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Astrocytes display a plethora of spontaneous Ca2+ signals that modulate vital functions
of the central nervous system (CNS). This suggests that astrocytic Ca2+ signals
also contribute to pathological processes in the CNS. In this context, the molecular
mechanisms by which aberrant astrocytic Ca2+ signals trigger dopaminergic neuron
loss during Parkinson’s disease (PD) are only beginning to emerge. Here, we provide
an evidence-based perspective on potential mechanisms by which aberrant astrocytic
Ca2+ signals can trigger dysfunction in three distinct compartments of the brain, viz.,
neurons, microglia, and the blood brain barrier, thereby leading to PD. We envision that
the coming decades will unravel novel mechanisms by which aberrant astrocytic Ca2+

signals contribute to PD and other neurodegenerative processes in the CNS.
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INTRODUCTION

Astrocytes are ubiquitous cells of the central nervous system (CNS) that outnumber neurons in
many brain regions (von Bartheld et al., 2016). These cells are important players in governing
neuronal function via mechanisms such as synaptic pruning, neurotransmitter clearance, and
extracellular K+ buffering (Verkhratsky and Nedergaard, 2018). The critical role played by
astrocytes in CNS function makes it vitally important to understand molecular mechanisms
underlying bidirectional communication between astrocytes and neurons.

Astrocytic Ca2+ Signals Are Important for Normal Central
Nervous System Function
Unlike neurons, astrocytes are not electrically excitable, which has necessitated inquiry into the
molecular machinery utilized by astrocytes to exert their functional effects on neurons and neural
circuits. In this regard, studies utilizing genetically encoded calcium indicators (GECIs) such as
GCaMPs have shown that astrocytes possess a plethora of spontaneous Ca2+ signals in situ and
in vivo. Astrocytic Ca2+ signals respond to a variety of pharmacological and behavioral stimuli
(Semyanov et al., 2020), and are observed in intracellular compartments such as the soma, thick
proximal branches, and fine astrocytic processes (Srinivasan et al., 2015). In addition, astrocytic
Ca2+ signals occur via Ca2+ release from distinct subcellular organelles such as the endoplasmic
reticulum (ER; Okubo et al., 2019) and mitochondria (Huntington and Srinivasan, 2021), as well
as extracellular Ca2+ sources (Srinivasan et al., 2015). At a subcellular level, the mechanisms
governing astrocytic Ca2+ signals in the soma are distinct from those in peripheral processes
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(Verkhratsky et al., 2020). For example, Ca2+ signals in the
soma and primary astrocytic processes occur due to metabotropic
receptor activity, InsP3-mediated release of Ca2+ from the ER
and store-operated Ca2+ entry. On the other hand, Ca2+ signals
in fine astrocytic processes depend on mitochondrial Ca2+

fluxes, ionotropic channels such as transient receptor potential
(TRP) and reversal of the Na+/Ca2+ exchanger, NCX. The
presence of distinct compartments, mechanisms and sources
for astrocytic Ca2+ signals strongly suggests that these signals
modulate a diverse array of signaling pathways not only in
the astrocytes themselves, but also in the neural circuits within
which they reside.

Critical roles for spontaneous astrocytic Ca2+ signals in
CNS function are bolstered by studies showing that these
signals regulate the probability of neurotransmitter release
(Covelo and Araque, 2018), long-term potentiation (Shigetomi
et al., 2013; Arizono et al., 2020), maintenance of blood brain
barrier (BBB) integrity (Heithoff et al., 2021), neurotransmitter
clearance (Shigetomi et al., 2011; Haustein et al., 2014), and
the synchronization and integration of neural activity (Sasaki
et al., 2014; Pirttimaki et al., 2017; Deemyad et al., 2018). Since
these processes are vitally important for normal CNS function,
it is likely that a disruption in spontaneous astrocytic Ca2+

signaling is potentially pathological. In this regard, a particularly
interesting question is how aberrant astrocytic Ca2+ signals could
contribute to neurodegeneration.

Aberrant Astrocytic Ca2+ Signaling and
Parkinson’s Disease
Given their central role in brain function, it is not surprising
that pathological alterations in astrocytes can accelerate the
evolution of a variety of neurological diseases (Verkhratsky
et al., 2017). Indeed, neurodegenerative diseases such as
amyotrophic lateral sclerosis (ALS), and Alzheimer’s disease
are characterized by distinct pathological changes in astrocytes.
Examples of this include impaired glutamate uptake and death
of motor neurons in ALS (Rossi et al., 2008; Valori et al., 2014)
or reduced astrocyte coverage in Alzheimer’s disease, which
results in synaptic deficiency and early cognitive dysfunction
(Verkhratsky et al., 2016). Additionally, a recent study has
shown that astrocytes derived from induced pluripotent stem
cell (iPS) of Parkinson’s disease (PD) patients with a leucine
rich repeat kinase 2 (LRRK2) mutation display fragmented
mitochondrial morphology, atrophic cellular morphology,
altered Ca2+ signaling and metabolic impairment (Ramos-
Gonzalez et al., 2021). Together, these examples provide strong
evidence for a central role of astrogliopathology in the evolution
of neurodegenerative diseases.

Among the many known neurodegenerative disorders,
PD is the second most common neurodegenerative disorder
with no known cure (Poewe et al., 2017). PD is characterized
by a progressive loss of substantia nigra pars compacta
(SNc) dopaminergic (DA) neurons, and the onset of motor
symptoms that include bradykinesia, resting tremors, postural
instability, and muscle rigidity. Despite being labeled as a
movement disorder, numerous non-motor symptoms are

also observed during PD. These include sleep disturbances,
constipation, anxiety, depression, and cognitive dysfunction
(Poewe et al., 2017; Schapira et al., 2017). The complex
clinical presentation of PD suggests a convergence of multiple
mechanisms and cell types driving neurodegeneration. Most PD
research, however, has focused on understanding pathological
mechanisms that occur within the neurons themselves,
without accounting for the role of astrocyte interactions
with neurons, and other CNS cells during neurodegeneration.
Consequently, neurocentric strategies have failed to result
in the development of effective neuroprotective treatments
for PD. In this context, we point to a central role for
astrocytes, and more specifically, aberrant astrocytic Ca2+

signaling as an important contributing factor during the
pathogenesis of PD.

Given the rapidly emerging importance of astrocytes in PD
(Booth et al., 2017), as well as an urgent and unmet need
to develop effective neuroprotective treatments, this review
presents a perspective on potential mechanisms by which
aberrant astrocytic Ca2+ signals can trigger, and possibly
sustain neurodegeneration during the development of PD. We
amalgamate recent independent reports to provide an evidence-
based rationale for the role of aberrant astrocytic Ca2+ signals in
pathologically altering three distinct elements of the CNS during
PD, viz. neurons, microglia, and the BBB (Figure 1).

ABERRANT ASTROCYTIC Ca2+

SIGNALS CAN CAUSE DYSFUNCTION IN
DOPAMINERGIC NEURONS

Protoplasmic astrocytes possess a bushy morphology with
primary branches that give rise to very fine secondary branches,
branchlets and leaflets (Moye et al., 2019; Zhou et al., 2019).
Fine processes from each astrocyte, can contact upwards of
150,000 synapses in rodents and over a million synapses
in humans (Bushong et al., 2002; Oberheim et al., 2009;
Semyanov and Verkhratsky, 2021). Based on the morphological
relationship of astrocytic processes with neuronal synapses,
spontaneous Ca2+ signals in astrocytic processes are optimally
positioned to modulate neuronal function. In addition, the
intimate morphological as well as functional relationship between
astrocytes and neurons suggests that abnormal changes in
Ca2+ signals within astrocytic processes can alter neuronal
function and initiate neurodegeneration. In the sections below,
we gather evidence from recent independent studies to illustrate
exemplar mechanisms by which abnormal changes in astrocytic
Ca2+ signals can trigger, and even sustain the degeneration
of SNc DA neurons.

Excitatory Amino Acid Transporter 2
Excess extracellular glutamate is a major mechanism for
neurodegeneration (Ambrosi et al., 2014; Lewerenz and Maher,
2015). This can occur via mechanisms such as glutamate-
mediated excitotoxicity (Lewerenz and Maher, 2015), oxidative
glutamate toxicity (Schubert and Piasecki, 2001; Wang et al.,
2020), and immunoexcitotoxicity (Blaylock, 2017). Astrocytes
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FIGURE 1 | Aberrant astrocytic Ca2+ signals contribute to Parkinson’s disease pathology via multiple mechanisms. Neuronal interactions. Dopamine surges during
early PD may dysregulate astrocytic Ca2+ signals and lead to EAAT2 internalization, leading to reduced glutamate clearance and initiation of excitotoxic cell death for
dopaminergic midbrain neurons. Disruptions in astrocytic mitochondria Ca2+ signals (triggered from protein aggregates such as α-synuclein) lead to reduced ATP
production, alteration of mitochondria-ER tethering, likely contributing to dopaminergic neurodegeneration. Microglial interactions. Aberrant astrocytic Ca2+ signals
drive mislocalization of AQP4 channels in astrocytes. AQP4 deficiency in astrocytes is associated with increases in microglial activity and further secretion of
inflammatory cytokines, ultimately contributing to dopaminergic neurodegeneration. Aberrant astrocytic Ca2+ signals may drive increased secretion of ApoE4 which
leads to microglial reactivity, increased α-synuclein pathology and eventually dopaminergic neurodegeneration. Blood brain barrier (BBB) interactions. Aberrant Ca2+

signals in astrocyte endfeet may result in altered secretion of neurotrophic factors such as GDNF, leading to dysregulation of tight junction proteins (TJPs),
compromised BBB integrity, and further contribute to dopaminergic neurodegeneration.

play a major role in neurotransmitter clearance (Eulenburg
and Gomeza, 2010) and specifically, glutamate clearance via
astrocytic glutamate transporters such as excitatory amino
acid transporter 2 (EAAT2) (Lehre and Danbolt, 1998).
Therefore, any reduction in astrocytic EAAT2 expression
would result in abnormal levels of extracellular glutamate and
neurodegeneration. Indeed, reductions in astrocytic EAAT2
expression are observed in multiple neurodegenerative diseases
such as amyotrophic lateral sclerosis, Alzheimer’s disease
and Huntington’s disease (Bruijn et al., 1997; Tong et al.,
2014; Sharma et al., 2019). With regard to PD, two recent
pieces of evidence are particularly relevant: (i) The targeted
knockdown of EAAT2 in astrocytes causes degeneration of
SNc DA neurons in a mouse model of PD (Zhang et al.,
2020) and (ii) Exposure of rodents to the PD toxin 6-
hydroxydopamine (6-OHDA) causes a downregulation of
EAAT2 (Chotibut et al., 2017).

A recent study shows that EAAT2 internalization from
the surface of astrocytes increases in a Ca2+-dependent
manner (Ibanez et al., 2019). Specifically, Ca2+ influx via the
NCX sodium/calcium exchanger in response to increases in
extracellular glutamate results in EAAT2 internalization. In

a broader sense, one could infer that increased Ca2+ influx
within astrocytes due to abnormal increases in extracellular
neurotransmitters could result in EAAT2 internalization. We
rationalize that a surge in striatal dopamine levels during early
PD, as seen in the Thy1-α-synuclein mouse model of PD
(Lam et al., 2011) can cause a downregulation of EAAT2 in
striatal astrocytes. A recent study by Adermark et al. (2021)
showed that pre-treatment of striatal brain slices with the
D2 dopamine receptor agonist, sulpiride prevented synaptic
depression induced by the EAAT2 blocker, TFB-TBOA. These
data suggest a rapid downregulation of EAAT2 function in
striatal astrocytes due to an abnormal activation of striatal D2
receptors. In addition, studies have shown that synaptically
released dopamine increases Ca2+ events in striatal astrocytes
(Corkrum et al., 2020), and the activation of D2 receptors in
ventral midbrain astrocytes causes a downregulation of EAAT2
expression (Xin et al., 2019).

When taken together, these studies point to aberrant
dopamine-mediated Ca2+ signals in astrocytic processes as a
potential mechanism for EAAT2 downregulation in astrocytes
leading to excess extracellular glutamate and consequently,
neurodegeneration.
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Astrocytic Mitochondria
Recent studies have shown that astrocytic processes contain
mitochondria (Derouiche et al., 2015; Agarwal et al., 2017;
Huntington and Srinivasan, 2021) and that mitochondria in
fine astrocytic processes are closely associated with Ca2+

signals in their vicinity (Agarwal et al., 2017). Interestingly,
the Ca2+ signals associated with astrocytic mitochondria are
abnormally increased in a mouse model of amyotrophic lateral
sclerosis expressing a mutant form of superoxide dismutase
(SOD G93A) (Agarwal et al., 2017), suggesting a role for
abnormal mitochondrial Ca2+ signaling in fine astrocytic
processes during neurodegeneration. In addition, we have shown
that mitochondria in astrocytic processes display spontaneous
Ca2+ influx with dual responses to neurotransmitter agonists,
a dependency on ER Ca2+, and the absence of functional
mitochondrial uniporters (MCU; Huntington and Srinivasan,
2021), suggesting that astrocytic mitochondria possess unique
functional properties that optimally cater to the extensive energy
needs of DA neurons. A significant proportion (∼25%) of energy
demands in the CNS are met by astrocytes (van Hall et al., 2009),
and spontaneous astrocytic mitochondrial Ca2+ signals derived
from the endoplasmic reticulum (ER) activate mitochondrial
dehydrogenases in order to generate the co-factors required for
oxidative phosphorylation and ATP generation (Cardenas et al.,
2010). Disruption of Ca2+ signals in astrocytic mitochondria
could therefore be a harbinger for neurodegeneration.

Given the important role of α-synuclein (α-syn) in the
pathogenesis of PD, it is pertinent to discuss aberrant Ca2+

signals in mitochondria within astrocytic processes as it relates
to α-syn pathology. Recent studies have shown that astrocytes
readily take up extracellular α-syn aggregates, and that α-syn
can damage astrocytic mitochondria (Lindstrom et al., 2017), as
well as alter molecular tethering between the mitochondria and
ER, resulting in disrupted Ca2+ homeostasis (Paillusson et al.,
2017). Together, these reports suggest that pathological forms
of α-syn can bind to astrocytic mitochondria, which could alter
mitochondrial Ca2+ signaling in astrocytes, thereby causing a
significant reduction in ATP generation and DA neuron loss.
It is also important to note that astrocytes are coupled via gap
junctions (Fujii et al., 2017). Therefore, pathological changes in
mitochondrial Ca2+ signals in just a few astrocytes can affect
larger populations of astrocytes within neural structures, thus
magnifying the effects of aberrant astrocytic mitochondrial Ca2+

signaling on brain function and neurodegeneration.

ABERRANT ASTROCYTIC Ca2+

SIGNALS CAN ACTIVATE MICROGLIA

Microglia are classically viewed as the immune surveillance
cells of the brain, with functions that include phagocytosis and
synaptic pruning (Li and Barres, 2018; Bohlen et al., 2019;
Bartels et al., 2020). In the context of DA neuron loss in PD,
microglial reactivity is a strong indicator of neuroinflammation
and ongoing neuropathology. There is evidence for microglial
activation in clinical PD (McGeer et al., 1988; Gerhard et al., 2006;
Bartels et al., 2010; Stokholm et al., 2017), as well as in rodent

(Czlonkowska et al., 1996; Wu et al., 2002; Sanchez-Guajardo
et al., 2010; Hoenen et al., 2016) and non-human primate models
of parkinsonism (McGeer et al., 2003; Barcia et al., 2004; Kanaan
et al., 2008; Barkholt et al., 2012). There are potential mechanisms
by which aberrant Ca2+ signals in astrocytes could play a role in
initiating microglial activation during PD. In the sections below,
we present two potential scenarios in which aberrant changes
in spontaneous astrocytic Ca2+ signals could lead to abnormal
crosstalk between astrocytes and microglia, thus accelerating
neuronal loss in PD.

Aquaporin 4
Aquaporin 4 (AQP4) is a tetrameric water channel, abundantly
expressed in astrocytes (Hubbard et al., 2015; Tham et al.,
2016). Emerging evidence suggests a role for AQP4 dysfunction
in PD. Studies supporting this idea include findings that: (i)
Humans with Lewy body pathology in the neocortex demonstrate
a negative correlation between AQP4 expressing astrocytes
and α-synuclein aggregates, such that astrocytes with AQP4
expression do not appear in areas with abnormal α-synuclein
expression (Hoshi et al., 2017), (ii) Exposure of AQP4 knockout
(KO) mice to the PD toxin, MPTP causes an increase in
the susceptibility of SNc DA neurons to degeneration (Fan
et al., 2008), (iii) AQP4 KO mice show diminished differences
between ventral tegmental area (VTA) and SNc DA neurons in
their susceptibility to MPTP-induced neurodegeneration (Zhang
et al., 2016), and (iv) AQP4 knockout mice display significant
increases in microglial reactivity following exposure to MPTP
when compared to wildtype littermates. In this case, the study
also shows that the increase in microglial reactivity occurs due
to secretion of neuroinflammatory molecules such as interleukin
1β (IL1β) and tumor necrosis factor α (TNFα; Sun et al., 2016).
When taken together, these studies converge on the idea that
a functional deficiency of AQP4 in astrocytes can result in
microglial activation with a consequent increase in the secretion
of neuroinflammatory molecules by activated microglia, in turn
resulting in the loss of DA neurons.

As is the case for any channel, the ability of AQP4 to allow
passage of water molecules through its pore requires precise
localization at the plasma membrane. In this regard, studies
show that AQP4 depends on Ca2+ for localization to the
plasma membrane (Salman et al., 2017; Kitchen et al., 2020),
and that rapid translocation of AQP4 to the plasma membrane
depends on Ca2+ signals. Furthermore, a recent study has utilized
STORM-based superresolution microscopy to show that AQP4
channels cluster in very specific patterns at astrocytic endfeet
(Smith and Verkman, 2015). Thus, there exists an intricate
relationship between Ca2+ signaling and the normal functional
localization of AQP4 in astrocytes. Based on these data, one
can infer that pathological changes in spontaneous astrocytic
Ca2+ signals will result in the mislocalization and functional
deficit of astrocytic AQP4, leading to microglial activation and
neuroinflammation in the brain.

Apolipoprotein E
An allelic variant of the apolipoprotein E (ApoE) gene, ApoE4
significantly increases the risk for Alzheimer’s disease (AD;
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Lambert et al., 2013; Liu et al., 2013; Yamazaki et al., 2019). In the
case of PD, a recent study created ApoE locus-targeted ApoE4
replacement mice, and utilized these mice to show that ApoE4
increases α-synuclein pathology, worsens behavioral deficits, and
accelerates astrogliosis (Zhao et al., 2020). This study also showed
that ApoE4 increases α-synuclein pathology in PD patients.

In the CNS, astrocytes are a major reservoir for ApoE (Sun
et al., 1998; Xu et al., 2006), and ApoE4 secretion occurs in
a Ca2+-dependent manner (Kockx et al., 2007). Thus, any
pathological alteration in the kinetics of astrocytic Ca2+ signals
can alter the secretion of ApoE4 from astrocytes. Based on
this rationale, increases in spontaneous astrocyte Ca2+ signal
amplitudes as seen in reactive astrocytes (Shigetomi et al.,
2019) could increase ApoE4 secretion by astrocytes, leading to
microglial activation (Maezawa et al., 2006; Vitek et al., 2009),
increased α-synuclein uptake by microglia (Choi et al., 2020),
the formation of toxic α-synuclein aggregates (Davis et al., 2020)
and neurodegeneration. Although we do not yet know what
may initiate aberrant Ca2+ signaling in astrocytes, abnormal α-
synuclein uptake by astrocytes could disrupt Ca2+ homeostasis,
and is therefore a likely candidate for triggering aberrant Ca2+

signals in SNc astrocytes during PD.

ABERRANT ASTROCYTIC ENDFOOT
Ca2+ SIGNALS AND BLOOD BRAIN
BARRIER INTEGRITY

The BBB is an important protective barrier that allows selective
passage of molecules into the brain parenchyma. Abnormal
increases in BBB permeability can allow the passage of
environmental toxins into the midbrain, thereby accelerating
DA neuron loss. This view is supported by the epidemiological
finding that pesticide exposure is associated with an increased
incidence of PD in farmers (Freire and Koifman, 2012). In
this context, a histological study of striatal brain sections from
PD patients has shown abnormal extravasation of erythrocytes,
as well as an increase in extravascular serum proteins such
as fibrin and hemoglobin into striatal parenchyma, suggesting
a loss of BBB integrity during PD (Gray and Woulfe, 2015).
Another recent study used dynamic contrast enhanced magnetic
resonance imaging in 49 PD patients to show significantly higher
BBB leakage in posterior white matter regions of PD patients
compared to healthy controls (Al-Bachari et al., 2020). These
studies suggest that a loss of BBB integrity is likely involved in
the pathogenesis of clinical PD.

The emerging evidence for a compromised BBB in PD
patients motivates inquiry into whether or not astrocytes
contribute to the maintenance of BBB integrity. In this regard,
a recent study has utilized GLAST Cre/ERT2 mice driving
the expression of the diphtheria toxin in astrocytes to ablate
astrocytes in sparse regions of blood vessels. This study showed an
extravasation of cadaverine from blood vessels following toxin-
induced astrocyte ablation in mice (Heithoff et al., 2021), which
strongly suggests that astrocytic endfeet do indeed play a central
role in maintaining the physical integrity of the BBB.

Together, the findings described above lead to the important
question of whether or not disruptions in Ca2+ signals in
astrocytic endfeet could compromise the established dependence
of tight junction proteins (TJPs) on Ca2+ (Stuart et al., 1994;
Brown and Davis, 2002), thereby altering BBB integrity. Although
there is currently no clear evidence for a causative role of aberrant
endfoot Ca2+ signals in altering TJP biology in PD, the use of
new imaging modalities such as multiphoton microscopes in
combination with astrocyte-specific transgenic mice (Srinivasan
et al., 2016) and genetically encoded Ca2+ sensors in astrocytes
should enable an understanding of the role of aberrant astrocytic
endfoot Ca2+ signals in TJP and BBB function during PD.

CONCLUSION

In this perspective review, we discuss potential pathological
mechanisms during PD in which aberrant astrocytic Ca2+ signals
cause either neuronal dysfunction, microglial activation, or a
loss of BBB integrity (Figure 1). Although we do not discuss
what triggers abnormal Ca2+ signals in astrocytes during PD in
the first place, molecules such as ApoE4 and α-synuclein likely
initiate abnormal Ca2+ signaling in astrocytes via multiple and
distinct mechanisms. It is therefore reasonable to hypothesize
that once they are initiated, abnormal astrocytic Ca2+ signals
cause further abnormalities in ApoE4 or α-synuclein, thereby
setting up a vicious feedback loop between aberrant astrocytic
Ca2+ signaling and ApoE4 or α-synuclein pathology in PD.

An additional point to note is that neurons, microglia and the
BBB are also capable of directly interacting with each other, which
would result in a complex network of multi-tiered pathological
interactions. Based on this view, we predict that the coming
decades will unravel specific mechanisms by which aberrant
astrocytic Ca2+ signals modulate multi-tiered interactions
between these seemingly distinct CNS compartments, eventually
leading to neurodegeneration.
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