS IN TERMINAL CM
Infection lead to a significant increase in plasma VEGF lev-
els (p= 0.004, Figure 4A). Both InfSal and InfEPO mice
had significantly higher levels compared with uninfected con-
trols (p= 0.04 and p= 0.03, respectively). sFlt-1 was changed
at day 8 p.i. (p= 0.02, Figure 4B). However, only InfEPO-
treated vs. InfSal were statistically distinguishable (p= 0.04).
sFlk-1 levels were significantly decreased in terminal murine
CM (p < 0.001, Figure 4C). EPO treatment led to an increased
level of this receptor in both infected (p= 0.03) and unin-
fected mice (p= 0.02) compared with saline-treated control
groups. Yet, infection still decreased sFlk-1 levels in InfEPO mice
(p < 0.001) compared with UninfEPO mice. The sFlt-1/sFlk-
1 ratio was higher in InfSal than any other group (p < 0.002,
Figure 4D).

FIGURE 1 | Progression of body temperature and parasitemia during the
course of infection. (A) Body temperature remained stable until day 6 p.i.
and increased slightly in infected mice. InfSal mice displayed clinical signs of
CM at day 8 p.i. and had significantly lowered body temperature (p < 0.005).

(B) Parasitemia rose gradually in both groups but did not increase as fast in
InfEPO mice from day 7 p.i and onward (p < 0.05). Data are represented as
mean values and error bars display standard deviation. Significant deviations
from uninfected, saline-treated mice are denoted with an asterisk.
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FIGURE 2 | Cerebral expression of HIF-1α,VEGF, HIF-2α, and EPO.
(A) HIF-1α levels were significantly increased in InfSal mice compared
with UninfSal (p=0.04). The other groups were statistically
indistinguishable. (B) VEGF was analyzed with ELISA, showing a
significant increase in InfSal mice compared with uninfected mice
(p=0.02). InfEPO was increased though not statistically significantly.

(C) HIF-2α expression was similar in all four groups. (D) Also, EPO was
expressed in the same level in all four groups. Bar charts (A) show
mean values and standard deviation. Box plots (B–D) show median
values and interquartile ranges. Whiskers show Tukey hinges; open
circles are outliers. Asterisks denote significant deviations from
uninfected, saline-treated mice.

PLASMA ANGIOPOIETIN-1 LEVELS ARE DECREASED IN TERMINALLY
ILL MICE
High levels of angiopoietin-1 are associated with endothelial
stability (35) and aberrant angiopoietin-1 and angiopoietin-2
levels have been proposed as good biomarkers for severe malaria
(36). Statistical analyses showed different levels of angiopoietin-
1 in the experimental groups (p= 0.001, Figure 5) with marked
reduction of angiopoietin-1 levels in terminally ill InfSal mice
(p= 0.004). InfEPO mice also tended to have lower angiopoietin-1
levels although this was not significantly different from uninfected
mice (p= 0.06).

DISCUSSION
Murine and human CM are thought to be the result of a multifac-
eted pathogenesis. Besides improving survival (14, 15), EPO has
been shown to dampen several aspects of the pathology in murine
CM including hypoxia (5), inflammation (14, 15, 37), and neu-
ropathology (38). P. berghei ANKA-infected C57BL/6 or CBA mice
is the most widely used model for murine CM (2, 39). It has been
claimed that this model is a poor replicate of human CM (40) and
indeed P. berghei ANKA does not export the same variant surface
antigens to the erythrocyte surface as in Plasmodium falciparum
malaria (2) and studies focussed on cerebral sequestration can not
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FIGURE 3 | Calpain and caspase activity in terminal CM. Activity of
caspase-3 and calpain was assessed by looking for specific cleavage
products. (A) Analyzing the 150 kDa fragment of α-spectrin specific for calpain
activity show a significant increase in InfSal mice (p=0.04) compared with
uninfected mice. (B) No significant change was noted when analyzing the
145 kDa fragment, also specific for calpain activity. (C) The 120 kDa band

specific for caspase-3 activity was markedly increased in InfSal mice
(p < 0.01). (D) p35 is cleaved by calpain activity into a smaller fragment, p25.
This fragment was not detectable in UninfEPO mice, but was significantly
increased in InfSal mice (p < 0.05). Box plots show median values and
interquartile ranges. Whiskers show Tukey hinges; open circles are outliers.
Asterisks denote significant deviations from uninfected, saline-treated mice.

be performed using the rodent model. However,most immunolog-
ical aspects as well as cerebral hypoperfusion and neuropathology
have important similarities (2, 5, 39) making the murine model
useful for studying human CM pathogenesis.

Here, we show systemic and cerebral increase in VEGF levels
in terminally ill CM mice and show that EPO treatment reduces
VEGF levels in the brain.VEGF has several opposing roles: it stimu-
lates the growth of endothelial cells and acts neuroprotectively but
also increases the permeability of the BBB (20, 41, 42). Recently,
increased plasma levels of VEGF was shown to be responsible for
acute lung injury in another murine model of malaria (28), but
VEGF signaling has not been addressed in murine CM. Similar to

our previous studies (5), we noticed increased levels of cerebral
HIF-1α in CM mice. This stimulates VEGF expression in the brain
(19), in line with our findings in terminally ill CM mice. HIF-
1α was not increased in InfEPO mice and consequently VEGF
remained normal in this group. Both hypoxia and inflammation
induce VEGF expression, and since both are thought to be part
of CM pathogenesis, it is difficult to determine the main inducer
of cerebral VEGF expression in our model. Since EPO treatment
decreases both cerebral hypoxia (5) and neuroinflammation (14,
15, 37), the study can not discriminate between the two driving
forces for VEGF expression, but conclude that decreased HIF-
1α and VEGF expression is associated with markedly improved

www.frontiersin.org June 2014 | Volume 5 | Article 291 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Inflammation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hempel et al. VEGF and murine, cerebral malaria

FIGURE 4 | Plasma levels of VEGF, soluble Flt-1 and soluble Flk-1.
Plasma was extracted from euthanized mice at day 8 p.i. and analyzed by
ELISA. (A) VEGF levels increased significantly due to infection (p < 0.05).
Both infection groups had significantly increased plasma levels of VEGF
(p=0.04 saline-treated, p=0.03 EPO-treated). (B) Soluble Flt-11 was largely
unaffected by infection and treatment though significant changes were
noted (p=0.02). No groups deviated from UninfSal mice (p > 0.14).
(C) Soluble Flk-1 was significantly affected by both EPO treatment and
infection. Soluble Flk-1 levels were significantly decreased due to CM
(p < 0.001). On the contrary, EPO treatment led to an increased level of this

receptor in both infected (p=0.03) and uninfected mice (p=0.02)
compared with the corresponding saline-treated control groups. Yet,
infection strongly decreased sFlk-1 levels in EPO-treated mice (p < 0.001)
compared with UninfEPO mice. (D) When taking the ratio of sFlt-1 to sFlk-1
only InfSal was significantly different from uninfected mice (p<0.002). Box
plots (A,B,D) show median values and interquartile ranges. Whiskers show
Tukey hinges; open circles are outliers. Strip chart (C) show the mean value
as a cross and whiskers represent standard deviation. Each dot represents
the plasma level in one mouse. Asterisks denote significant deviations from
uninfected, saline-treated mice.

clinical outcome of CM. In this study, EPO treatment also reduced
parasitemia and may thus introduce bias. However, in previous
works (14, 15) the effect of EPO was prominent without changed
parasitemia.

Interestingly, VEGF can increase the levels of the calcium-
dependent proteases, the calpains (43, 44), that break down the
cytoskeleton and lead to vascular reorganization. Increased cal-
pain levels have previously been reported in human and murine
CM (45, 46). We corroborate these findings as we also found this
when blotting for two independent markers of calpain activity:
p25 and a 150 kDa fragment of α-spectrin. Thus, aberrant VEGF
signaling may activate calpains causing endothelial pathology and
neuropathology (38, 45). We found that EPO therapy reduces
cerebral VEGF and markers associated with calpain activity to

levels comparable with uninfected mice. However, at present we
do not know whether directly blocking VEGF signaling would
decrease calpain activity as well. Since plasma VEGF is signifi-
cantly increased in InfEPO mice this does not seem plausible in
this experimental model. Calpain activity can be induced by both
hypoxia and inflammatory conditions (47, 48) and thus blocking
this pathway directly may be more promising as adjunct therapy
against CM.

We also corroborate our previous finding of cerebral apoptosis
(14). Although apoptosis could not be detected at the mRNA level
for caspase-3, histological TUNEL staining detecting DNA frag-
mentation has clearly demonstrated apoptosis in murine CM (14,
15). Here, we detected α-spectrin cleavage in brain homogenates
to quantify the effect of caspase-3 activity and similar to previous
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FIGURE 5 | Plasma angiopoietin-1 levels are affected by infection and
EPO treatment. In terminal CM, plasma angiopoietin-1 levels were
significantly decreased (p= 0.004). The, InfEPO group also had lower levels
of this cytokine but was statistically similar to uninfected mice (p=0.06).
Box plots show median values and interquartile ranges. Whiskers show
Tukey hinges; open circles are outliers. Asterisks denote significant
deviations from uninfected, saline-treated mice.

findings, EPO treatment reduced cerebral apoptosis to levels
similar to uninfected mice.

Cerebral hypoxia leads to the stabilization of HIF-1α and HIF-
2α (49–51). We only detected a significant increase in HIF-1α and
its downstream regulated protein VEGF, whereas cerebral HIF-
2α and EPO levels remained unchanged. Others have shown an
increase of cerebral EPO at the mRNA level (15), suggesting HIF-
2α stabilization. However, the use of different mouse strains may
contribute to this discrepancy.

Finding reliable plasma markers that can be associated with
clinical severity and outcome is of interest for the management
of malaria (24, 27, 52). We studied VEGF and the two receptors
responsible for VEGF signaling: Flt-1 and Flk-1 (53) as well as
angiopoietin-1. Flk-1 is the main receptor for VEGF-induced sig-
naling while Flt-1 primarily acts as a decoy receptor to quench
excessive VEGF; mainly in a soluble, truncated form (sFlt-1) (54).
Plasma VEGF was significantly increased in both the InfSal and
InfEPO groups and thus not associated with outcome and neu-
ropathology. sFlt-1 remained unchanged in all groups. The drop
in sFlk-1 in infected mice was unexpected but may likely promote
pro-angiogenic signaling due to increased VEGF bioavailability
and in turn improve tissue oxygenation. The sFlt-1/sFlk-1 ratio
however, was only significantly changed in mice with clinical CM.
These changes in VEGF and soluble receptor levels could con-
tribute to BBB impairment due to VEGF bioavailability (28, 55).
Hence, EPO seemed to act differently on the cerebral than the
systemic regulation of VEGF since plasma VEGF was increased

in EPO-treated malaria mice. Intra-cerebral infusions of VEGF
in mice has shown that low doses induce neuroinflammation,
recruitment of monocytes, and increased BBB permeability with
no noticeable effect on the endothelial proliferation (56). Thus,
intra-cerebral signaling may promote local neuropathology not
associated with circulating levels of VEGF.

The BBB has received considerable interest in relation to CM
pathogenesis. It forms a selectively permeable barrier between
the central nervous system and the periphery. It also serves as
anchoring point for platelets, leukocytes and infected erythrocytes
perturbing the microcirculation in CM (2, 6, 57–59). Another arm
of angiogenesis is the angiopoietin-Tie-2 pathway. Angiopoietin-
1 and -2 signal via the Tie-2 receptor and are reliable markers
of endothelial activation (24, 27). They are also predictable bio-
markers of malaria severity (60, 61). Angiopoietin-1 upkeeps
endothelial stability, while angiopoietin-2 stimulates endothelial
remodeling. We measured a significant drop in angiopoietin-1
in murine CM, which suggests considerable endothelial activa-
tion and instability. Interestingly, InfEPO mice also had very low
levels of angiopoietin-1 suggesting that endothelial function may
be perturbed in these mice as well. A recent study of murine
CM showed that EPO therapy decreased BBB permeability and
endothelial inflammation (37), suggesting that the barrier func-
tion is still preserved in EPO-treated mice. However, in that study
(37), mice were treated with EPO at day 2–4 p.i., hampering direct
comparison with our study. It could be hypothesized that the
endothelium is affected and activated in InfEPO mice, yet main-
taining its integrity and keeping the BBB selectively permeable
despite the increased VEGF and decreased angiopoietin-1 levels in
plasma. CM has been termed by some as a vasculopathy (62), and
studying the effects of EPO in mice without cerebral, endothe-
lial EPO receptors (63) would be highly relevant for assessing the
contributions from endothelium to CM pathogenesis.

In conclusion, these data show highly upregulated VEGF signal-
ing in terminal, murine CM. Increased cerebral VEGF may directly
contribute to neuropathology by promoting monocyte extravasa-
tion (56), BBB disruption, and calpain activity. Calpain activity
is also increased in human CM (45) and inhibition of this path-
way should be studied further. EPO reduces both hypoxia (64)
and inflammation in murine CM (14, 15, 37), which likely pre-
vents the upregulation of VEGF signaling pathway in the brain.
Plasma VEGF was increased significantly in InfEPO mice and
angiopoietin-1 levels were also decreased though insignificantly.
These findings point toward EPO having a prominent role in
neuroprotection in murine CM while a more modest role on the
systemic levels of potential biomarkers of disease severity.
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