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Abstract: The production of pigments by halophilic archaea has been analysed during the 

last half a century. The main reasons that sustains this research are: (i) many haloarchaeal 

species possess high carotenoids production availability; (ii) downstream processes related 

to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids 

production by haloarchaea can be improved by genetic modification or even by modifying 

several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids 

are needed to support plant and animal life and human well-being; and (v) carotenoids are 

compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies 

about carotenoid production by haloarchaea have been reported so far, most of them focused 

on pigments isolation or carotenoids production under different culture conditions. However, 

the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives 

in this group of extreme microorganisms remains mostly unrevealed. The uses of those 

haloarchaeal pigments have also been poorly explored. This work summarises what has been 

described so far about carotenoids production by haloarchaea and their potential uses in 

biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid 

production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed. 
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1. Introduction 

Carotenoids are pigments that have received considerable attention due to their biotechnological 

applications and, more importantly, their potential beneficial effects on human health [1–3]. These 

compounds are the second most abundant naturally occurring pigments in nature [4], and they are mainly 

C40 lipophilic isoprenoids ranging from colourless to yellow, orange, and red [5]. The production of such 

as kind of pigment has been described from plants and some microorganisms such as algae, 

cyanobacteria, yeast [6] and fungi [7,8]. 

Plants, algae, yeast, cyanobacteria and fungi have been considered good sources to isolate and even 

to produce carotenoids at high scale so far [9–12]. In fact, general characterisations of carotenoids 

isolated from those organisms are abundant in the literature, in which techniques such as 

spectrophotometry, thin layer chromatography (TLC), high performance liquid chromatography-mass 

spectrometry (HPLC-MS) and nuclear magnetic resonance spectroscopy (NMR) are used to define the 

carotenoids profile from specific species as well as the carotenoids chemical structure [13–18]. However, 

not too much attention has been paid to halophilic microorganisms, and in particular, to haloarchaea as 

microorganisms with high capability of carotenoids production. 

Halophiles comprise a heterogeneous group of microorganisms that require salts for optimal growth. 

Even high salt concentration up to 4 M is required for some extremophilic species such those belonging 

the Haloferacaceae family, Archaea domain. The pigments produced by these halophilic organisms 

include phytoene, β-carotene, lycopene, derivatives of bacterioruberin, and salinixanthin [19]. 

Dunaliella salina is one of the better known halophilic microorganisms in terms of carotenoids 

production [20–23]. However, apart from that halophilic microalgae, only few studies have been carried 

out about production of carotenoids by halophiles and in most of the cases, the studies are focused on 

carotenoids isolation and characterisation by traditional biochemical procedures as those mentioned 

before [24–26]. 

Within the halophiles there is a family of particular interest in several fields of applications:  

micro-ecology, biotechnology and extreme metabolic adaptations. This is the case of the Haloferacaceae 

family (previously mentioned) grouping extreme halophilic archaea inhabiting salty environments such 

as marshes or salty ponds from where NaCl is obtained for human consumption [27–30]. The first study 

about carotenoid production by halophilic microorganisms from the Haloferacaceae family (previously 

called Halobacteriaceae family) were published in the latter half of the 1960s [31,32]. During the last 

two decades of the last century, several research works demonstrated that some haloarchaeal species not 

only produce carotenoids but also produce them at high concentration. This fact makes possible to 

propose haloarchaea as a good natural source for carotenoids production at large scale by means of 

suitable bioprocess engineering tools, namely specifically designed bioreactors. 

This review summarised what it has been described up to now about carotenoids production by 

haloarchaea and its potential uses in Biotechnology and Biomedicine. The effect of different parameters 
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on carotenogenesis in haloarchaea such as temperature, salt concentration, pH and carbon/nitrogen ration 

is also discussed. 

2. Carotenoids: Structure and Functionality 

Carotenoids are hydrophobic compounds which essentially consist of a C40 hydrocarbon backbone in 

the case of carotenes (i.e., they contain 40 carbon atoms in eight isoprene residues), often modified by 

various oxygen-containing functional groups to produce cyclic or acylicxanthophylls. So, all carotenoids 

possess a long conjugated chain of double bond and a near bilateral symmetry around the central double 

bond, as common chemical features [33].This chain may be terminated by cyclic groups (rings) and can 

be complemented with oxygen-containing functional groups [34]. 

Carotenoids can be classified into different groups on the basis of the criteria used. Based on the basic 

chemical structure and the oxygen presence, carotenoids are classified into two types: carotenes or 

carotenoid hydrocarbons, composed of carbon and hydrogen only; and xanthopylls or oxygenated 

carotenoids, which are oxygenated and may contain epoxy, carbonyl, hydroxyl, methoxy or carboxylic 

acid functional groups [35]. Lycopene and β-carotene are examples of carotene carotenoids and lutein, 

canthaxanthin, zeaxanthin, violaxanthin, capsorubin and astaxanthin are xanthopyll carotenoids [36]. 

The degree of conjugation and the isomerization state of the backbone polyene chromophore 

determine the absorption properties of each carotenoid. Due to the numerous conjugated double bonds 

and cyclic end groups, carotenoids present a variety of stereoisomers with different chemical and 

physical properties. The most important forms commonly found among carotenoids are geometric  

(E-/Z-). A double bond links the two residual parts of the molecule either in an E-configuration with 

both parts on opposite sides of the plane, or a Z-configuration with both parts on the same side of the 

plane. Geometrical isomers of this type are inter-convertible in solution. This stereoisomerism exerts a 

marked influence on the physical properties. The conjugation system described imparts carotenoids with 

excellent light absorbing properties in the blue-green (450–550 nm) range of the visible spectrum. 

Because of this reason, biochemical techniques such as UV-Vis spectrophotometry or Raman 

spectroscopy can be used to analyse carotenoids production by plants and microorganisms [37]. 

When the criterion used to classify carotenoids is related to vitamin A, then the carotenoids can be 

categorized as follows: (a) vitamin A precursors that do not pigment such as β-carotene; (b) pigments with 

partial vitamin A activity such as cryptoxanthin, β-apo-8′-carotenoic acid ethyl ester; (c) non-vitamin A 

precursors that do not pigment or pigment poorly such as violaxanthin and neoxanthin; and (d)  

non-vitamin A precursors that pigment such as lutein, zeaxanthin and canthaxanthin [38]. 

Some of the most important carotenoids in terms of biotechnological and biomedical uses  

explored so far are: Astaxanthin (3,3′-dihydroxy-β,β′-carotene-4,4′-dione) [36,39,40], β-Carotene  

(β,β-carotene) [38,41–44], Canthaxanthin (β,β-carotene-4,4′-dione) [45–48], β-Cryptoxanthin  

(hydroxy-β-carotene) [38,49–54], Fucoxanthin [38,55], Lycopene (ψ,ψ-carotene) [33,56,57], Lutein 

(β,ε-carotene-3,3′-diol) [42,58–61], Zeaxanthin (β,β-carotene-3,3′-diol) [38,62,63], and Violaxanthin 

(5,6:5′,6′-diepoxy-5,5′,6,6′-tetrahydro-β-carotene-3,3′-diol) [64–68]. 
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3. Carotenoids in the Context of Life 

Carotenoids have received much attention because of their various and important biological roles in 

all living systems [4,69–71]. Although some of those biological roles have been already mentioned in 

the previous section, this Section includes details about carotenoids biological roles. 

In most of the organisms, the most relevant biological functions of carotenoids are linked to their 

antioxidant properties, which directly emerge from their molecular structure. Xanthophyll carotenoids 

in particular are free radical scanvengers, potent quenchers of reactive oxygen species (ROS) and 

nitrogen oxidative species (NOS), and chain-breaking antioxidants. Asthaxanthin and canthaxantin, for 

example, are better antioxidants and scanvengers of free radicals than β-carotene. In recent years, the 

understanding of ROS-induced oxidative stress mechanisms and the search for suitable strategies to  

fight oxidative stress has become one the major goals of medical research efforts [3]. On the other hand, 

carotenoid pigments are one of these natural products responsible for colours: yellow, orange, red, and purple 

colours in a wide variety of plants, animals, and microorganisms are due to those compounds [72]. 

In animals and humans, these compounds are precursors of vitamin A (provitamin A activity) and 

retinoid compounds required for morphogenesis and embryonic development [35,73]. Vitamin A is well 

recognized as a factor of great importance for child health and survival, its deficiency causes 

disturbances in vision and various related lung, trachea and oral cavity pathologies. Animals and humans 

cannot synthesize carotenoids de novo, although are able to convert them into vitamin A. Diet is the only 

source for these precursors for retinol synthesis, fruits, vegetables and microalgae being the major 

suppliers of provitamin A active carotenoids [3,35]. Other biological roles and functions of carotenoids 

in these organisms include: absorbers of light energy, oxygen transporters, scavengers of active  

oxygen [2,74], antitumor and enhancers of in vitro antibody production [75,76]. In birds and fish, 

carotenoids are an important signal of good nutritional condition and are used in ornamental displays as 

a sign of fitness and to increase sexual attractiveness [71,77]. 

In algae and higher plants, carotenoids serve as regulators of plant growth and development, as 

accessory pigments in photosynthesis and as a photoprotectors. Thus, they contribute to light harvesting, 

maintaining the structure and function of photosynthetic complexes, quenching chlorophyll triplet states, 

scavenging ROS, and dissipating excess energy [34]. On the other hand, carotenoids are also precursors 

for the hormones abscisic acid (ABA) and strigolactones, and as attractants for other organisms, such as 

pollinating insects and seed-distributing herbivore [35]. In plants, those pigments are involved in various 

biological processes, such as photosynthesis, hormones synthesis, photomorphogenesis, photoprotection 

and development [4]. Apart from these important roles, due to their striking and rich colour, carotenoids 

are important floral pigments serving to attract pollinators and seed dispersers. 

Finally, microorganisms are a great source of diverse carotenoids. As mentioned before for other 

organisms, in microorganisms, carotenoids are in charge of light protection, cell colour and antioxidative 

stress mechanisms. It is important to highlight that some carotenoids, such as salinixanthin or 

thermozeaxanthin, are only produced by some extremophilic microorganisms [78,79]. During the last 

30 years, researchers, as well as research and development companies, have paid attention to 

microorganisms due to the high capability of carotenoid production that some species exhibit. This fact, 

coupled with new insights on molecular biology techniques and downstream process make those 

microorganisms good sources for carotenoids production at large scale. 
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4. Carotenoids Metabolism 

Carotenoids are derived from the general isoprenoid biosynthetic pathway, along with a variety of 

other important natural substances such as steroids and gibberellic acid. The starting product required to 

synthetize all the isoprene derivatives is mevalonic acid which is transformed into a phosphorylated 

isoprene upon phosphorylation; this isoprene subsequently polymerises. In the course of polymerization, 

the number and position of the double bonds are fixed. 

The synthesis and degradation of carotenes and xanthophylls, the regulation of carotenogenesis, as 

well as the role of these compounds, have been very well described in plants [4,80] and mammals [81]. 

Multi-gene engineering approaches have also contributed to better understanding of carotenoid 

metabolism [82]. 

The conversion of two molecules of geranylgeranyl pyrophosphate (GGPP) to phytoene, a compound 

common to all C40 carotenogenic organisms, constitutes the first reaction unique to the carotenoid branch 

of isoprenoid metabolism. From this step, slightly different reactions can be found in different organisms. 

Anoxygenic photosynthetic bacteria, non photosynthetic bacteria, and fungi desaturate phytoene either 

three or four times to yield neurosporene or lycopene, respectively. In contrast, oxygenic photosynthetic 

organisms (cyanobacteria, algae, and higher plants) convert phytoene to lycopene via carotene in two 

distinct sets of reactions. At the level of neurosporene or lycopene, the carotenoid biosynthesis pathways 

of different organism’s branch to generate the huge diversity of carotenoids found in nature. 

In photosynthetic organisms and tissues, the lipophilic carotenoid and bacteriochlorophyll (Bchl) or 

chlorophyll (Chl) pigment molecules associate non-covalently but specifically with integral membrane 

proteins. In non photosynthetic organisms and tissues, carotenoids, often protein bound, occur in 

cytoplasmic or cell wall membranes, oil droplets, crystals, and fibrils. 

As mentioned before, animals are not able to synthesise carotenoids de novo. They are acquired 

throughout the diet. In human beings, it has been well demonstrated that most of the ingested carotenoids 

are absorbed into the gastrointestinal mucosal cells and appear unchanged in the circulation and tissues. 

In the intestine, the carotenoids are absorbed by passive diffusion after being incorporated into the 

micelles that are formed by dietary fat and bile acids. The micellar carotenoids are then incorporated 

into the chylomicrons and released into the lymphatic system [33]. Carotenoids are transported in the 

plasma exclusively by lipoproteins. Oxygen-functionalized carotenoids are more polar than carotenes. 

Thus, α-carotene, β-carotene and lycopene tend to predominate in low-density lipoproteins (LDL) in the 

circulation, whereas high-density lipoproteins (HDL) are major carriers of xanthophylls, such as 

cryptoxanthins, lutein and zeaxanthin. The delivery of carotenoids to extrahepatic tissues is 

accomplished through the interaction of lipoprotein particles with receptors and the degradation by 

lipoprotein lipase [83,84]. 

Although no less than forty carotenoids are usually ingested in the diet, only six carotenoids and their 

metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of 

carotenoids. In contrast, thirty-four carotenoids and eight metabolites are detected in breast milk and 

serum of lactating mothers. Recently, facilitated diffusion in addition to simple diffusion has been 

reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of 

carotenoids may be due to uptake to the intestinal epithelia by means of facilitated diffusion and an 

unknown mechanism of excretion into the intestinal lumen. It is well known that β-carotene can be 
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metabolised to vitamin A after intestinal absorption of carotenoids, but little is known about the 

metabolic transformation of non-provitamin A xanthophylls. The enzymatic oxidation of the secondary 

hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll 

metabolism in mammals [38]. 

5. Production of Carotenoids by Haloarchaea 

5.1. Type, Content and Biosynthesis of Haloarchaeal Carotenoids 

Halophilic archaea are extreme halophilic microorganisms mainly grouped into the Haloferacaceae 

family, phylum Euryarchaeota, Archaea domain. They are (mostly) aerobic and generally red-pigmented. 

They constitute the predominant microbial communities in extreme halophilic environments as it was 

mentioned before. To be alive under those conditions they have adopted several strategies: (i) amino 

acidic residues predominate in halophilic proteins surface; (ii) cells accumulate high KCl intracellular 

concentrations to deal with high ionic strength or some osmolytes such as 2-sulfotrehalose [85];  

(ii) cellular bilayers have different composition and structure, etc. Due to these adaptations, haloarchaea 

have become a good and innovative source of different molecules of high interest in biotechnology such 

as enzymes able to be active at high temperature and high ionic strength [86,87], PHB and PHA, 

carotenoids, etc. 

Related to carotenoids, there is little information in the literature about the carotenoid profile of 

extremophile microorganisms compared with the information available from other organisms, and  

only few of them are focused on carotenoid production by archaea in general, and by haloarchaea in 

particular [58]. Figure 1 summarises the number of publications focused on carotenoids. It is important 

to highlight that despite the huge number of publications on that subject, only 1.3% of them are related 

to haloarchaeal carotenoids (780 papers about haloarchaeal carotenoids vs. 61590 papers about 

carotenoids in general). What is clearly supported by the literature is that most members of the family 

Haloferacaceae can synthesize C50 carotenoids, including bacterioruberin (as the most abundant C50 in 

most of the analysed haloarchaeal species) and its precursors (2-isopentenyl-3,4-dehydrorhodopin (IDR), 

bisanhydrobacterioruberin (BABR), and monoanhydrobacterioruberin(MABR)) [32,88]. Several other 

derivatives have been found in minor amounts, such as 3,4-dehidromonoanhydrobacterioruberin, 

haloxanthin (which is a derivative of the previous one containing a peroxide end group) and  

3,4-epoxymonoanhydrobacterioruberin, identified in Haloferax volcanii [26,89]. Other carotenoids such 

as phytoene, lycopene, and β-carotene are also produced by these species but at lower concentration [7]. 

Those carotenoids are located in the cell membrane and they are in charge of the colour shown by the 

red colonies when haloarchaea cells grow on solid media or the red colour shown by salted coastal ponds 

(mainly in summer). In fact, the content of bacterioruberin pigments in the biomass has been used to 

monitor the density of halophilic archaeal communities in halophilic environments [90]. 

Other carotenoids have been identified at very low concentrations in halophilic archaea: lycopersene, 

cis- and trans-phytoene, cis- and trans-phytofluene, neo-β-carotene and neo-α-carotene. The low 

concentrations of these compounds suggest that they may be used as precursors for the synthesis of other 

carotenoids including lycopene, retinal and the members of the bacterioruberin group. Some species may 

also produce the ketocarotenoid canthaxanthin in addition to other carotenoids [58]. Although this is the 
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general carotenoid profile exhibited for most of the haloarchaeal species, it is important to note that some 

of them can produce high amounts of canthanxanthin, β-carotene and trans-astaxantin [91]. 

 

Figure 1. Bars plot summarizing details about the number of publications per year related 

to carotenoids. The key words used to perform the search were: carotenoids, carotenoids & 

human health, carotenoids & antioxidants; carotenoids & archaea and bacterioruberin. 

Pubmed and Scopus were used as databases to do the search. 

The presence of characteristic carotenoids (α-bacterioruberin and derivatives) in haloarchaea cells  

is easy to identify by Raman spectroscopy [30,92,93]. Thanks to this technique, α-bacterioruberin has 

been identified as the mayor carotenoid in the following haloarchaea: Halobacterium salinarum strains 

NRC-1 and R1, Halorubrum sodomense, Haloarcula vallismortis [78] and Haloarcula japonica (68.1% 

of the total carotenoids (mol %) [5]. The last species is also able to produce monoanhydrobacterioruberin 

(22.5%), bisanhydrobactrioruberin (9.3%), and isopentenyldehidrorhodopin (<0.1%) [5]. The main 

carotenoids produced by Halorubrum sp. TBZ126 were bacterioruberin, lycopene and β-carotene [58,79], 

while the major carotenoid produced by Halococcus morrhuae and Halobacterium salinarum was  

all-trans-bacterioruberin, accounting for 69% of the carotenoids, respectively [79]. 

Ronnekleivand colleagues [26] reported that Haloferax volcanii contained the (2S,2′S)-bacterioruberin 

(82% of total carotenoid), monoanydrobacterioruberin (7%), (2S,2ʹS)-bisanhydrobacterioruberin (3%), 

3,4-dihydromonoanhydrobacterioruberin (2%) and two undecaene C50H74O4 carotenoids (each 2%),  

the C45-carotenoid (2S)-2-isopentenyl-3,4-dehydrorhodopin (1%) and lycopene (0.3%). The lipid 

composition of the extremely halophilic archaeon Haloquadratum walsbyi was investigated by thin layer 

chromatography and electrospray ionization-mass spectrometry. The results confirmed the presence of 
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the carotenoids carotene and bacterioruberin, the C30-isoprenoid compound squalene and the 

menaquinone with eight isoprenoid units vitamin MK-8 [94]. 

The total carotenoid content in Haloarcula japonica was 335 μg·g−1 of dry mass, although the contents 

in Halobacterium salinarum and Halococcus morrhuae were 89 and 45 μg·g−1, respectively [79]. 

Although general knowledge about carotenoids biosynthesis and their assimilation in higher plants 

and human beings is considerable, nutritional functions, as well as metabolic pathways and their 

regulation, have not been examined in detail in haloarchaea [38]. The biosynthesis of carotenoids in 

haloarchaea was studied for the first time in the later 1970s. At that time, it was stated that the 

biosynthetic pathway for the formation of C40 carotenes in Halobacterium proceeds as follows: 

isopentenyl pyrophosphate leads to trans-phytoene, leads to trans-phytofluene, leads to ζ-carotene, leads 

to neurosporene, leads to lycopene, leads to gamma-carotene, and finally leads to β-carotene. This 

pathway differs from that in higher plants in that the cis isomers of phytoene and phytofluene are not on 

the main pathway of carotene biosynthesis, as they are in higher plants [95]. On the other hand, it has 

been suggested that bacterioruberin is synthesised by addition of C5 isoprene units to each end of the 

lycopene chain, followed by the introduction of four hydroxyl groups. The evidence supporting these 

suggestions where reported around 40 years ago from experiments where nicotine was used to inhibit 

the bacterioruberin synthesis [96,97]. The presence of multiple genes for several steps in Halobacterium 

NRC-1 carotenoid production suggests that there may be more than one biosynthetic pathway [98,99]. 

Computational genome and pathway analysis of halophilic Archaea done by Falb and co-workers [100] 

suggested that phytoene is reduced to lycopene by phytoene desaturase. Lycopene is the branching point 

for the synthesis of bacterioruberins (C50) and β-carotene (C40) [101,102]. Although the reactions leading 

from lycopene to bacterioruberins have not been elucidated in detail yet, there is some evidence 

supporting that the lycopene cyclase (OE3983R) converts lycopene to β-carotene in Halobacterium 

salinarum str. NRC-1 [98]. More recently, studies carried out in Haloarcula japonica have clearly 

identified that the genes named c0507, c0506, and c0505 encoded a carotenoid 3,4-desaturase (CrtD), a 

bifunctional lycopene elongase and 1,2-hydratase (LyeJ), and a C50 carotenoid 2″,3″-hydratase (CruF), 

respectively. The above three carotenoid biosynthetic enzymes catalyse the reactions that convert 

lycopene to bacterioruberin in Haloarcula japonica [103]. Figure 2 compares the biosynthesis of 

carotenoids in photosynthetic organisms and in haloarchaea (on the basis of the results reported from 

Halobacterium, Haloarcula and preliminary evidence from Haloferax genomic analysis). 
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Figure 2. Comparison between the biosynthesis of isoprenoids in photosynthetic organisms 

(A) and the biosynthesis pathway proposed in haloarchaea (B). C5 prenyl units are 

synthesized via the mevalonate pathway starting from two acetyl-CoA molecules and C2 

unit arising from amino acid degradation. Cis- and trans-prenyl chains are derived through 

head-tail (HT) condensation steps with isopentenyl-diphosphate (IPP). C15 and C20 prenyl 

chains are modified by head-head condensations and desaturase reactions. Genes coding for 

the enzymes catalysing those reactions have been identified in the Halobacterium salinarum 

genome. β-Carotene is the precursor for retinal synthesis while lycopene is the precursor for 

bacterioruberines in the pathway proposed from the Halobacterium salinarum’s genomic 

analysis [99]. Preliminary evidence from other genomic analysis (Haloferax sp.) also  

support this proposal [104]. Details about genes, enzymes and chemical reactions involved 

in retinal and bacterioruberines synthesis are far from known. There are not reports about 

the biosynthesis reactions of other carotenoids such as zeaxanthin, canthaxanthin, 

astaxanthin, etc. in haloarchaea. GPP = geranyl diphosphate; FPP = farnesyl diphosphate; 

GGPP = geranylgeranyl diphosphate. 

5.2. Bacterioruberin Is One of the Major Carotenoids Produced by Haloarchaea 

As it can be concluded from the previous section, bacterioruberin is the main carotenoid component 

responsible for the colour of the red archaea of the family Halobacteriaceae. This pigment has a rather 

different molecular structure. It has a primary conjugated isoprenoid chain length of 13 C=C units with 
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no subsidiary conjugation arising from terminal groups, which contain four –OH group functionalities 

only [37,78]. Table 1 summarises the bacterioruberin chemical structure as well as its derivatives. 

Table 1. Chemical structures of bacterioruberin and its derivatives [79,105]. 

Name Chemical Structure 

Bacterioruberin 

 

Monoanhydrobacterioruberin 

Bisanhydrobacterioruberin 

 

Trisanhydrobacterioruberin 

 

2-isopentenyl-3,4-dehydrorhodopin

5-cis-bacterioruberin 

 

9-cis-bacterioruberin 

 

13-cis-bacterioruberin 
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This pigment protects the cells against damage produced by high intensities of light in the visible and 

ultraviolet range of the spectrum and provides aid in photoreactivation [106,107]. It is also involved in 

the reinforcement of the cell membrane. It was described for the first time from cells of Halobacterium 

species [88,108,109]. The byosinthesis of C50 carotenoids in general terms, and the effect of several 

chemical compounds on this biosynthesis were first described from Halobacterium cutirubrum 

(Halobacteriaceae family) [88,97,110]. A few years later, it was described that bacterioruberin is 

synthesized from other C50 carotenoids, such as isopentenyldehydrorhodopin, bisanhydrobacterioruberin, 

and monoanhydrobacterioruberin [5] and the synthesis is induced by (i) low oxygen tension and high 

light intensity [111,112]; (ii) osmotic stress [113]; and (iii) the presence of different compounds such as 

aniline [114] (Figure 2). However, this general pattern has some exceptions, for example Haloquadratum 

walsbyi: cells grown under osmotic stress did not experience changes in terms of either membrane lipid 

composition or carotenoids production [94]. Composition of the total carotenoids fraction in haloarchaea 

can also change on the basis of the nutritive factors within the culture media [105], the light intensity, 

oxygen tension, NaCl concentration [91,105,111], and other physical-chemical parameters such as pH 

value of the culture media. Figure 3 shows the effect of pH on carotenoids profile in Haloferax 

mediterranei cells grown in aerobic complex media. It has been reported that pH significantly influences 

cell growth and total carotenoid production in a lot of microorganism [115]. Hamidi et al. reported an 

analysis of pH and other environmental factors through response surface methodology on the total 

carotenoid production of extremely halophilic archaeon Halorubrum sp. TBZ126 [116]. They have 

found that optimum conditions for biomass and total carotenoid production occurred between pH 7 and 

10 and biomass and total carotenoid production in pH 10 was about 93% and 90% respectively, 

compared to data reached from optimum conditions. 

More recently, bacterioruberin has been used for the detection of extremely halophilic archaea 

embedded in halite in terrestrial and possibly extra-terrestrial samples [117]. 

 

Figure 3. Absorption spectra of acetone extracts of Haloferax mediterranei cells grown in 

complex medium (a) pH 5; (b) pH 7 and (c) pH 9. Hfx. mediterranei was grown in complex 

medium pH 7 (0.5% yeast extract and 25% salted water) until shortly before the culture 

entered the stationary phase, after which cells were transferred to fresh complex medium  

pH 5, 7 or 9. 
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Although bacterioruberin and its derivatives possess extraordinary biological functions, the research 

regarding the biosynthesis regulation or practical applications of C50 carotenoids produced by halophilic 

archaea is still scarce. 

5.3. Bacterioruberin Biological Roles 

Bacterioruberin as antioxidant compound: The scavenging capacity of the oxygen reactive species 

(ROS) is dependent on the carotenoid concentration as it has been described so far. On the other hand, 

the antioxidant capacity of carotenoids in general is related to the length of the carbon chain, the number 

of pairs of conjugated double bonds and the carotenoids concentration [118–120]. As mentioned  

before, bacterioruberin contains 13 pairs of conjugated double bonds versus the nine pairs of conjugated 

double bonds of the β-carotene. Therefore, bacterioruberin is much better than β-carotene as radical 

scavenger [5,121]. It has been demonstrated that it protects the cells against oxidative damage. As a 

consequence of this important biological role, haloarchaea escape from fatal injury under strong light, 

and resist oxidative DNA damage resulting from radiography, UV irradiation, high doses (5 kGy) of 

gamma irradiation and H2O2 exposure [107,122]. What is clearly stated up to now is that the carotenoids 

of halophilic microorganisms present higher antioxidant capacity than the carotenoids produced by the 

other microorganism (extremophilic or not extremophilic). 

Bacterioruberin controls membrane rigidity: With 4 hydroxyl substitutes in this dipolar C50 

carotenoid, bacterioruberin was suggested to act as a “rivet” in the membrane cells. This carotenoid has 

some effect on fluidity of the membrane, acts as a barrier to water and allows permeability to oxygen 

and other molecules, so strains can survive in hypersaline or low-temperature conditions [105,123]. 

Bacterioruberin as part of the rhodopsin complexes: Archaerhodopsin-2 (aR2) is a retinal  

protein-carotenoid complex found in the claret membrane of Halorubrum sp. as well as in other  

species [124–126]. It functions as a light-driven proton pump highly important for haloarchaea cells to 

obtain energy. Using crystallographic studies it has been demonstrated that bacterioruberin binds to 

crevices between the subunits of the archaerhodopsin structure, which is a trimer. So, bacterioruberin 

sustains structural support related to the archaerhodopsin structure [127]. Bacterioruberin is also part of 

a complex constituted by this carotenoid and halorhodopsin in haloarchaea membranes such as those 

from Natronomonas pharaonis. Halorhodopsin is a retinal protein with a seven-transmembrane helix 

and acts as an inward light-driven Cl(−) pump [128]. 

6. Biotechnological Uses and Production Potentiality of Carotenoids from Haloarchaea 

6.1. Biotechnological Uses of Carotenoids from Haloarchaea 

Carotenoids have numerous applications as colorants (in food products and cosmetics), feed additives 

for poultry, livestock, fish, and crustaceans (Patent ES2324077 A1. See Table 2), antioxidants, antitumor 

and heart disease prevention agents, precursors of vitamin A and enhancers of in vitro antibody 

production. Hence, they are widely applied in the food, medical, pharmaceutical, and cosmetic industries 

as dyes and functional ingredients [3,6,58]. 
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Table 2. Patents (last 20 years) related to carotenoids production by haloarchaea or its 

biotechnological uses (as pigments or as antioxidants). The key words used to find out the 

patents were: bacterioruberin, halobacteria, haloarchaea and carotenoids. Data obtained from 

different websites [129–135].  

Publication Number 
Publication 

Date 
Title 

International Application 

Number 

WO/2009/042734 02.04.2009 
Radiation-resistant mutants of a 

halophilic archaeon and uses thereof 
PCT/US2008/077596 

ES2324077 A1 29.07.2009 
Compuesto a base de membranas 

celulares liofilizadas 
 

US 7939220 B2 10.05.2011 Proton-translocating retinal protein PCT/EP2001/008715 

WO2011133907 A2 27.10.2011 
Methods to increase and harvest desired 

metabolite production in algae 
PCT/US2011/033637 

WO2012169623 13.12.2012 
Method for producing carotenoid each 

having 50 carbon atoms 
PCT/JP2012/064817 

WO2014045280 A1 27.03.2014 
Topical halobacteria extract composition 

for treating radiation skin tissue damage
PCT/IL2013/050786 

WO/2014/045279 27.03.2014 
Halobacteria extracts composition for 

tumour reduction 
PCT/IL2013/050785 

US 20140356854 A1 4.10.2014 
Methods and compositions relating to 

mevalonate phosphate decarboxylase 
 

07-132096 23.05.1995 Production of C50 Carotenoid  

In some of the patents, the authors use the term Halobacteria, which was the first name used to identify what it 

is now call haloarchaea (Families Halobacteriaceae and Haloferacaceae). 

More than 600 carotenoids are known to occur naturally and many of them are still being  

identified. Although the carotenoids’ market is highly segmented it has grown significantly in the  

last few years and this growth is projected to continue. β-Carotene and the xanthophylls  

astaxanthin, cantaxanthin, and lutein are the major carotenoids with commercial interest, and Europe is  

currently the largest market for this kind of compounds with nearly 45% of worldwide sales [136]. There 

are several advantages and disadvantages of chemical synthesis for carotenoids production. Chemical 

synthesis technology has been developed so far for many carotenoids (mainly for all of those most 

demanded by the market). This synthesis procedures produce carotenoids of exceptional purity and 

consistency at high concentration, and usually the overall cost of the production is relatively low. 

However, the chemical synthesis of certain carotenoids is very complex, and as a consequence of that, 

it is slow and expensive. Besides, the chemical synthesis of a new carotenoid usually requires the 

development of a new chemical route in vitro. Finally, some stereoisomers may not be active as the 

naturally occurring carotenoids isomers, or may have undesired side effects. As a consequence of all 

those aspects, the production of carotenoids from biological sources has been an area of intensive 

investigation. Also the consumer preference for natural products, as well as high costs, presence of  

by-products and damaging effects on the environment have together intensified efforts to identify 

alternative sources for chemical method. The production of natural colorants through fermentation has 

a number of advantages, such as cheaper production, higher yields, possibly easier extraction, less  

batch-to-batch variations and no seasonal variations. The production is flexible and can easily be 
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controlled. Furthermore, the collection of microbial organisms is sustainable and usually microbial 

engineering has no negative impact on the environment [58]. Accordingly for all the previous reasons, 

different species of bacteria, moulds, yeasts and algae have attracted a great interest as alternative 

biosources for high-scale production of carotenoids [137,138]. Carotenoid-producing microorganisms 

have biotechnological attributes proper of microbial cells (fast growth in liquid culture and ability to 

accumulate or secrete some metabolites). Besides, the use of several molecular biology techniques 

enables the production of mutant strains able to overproduce carotenoids of interest. For these reasons, 

microorganisms have become excellent tools to look for new applied processes to obtain biomolecules 

of high interest in biotechnology and biomedicine and represent the basis of biotechnology-based 

companies [34]. 

New research results highlight the possibility of using halophilic microorganisms (mainly halophilic 

archaea) as natural sources for carotenoids production [19] thanks to the simplicity in increasing 

carotenoid production by culture conditions and genetic manipulation, and the feasibility of downstream 

processes of the cells to isolate the carotenoids. The extremely halophilic archaea has unique features 

making them suitable potential sources for carotenoids production, including: (i) the high-salt tolerance 

of haloarchaea enables their cultivation under non-sterile conditions because high salt concentrations 

prevent contamination by other organisms. This feature makes cultivation of haloarchaea advantageous 

if compared to cultivation of other microorganisms; (ii) the process to obtain the carotenoids is simple 

because in lower NaCl concentrations cell lysis is induced and consequently, carotenoids extraction 

could be conducted directly from the cells without any mechanical operation which is required in case 

of plants and (iii) the procedures for pigments extraction and purification seem to be simpler than those 

from other sources. Therefore, production potentiality of carotenoids from halophilic haloarchaea should 

be studied in order to assess alternative commercial sources for carotenoids [58]. 

6.2. Production Potentiality of Carotenoids from Haloarchaea 

There are few examples of studies about haloarchaea carotenoids accumulation supporting the idea 

that these microorganisms might be considered good carotenoids producers [113,137], specifically for 

bacterioruberin and its C50-related pigments. The culture conditions that are required to promote fast 

growth of halophilic archaea include high salt concentration (from 20% to 25% w/v). However, 

promoting massive carotenoid accumulation of these halophilic microorganisms generally requires 

much lower concentrations or NaCl, normally below 16% w/v [113,116]. Such lower salt concentrations 

address slower growth rates or even cell lysis. Therefore, carotenoid accumulation and growth of 

halophilic archaea are often opposite events. Moreover, besides the culture medium salinity, other key 

factors as temperature and pH may affect carotenoids accumulation and also growth rates of halophilic 

microorganisms tremendously [116]. In some cases, changes in the nutrient composition of the culture 

medium might result in enhanced C50 carotenoid accumulation [105]. Consequently, if cultivated under 

suitable conditions halophilic microorganisms may accumulate carotenoids. 

So far, only few studies have been reported on the accumulation of carotenoids in halophilic archaea, 

and all of them at laboratory scale systems. The data obtained so far help clarify that the carotenoid 

accumulation potential of halophilic archaea is worth being studied in terms of bioprocess engineering. 

The maximal intracellular concentration of carotenoids reported so far for halophilic archaea were 
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obtained in small flasks during laboratory experiments and ranges from 20 to 25 mg·g−1 dry weight,  

with maximal volumetric productions of about 10 mg·L−1 [116]. The intracellular concentration of  

20–25 mg·g−1 dry weight means an accumulation rate per biomass unit of 2.0%–2.5%. These data 

compare well to those of carotenoid producing microalgae, many of which are below 1% [139] per 

biomass unit with the exception of Dunaliella salina, obviously the most efficient carotenoid producer 

microorganism [140]. 

Productivity is the key parameter to understand the potential of a microorganism for production of 

whatever value compound. For biomass, volumetric productivity is calculated in terms of g·L−1·day−1, 

and productivity of a desirable compound can also be calculated per reactor volume (g·L−1·day−1) or as 

mg·g−1 dry weight·day−1. At large scale, surface is included as a factor to which productivity is referred.  

For instance, biomass areal productivity is expressed as g·m−2·day−1. Independently of how productivity 

is expressed, the rate at which biomass is produced in time obviously determines the potential of the 

microorganism for accumulation of desirable compounds. To our knowledge, no data have been 

published on both biomass and carotenoid productivities of halophilic archaea at scales other than just 

few examples in laboratory flasks. Data such these are needed to approach the potential of halophilic 

archaea for carotenoids production. An approach to the biomass productivity of halophilic archaea can 

be done simply with the data above. For instance, the average time taken for a culture of Halorubrum sp. and 

other halophilic archaea species to grow to the end of the exponential phase is about 10 days [116,141], 

in batch systems. Maximal biomass concentration reported is about 0.8 g·L−1. Simple calculations give 

an average biomass productivity of 0.08 g (dry biomass)·L−1·day−1. This productivity data should be 

higher if the halophilic archaea were cultured in continuous production systems at optimal growing 

conditions. Accordingly, there should still be significant room for improving such laboratory biomass 

productivity data. Combining the average biomass productivity data (0.08 g (dry biomass)·L−1·day−1) and 

the maximal intracellular concentration of carotenoids found for Halorubrum sp. under specific conditions, 

25 mg·g−1 dry biomass, a maximal productivity of carotenoids of about 2 mg·L−1·day−1 is obtained. 

Microalgae, natural carotenoid producers, can be produced at biomass volumetric productivities likely 

between 0.1 and 0.3 g·L−1·day−1 [139,142], which means maximal carotenoids productivity of about  

1 to 3 mg·L−1·day−1 for a microalga that accumulates carotenoids at 1% (w/w), therefore giving 

haloarchaea a chance to be considered in studies for assessing potential of carotenoid production. Of 

course, these productivity data are far from those carotenoid productivities obtained with Dunaliella 

species, which are 5 to 10-fold higher. Microalgae have the advantage of using natural light as energy 

source and carbon dioxide, and haloarchaea, which do not need light to grow, should have the advantage 

of being produced at a larger volume per surface ratio; this might help to overcome lower volumetric 

biomass productivities. 

These aspects might at least be promising enough to study continuous processes of carotenoids 

production from halophilic archaea in laboratory and pre-pilot scale, particularly for production of other 

carotenoids than those typically obtained from microalgae (C50-bacterioruberin and derivate C50 

pigments). Therefore, it is suggested that haloarchaea might become complementary to those already 

known to be good carotenoid producers, namely microalgae, in the panel of potential producers. Of 

course this should just be the starting point of a challenging subject. The use of cheap, raw suitable 

carbon sources, the economics of cultivation—particularly energy costs for mixing and harvesting—biomass 

processing and carotenoid purification costs are among those key factors that should be extensively studied. 
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Although the biological roles of the carotenoids produced by haloarchaea in haloarchaeal cells are 

known (see Section 5), potential benefits of those carotenoids on animal cells (including human beings) 

have not been tested yet. However, there is some evidence supporting that carotenoids from haloarchaea 

are, at least, as efficient as those antioxidant compounds produced by other microorganism [79,143].  

For instance, the halophilic bacteria Halobacterium salinarum produces various pigments such as 

phytoene, β-carotene, lycopene and derivatives of bacterioruberin and salinixanthin. These  

pigments have been tested for their free radical scavenging activity by DPPH (di(phenyl)-(2,4,6-

trinitrophenyl)iminoazanium) assay and the results validated the known antioxidant activity of 

carotenoids. A further analysis of the cytotoxic properties against human liver cancer cell lines showed 

dose-dependent increase in cytotoxicity of the carotenoids on these cells, suggesting the probable  

anti-cancer properties [143,144]. This is the reason why several research groups around the world as 

well as some I&D (innovation and development) companies focused on secondary metabolites 

production have focused their attention on haloarchaea as carotenoids source. This interest is not only 

supported by the huge amount of publications on that subject, but also by the patents related to carotenoid 

production by haloarchaea (wild types as well as genetically modified strains) or methods/technologies 

to isolate and to purify those carotenoids. Table 2 summarises the patents focused on those subjects during 

the last 20 years. 

7. Conclusions 

On the basis of carotenoid production by haloarchaea in terms of quantity and variety, these 

microorganisms are revealed as good candidates to produce carotenoids at high-scale following cheap 

and quick culture and downstream processes. The most interesting carotenoids from a commercial point 

of view nowadays are not the major ones produced by haloarchaea as it can be concluded from the 

previous sections, with the exception of β-carotene, which is produced at significant concentration by 

several species. Since there are not studies on the potential benefits of the carotenoids produced by 

haloarchaea on human health reported in the scientific literature, more efforts should be made to properly 

address this question. Studies about carotenoid metabolism in haloarchaea are also required to provide 

further insights into the mechanisms controlling localized and context-specific carotenoid synthesis and 

degradation; such analysis would lead to a better understanding of the spatial distribution and function 

of different carotenoids and their derivatives in response to environmental and developmental signals. This 

knowledge may facilitate further progress in the field of carotenoid metabolic engineering in haloarchaea. 

Acknowledgments 

This work was funded by research grant from the MINECO Spain (CTM2013-43147-R). 

Author Contributions 

All the authors contributed equally to the manuscript. 
  



Mar. Drugs 2015, 13 5524 

 

 

Conflicts of Interest 

The authors declare no conflict of interest. The founding sponsors had no role in the design of the 

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the 

decision to publish the results. 

References 

1. Zhang, J.; Sun, Z.; Sun, P.; Chen, T.; Chen, F. Microalgal carotenoids: Beneficial effects and 

potential in human health. Food Funct. 2014, 5, 413–425. 

2. Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. 

Nutrients 2014, 6, 466–488.  

3. Vílchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M. Marine carotenoids: 

Biological functions and commercial applications. Mar. Drugs 2011, 9, 319–333. 

4. Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid metabolism in plants. Mol. Plant 

2015, 8, 68–82. 

5. Yatsunami, R.; Ando, A.; Yang, Y.; Takaichi, S.; Kohno, M.; Matsumura, Y.; Ikeda, H.;  

Fukui, T.; Nakasone, K.; Fujita, N.; et al. Identification of carotenoids from the extremely 

halophilic archaeon Haloarcula japonica. Front. Microbiol. 2014, 5, 100–105. 

6. Mata-Gómez, L.C.; Montañez, J.C.; Méndez-Zavala, A.; Aguilar, C.N. Biotechnological 

production of carotenoids by yeasts: An overview. Microb. Cell Fact. 2014, 21, 12. 

7. Goodwin, T.W.; Britton, G. Distribution and analysis of carotenoids. In Plant Pigments;  

Goodwin, T.W., Ed.; Academic Press: London, UK, 1980; pp. 61–132. 

8. Cunningham, F.X.; Gantt, E. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. 

Plant Physiol. Plant Mol. Biol. 1998, 49, 557–583. 

9. Blanco, A.M.; Moreno, J.; del Campo, J.A.; Rivas, J.; Guerrero, M.G. Outdoor cultivation  

of lutein-rich cells of Muriellopsis sp. in open ponds. Appl. Microbiol. Biotechnol. 2007, 73,  

1259–1266. 

10. Nelis, H.J.; de Leenheer, A.P. Microbial sources of carotenoid pigments used in foods and feeds. 

J. Appl. Bacteriol. 1991, 70, 181–191. 

11. Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites:  

A historical perspective. Plant Sci. 2001, 161, 839–851. 

12. Olaizola, M. Commercial development of microalgal biotechnology: From the test tube to the 

marketplace. Biomol. Eng. 2003, 20, 459–466. 

13. Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and 

Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Analyt. Chem. 2001, F:F4:F4.3, 

doi:10.1002/0471142913.faf0403s01. 

14. Azevedo-Meleiro, C.H.; Rodriguez-Amaya, D.B. Confirmation of the identity of the carotenoids 

of tropical fruits by HPLC-DAD and HPLC-MS. J. Food Comp. Anal. 2004, 17, 385–396. 

15. Jaime, L.; Mendiola, J.; Herrero, M.; Soler-Rivas, C.; Santoyo, S.; Señorans, F.J.; Cifuentes, A.; 

Ibañez, E. Separation and characterization of antioxidants from Spirulina platensis microalga 

combining pressurized liquid extraction, TLC, and HPLC-DAD. J. Sep. Sci. 2005, 28, 2111–2119. 



Mar. Drugs 2015, 13 5525 

 

 

16. Hengartner, U.; Bernhard, K.; Meyer, K.; Englert, G.; Glinz, E. Synthesis, isolation, and  

NMR-Spectroscopic characterization of Fourteen (Z)-Isomers of Lycopene and of come 

AcetylenicDidehydro- and Tetradehydrolycopenes. Helv. Chim. Acta 1992, 75, 1848–1865. 

17. Britton, G. Structure and properties of carotenoids in relation to function. FASEB J. 1995, 9,  

1551–1558. 

18. Meléndez-Martínez, A.J.; Britton, G.; Vicario, I.M.; Heredia, F.J. Relationship between the colour 

and the chemical structure of carotenoid pigments. Food Chem. 2007, 101, 1145–1150. 

19. De Lourdes Moreno, M.; Sánchez-Porro, C.; García, M.T.; Mellado, E. Carotenoids’ production 

from halophilic bacteria. Methods Mol. Biol. 2012, 892, 207–217. 

20. Oren, A. A hundred years of Dunaliella research: 1905–2005. Saline Syst. 2005, 4, 2. 

21. Oren, A. The ecology of Dunaliella in high-salt environments. J. Biol. Res. 2014, 21, 23. 

22. Hosseini Tafreshi, A.; Shariati, M. Dunaliella biotechnology: Methods and applications. J. Appl. 

Microbiol. 2009, 107, 14–35. 

23. Lamers, P.P; Janssen, M.; de Vos, R.C.H.; Bino, R.J.; Wijffels, R.H. Exploring and exploiting 

carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol. 

2008, 26, 631–638. 

24. Asker, D.; Ohta, Y. Production of Canthaxanthin by Extremely Halophilic Bacteria. J. Biosci. 

Bioeng. 1999, 88, 617–621. 

25. Asker, D.; Awad, T.; Ohta, T. Lipids of Haloferax alexandrinus Strain TMT. An Extremely 

Halophilic Canthaxanthin-Producing Archaeon. J. Biosci. Bioeng. 2002, 93, 37–43. 

26. Ronnekleiv, M.; Liaaen-Jensen, S. Bacterial Carotenoids 53*, C50-Carotenoids 23; Carotenoids of 

Haloferax volcanii versus other Halophilic Bacteria. Biochem. Syst. Ecol. 1995, 23, 627–734. 

27. Gupta, R.S.; Naushad, S.; Baker, S. Phylogenomic analyses and molecular signatures for the class 

Halobacteria and its two major clades: A proposal for division of the class Halobacteria into an 

emended order Halobacteriales and two new orders, Haloferacales ord nov and Natrialbales ord. nov., 

containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int. J. Syst. 

Evol. Microbiol. 2015, 65, 1050–1069. 

28. Oren, A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. 

Front. Microbiol. 2013, 5, 315. 

29. Oren, A. Industrial and environmental applications of halophilic microorganisms. Environ. 

Technol. 2010, 31, 825–834. 

30. Oren, A. Halophilic archaea on Earth and in space: Growth and survival under extreme conditions. 

Philos. Trans. A Math. Phys. Eng. Sci. 2014, 13, 372. 

31. Schwieter. U.; Rüegg, R.; Isler, O. Syntheses in the carotenoid series. 21. Synthesis of  

2,2′-diketo-spirilloxanthin (P 518) and 2,2′-diketo-bacterioruberin. Helv. Chim. Acta 1966, 49, 

992–996. 

32. Kelly, M.; Jensen, S.L. Bacterial carotenoids. XXVI. C50-carotenoids. 2. Bacterioruberin.  

Acta Chem. Scand. 1967, 21, 2578–2580. 

33. Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. 

34. Del Campo, J.A.; García-González, M.; Guerrero, M.G. Outdoor cultivation of microalgae for 

carotenoid production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2007, 74, 

1163–1174. 



Mar. Drugs 2015, 13 5526 

 

 

35. Rivera, S.M.; Canela-Garayoa, R. Analytical tools for the analysis of carotenoids in diverse 

materials. J. Chromatogr. A 2012, 1224, doi:10.1016/j.chroma.2011.12.025. 

36. Fassett, R.G.; Coombes, J.S. Astaxanthin in cardiovascular health and disease. Molecules 2012, 

17, 2030–2048. 

37. Jehlička, J.; Oren, A. Raman spectroscopy in halophile research. Front. Microbiol. 2013, 10, 380. 

38. Tanaka, T.; Shnimizu, M.; Moriwaki, H. Cancer chemoprevention by carotenoids. Molecules 2012, 

17, 3202–3242. 

39. Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry 

and applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. 

40. Ambati, R.R.; Phang, S.M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, extraction, 

stability, biological activities and its commercial applications—A review. Mar. Drugs 2014, 12, 

128–152. 

41. Stutz, H.; Bresgen, N.; Eckl, P.M. Analytical tools for the analysis of β-carotene and its degradation 

products. Free Radic. Res. 2015, 49, 650–680. 

42. Englert, M.; Hammann, S.; Vetter, W. Isolation of β-carotene, α-carotene and lutein from  

carrots by countercurrent chromatography with the solvent system modifier benzotrifluoride.  

J. Chromatogr. A 2015, 1388, 119–125. 

43. Li, Y.; Liu, S.; Man, Y.; Li, N.; Zhou, Y.U. Effects of vitamins E and C combined with β-carotene 

on cognitive function in the elderly. Exp. Ther. Med. 2015, 9, 1489–1493. 

44. Relevy, N.Z.; Harats, D.; Harari, A.; Ben-Amotz, A.; Bitzur, R.; Rühl, R.; Shaish, A. Vitamin  

A-Deficient Diet Accelerated Atherogenesis in Apolipoprotein E(−/−) Mice and Dietary β-Carotene 

Prevents This Consequence. Biomed. Res. Int. 2015, 2015, doi:10.1155/2015/758723. 

45. Tanaka, T.; Makita, H.; Ohnishi, M.; Mori, H.; Satoh, K.; Hara, A. Chemoprevention of rat oral 

carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Cancer Res. 

1995, 55, 4059–4064. 

46. Surai, P.F. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs 

and on embryonic development of the chick, Part 1. World Poult. Sci. J. 2012, 68, 465–476. 

47. Rostami, F.; Razavi, S.H.; Sepahi, A.A.; Gharibzahedi, S.M. Canthaxanthin biosynthesis by 

Dietzia natronolimnaea HS-1: Effects of inoculation and aeration rate. Braz. J. Microbiol. 2014, 

45, 447–456. 

48. Hojjati, M.; Razavi, S.H.; Rezaei, K.; Gilani, K. Stabilization of canthaxanthin produced by  

Dietzia natronolimnaea HS-1 with spray drying microencapsulation. J. Food Sci. Technol. 2014, 

51, 2134–2140. 

49. Heying, E.K.; Tanumihardjo, J.P.; Vasic, V.; Cook, M.; Palacios-Rojas, N.; Tanumihardjo, S.A. 

Biofortified orange maize enhances β-cryptoxanthin concentrations in egg yolks of laying hens 

better than tangerine peel fortificant. J. Agric. Food Chem. 2014, 62, 11892–11900. 

50. Burri, B.J. β-Cryptoxanthin as a source of vitamin A. J. Sci. Food Agric. 2015, 95, 1786–1794. 

51. Granado-Lorencio, F.; de Las Heras, L.; Millán, C.S.; Garcia-López, F.J.; Blanco-Navarro, I.; 

Pérez-Sacristán, B.; Domínguez, G. β-Cryptoxanthin modulates the response to phytosterols in 

post-menopausal women carrying NPC1L1 L272L and ABCG8 A632 V polymorphisms: An 

exploratory study. Genes Nutr. 2014, 9, 428. 



Mar. Drugs 2015, 13 5527 

 

 

52. Chisté, R.C.; Freitas, M.; Mercadante, A.Z.; Fernandes, E. Carotenoids are effective inhibitors of 

in vitro hemolysis of human erythrocytes, as determined by a practical and optimized cellular 

antioxidant assay. J. Food Sci. 2014, 79, H1841–H1877. 

53. Ghodratizadeh, S.; Kanbak, G.; Beyramzadeh, M.; Dikmen, Z.G.; Memarzadeh, S.; Habibian, R. 

Effect of carotenoid β-cryptoxanthin on cellular and humoral immune response in rabbit. Vet. Res. 

Commun. 2014, 38, 59–62. 

54. Li, D.; Xiao, Y.; Zhang, Z.; Liu, C. Light-induced oxidation and isomerization of  

all-trans-β-cryptoxanthin in a model system. J. Photochem. Photobiol. B Biol. 2015, 142, 51–58. 

55. Riccioni, G.; D’Orazio, N.; Franceschelli, S.; Speranza, L. Marine carotenoids and cardiovascular 

risk markers. Mar. Drugs. 2011, 9, 1166–1175. 

56. Igielska-Kalwat, J.; Gościańska, J.; Nowak, I. Carotenoids as natural antioxidants. Postepy Hig. 

Med. Dosw. 2015, 69, 418–428. 

57. Pirayesh Islamian, J.; Mehrali, H. Lycopene as a carotenoid provides radioprotectant and 

antioxidant effects by quenching radiation-induced free radical singlet oxygen: An overview.  

Cell J. 2015, 16, 386–391. 

58. Naziri, D.; Hamidi, M.; Hassanzadeh, S.; Tarhriz, V.; Maleki Zanjani, B.; Nazemyieh, H.;  

Hejazi, M.A.; Hejazi, M.S. Analysis of Carotenoid Production by Halorubrum. sp. TBZ126: An 

Extremely Halophilic Archeon from Urmia Lake. Adv. Pharm. Bull. 2014, 4, 61–67. 

59. Flaks, B.; Bresloff, P. Some observations on the fine structure of the lutein cells of X-irradiated rat 

ovary. J. Cell Biol. 1966, 30, 227–236. 

60. Altemimi, A.; Lightfoot, D.A.; Kinsel, M.; Watson, D.G. Employing Response Surface 

Methodology for the Optimization of Ultrasound Assisted Extraction of Lutein and β-Carotene 

from Spinach. Molecules 2015, 20, 6611–6625. 

61. Huang, Y.M.; Dou, H.L.; Huang, F.F.; Xu, X.R.; Zou, Z.Y.; Lin, X.M. Effect of supplemental 

lutein and zeaxanthin on serum, macular pigmentation, and visual performance in patients with 

early age-related macular degeneration. Biomed. Res. Int. 2015, doi:10.1155/2015/564738. 

62. Costa, S.; Giannantonio, C.; Romagnoli, C.; Barone, G.; Gervasoni, J.; Perri, A.; Zecca, E. Lutein 

and zeaxanthin concentrations in formula and human milk samples from Italian mothers. Eur. J. 

Clin. Nutr. 2015, 69, 531–532. 

63. Li, X.R.; Tian, G.Q.; Shen, H.J.; Liu, J.Z. Metabolic engineering of Escherichia coli to produce 

zeaxanthin. J. Ind. Microbiol. Biotechnol. 2015, 42, 627–636. 

64. Yamamoto, H.Y.; Chang, J.L.; Aihara, M.S. Light-induced interconversion of violaxanthin and 

zeaxanthin in New Zealand spinach-leaf segments. Biochim. Biophys. Acta 1967, 141, 342–347. 

65. Yamamoto, H.Y.; Kamite, L.; Wang, Y.Y. An Ascorbate-induced Absorbance Change in 

Chloroplasts from Violaxanthin De-epoxidation. Plant Physiol. 1972, 49, 224–228. 

66. Sapozhnikov, D.I. Investigation on the violaxanthin cycle. Pure Appl. Chem. 1973, 35, 47–61. 

67. Soontornchaiboon, W.; Joo, S.S.; Kim, S.M. Anti-inflammatory effects of violaxanthin isolated 

from microalga Chlorella ellipsoidea in RAW 264.7 macrophages. Biol. Pharm Bull. 2012, 35, 

1137–1144. 

68. Hallin, E.I.; Guo, K.; Åkerlund, H.E. Violaxanthin de-epoxidase disulphides and their role in 

activity and thermal stability. Photosynth. Res. 2015, 124, 191–198. 



Mar. Drugs 2015, 13 5528 

 

 

69. Burton, G.W.; Foster, D.O.; Perly, B.; Slater, T.F.; Smith, I.C.; Ingold, K.U. Biological 

antioxidants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1985, 311, 565–578. 

70. Gammone, M.A.; Riccioni, G.; D’Orazio, N. Carotenoids: Potential allies of cardiovascular health? 

Food Nutr. Res. 2015, 59, doi:10.3402/fnr.v59.26762. 

71. LaFountain, A.M.; Prum, R.O.; Frank, H.A. Diversity, physiology, and evolution of avian plumage 

carotenoids and the role of carotenoid-protein interactions in plumage colour appearance.  

Arch. Biochem. Biophys. 2015, 572, 201–212. 

72. Namitha, K.K.; Negi, P.S. Chemistry and biotechnology of carotenoids. Crit. Rev. Food Sci. Nutr. 

2010, 50, 728–760. 

73. Zile, M.H. Vitamin A and embryonic development: An overview. J. Nutr. 1998, 128, 455S–458S. 

74. Kaulmann, A.; Bohn, T. Carotenoids, inflammation, and oxidative stress—Implications of cellular 

signaling pathways and relation to chronic disease prevention. Nutr. Res. 2014, 34, 907–929. 

75. Gupta, C.; Prakash, D. Phytonutrients as therapeutic agents. J. Complement. Integr. Med. 2014, 

11, 151–169. 

76. Ascenso, A.; Ribeiro, H.; Marques, H.C.; Oliveira, H.; Santos, C.; Simões, S. Chemoprevention of 

photocarcinogenesis by lycopene. Exp. Dermatol. 2014, 23, 874–878. 

77. Amundsen, C.R.; Nordeide, J.T.; Gjøen, H.M.; Larsen, B.; Egeland, E.S. Conspicuous  

carotenoid-based pelvic spine ornament in three-spined stickleback populations—Occurrence and 

inheritance. Peer J. 2015, 3, doi:10.7717/peerj.872. 

78. Jehlicka, J.; Edwards, H.G.; Oren, A. Bacterioruberin and salinixanthin carotenoids of  

extremely halophilic Archaea and Bacteria: A Raman spectroscopic study. Spectrochim. Acta A 

Mol. Biomol. Spectrosc. 2013, 106, 99–103. 

79. Mandelli, F.; Miranda, V.S.; Rodrigues, E.; Mercadante, A.Z. Identification of carotenoids with 

high antioxidant capacity produced by extremophile microorganisms. World J. Microbiol. 

Biotechnol. 2012, 28, 1781–1790. 

80. Othman, R.; Mohd Zaifuddin, F.A.; Hassan, N.M. Carotenoid biosynthesis regulatory mechanisms 

in plants. J. Oleo Sci. 2014, 63, 753–760. 

81. Palczewski, G.; Amengual, J.; Hoppel, C.L.; von Lintig, J. Evidence for compartmentalization of 

mammalian carotenoid metabolism. FASEB J. 2014, 28, 4457–4469. 

82. Giuliano, G. Plant carotenoids: Genomics meets multi-gene engineering. Curr. Opin. Plant Biol. 

2014, 19, 111–117. 

83. Parker, R.S. Absorption, metabolism, and transport of carotenoids. FASEB J. 1996, 10, 542–551. 

84. Reboul, E.; Borel, P. Proteins involved in uptake, intracellular transport and basolateral secretion 

of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog. Lipid Res. 2011, 50, 

388–402. 

85. Desmarais, D.; Jablonski, P.E.; Fedarko, N.S.; Roberts, M.F. 2-Sulfotrehalose, a novel osmolyte 

in haloalkaliphilic archaea. J. Bacteriol. 1997, 179, 3146–3153. 

86. Madern, D.; Camacho, M.; Rodríguez-Arnedo, A.; Bonete, M.J.; Zaccai, G. Salt-dependent studies 

of NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii. 

Extremophiles 2004, 8, 377–384. 



Mar. Drugs 2015, 13 5529 

 

 

87. Bonete, M.J.; Martínez-Espinosa, R.M. Enzymes from Halophilic Archaea: Open Questions.  

In Halophiles and Hypersaline Environments: Current Research and Future Trends; Ventosa, A., 

Oren, A., Eds.; Springer-Verlag GmbH: Berlin, Germany, 2011; pp. 358–370. 

88. Kushwaha S.C.; Kramer J.K.; Kates M. Isolation and characterization of C50-carotenoid pigments 

and other polar isoprenoids from Halobacterium cutirubrum. Biochim. Biophys. Acta 1975, 398, 

303–314. 

89. Bidle, K.A.; Hanson, T.E.; Howell, K.; Nannen, J. HMG-CoA reductase is regulated by salinity at 

the level of transcription in Haloferax volcanii. Extremophiles 2007, 11, 49–55. 

90. Oren, A.; Gurevich, P. Dynamics of a bloom of halophilic archaea in the Dead Sea. Hydrobiologia 

1995, 315, 149–158. 

91. Asker, D.; Awad, T.; Ohta, Y. Lipids of Haloferax. alexandrinus strain TMT: An extremely 

halophilic canthaxanthin-producing archaeon. J. Biosci. Bioeng. 2002, 93, 37–43. 

92. Marshall, C.P.; Leuko, S.; Coyle, C.M.; Walter, M.R.; Burns, B.P.; Neilan, B.A. Carotenoid 

analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology 2007, 7, 631–643. 

93. Jehlička, J.; Edwards, H.G.; Oren, A. Raman spectroscopy of microbial pigments. Appl. Environ. 

Microbiol. 2014, 80, 3286–3295. 

94. Lobasso, S.; Lopalco, P.; Mascolo, G.; Corcelli, A. Lipids of the ultra-thin square halophilic 

archaeon Haloquadratum walsbyi. Archaea 2008, 2, 177–183. 

95. Kushwaha, S.C.; Kates, M.; Porter, J.W. Enzymatic synthesis of C40 carotenes by cell-free 

preparation from Halobacterium cutirubrum. Can. J. Biochem. 1976, 54, 816–823. 

96. Kushwaha, S.C.; Kates, M. Effect of nicotine on biosynthesis of C50 carotenoids in  

Halobacterium cutirubrum. Can. J. Biochem. 1976, 54, 824–829. 

97. Kushwaha, S.C.; Kates, M. Effect of glycerol on carotenogenesis in the extreme halophile, 

Halobacterium cutirubrum. Can. J. Microbiol. 1979, 25, 1288–1291. 

98. Peck, R.F.; Echavarri-Erasun, C.; Johnson, E.A.; Ng, W.V.; Kennedy, S.P.; Hood, L.;  

DasSarma, S.; Krebs, M.P. brp and blh are required for synthesis of the retinal cofactor of 

bacteriorhodopsin in Halobacterium salinarum. J. Biol. Chem. 2001, 276, 5739–5744. 

99. Dassarma, S.; Kennedy, S.P.; Berquist, B.; Victor, N.W.; Baliga, N.S.; Spudich, J.L.; Krebs, M.P.; 

Eisen, J.A.; Johnson, C.H.; Hood, L. Genomic perspective on the photobiology of  

Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. 

Photosynth. Res. 2001, 70, 3–17. 

100. Falb, M.; Müller, K.; Königsmaier, L.; Oberwinkler, T.; Horn, P.; von Gronau, S.; Gonzalez, O.; 

Pfeiffer, F.; Bornberg-Bauer, E.; Oesterhelt, D. Metabolism of halophilic archaea. Extremophiles 

2008, 12, 177–196. 

101. Oesterhelt, D. Bacteriorhodopsin as an example of a light-driven proton pump. Angew. Chem. Int. 

Ed. Engl. 1976, 15, 17–24. 

102. Sumper, M.; Reitmeier, H.; Oesterhelt, D. Biosynthesis of the purple membrane of halobacteria. 

Angew. Chem. Int. Ed. Engl. 1976, 15, 187–194. 

103. Yang, Y.; Yatsunami, R.; Ando, A.; Miyoko, N.; Fukui, T.; Takaichi, S.; Nakamura, S. Complete 

Biosynthetic Pathway of the C50 Carotenoid Bacterioruberin from Lycopene in the extremely 

halophilic archaeon Haloarcula japonica. J. Bacteriol. 2015, 197, 1614–1623. 



Mar. Drugs 2015, 13 5530 

 

 

104. Rodrigo-Baños, M.; Garbayo, I.; Vilchez, C.; Bonete, M.J.; Martínez.Espinosa, R.M. Genomic 

analysis of the biosynthesis of isoprenoids in Haloferax genus, to be submitted for publication. 

105. Fang, C.J.; Ku, K.L.; Lee, M.H.; Su, N.W. Influence of nutritive factors on C50 carotenoids 

production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Bioresour. 

Technol. 2010, 101, 6487–6493. 

106. Dundas, I.D.; Larsen, H. A study on the killing by light of photosensitized cells of  

Halobacterium salinarium. Arch. Mikrobiol. 1963, 46, 19–28. 

107. Shahmohammadi, H.R.; Asgarani, E.; Terato, H.; Saito, T.; Ohyama, Y.; Gekko, K.;  

Yamamoto, O.; Ide, H. Protective roles of bacterioruberin and intracellular KCl in the resistance 

of Halobacterium salinarium against DNA-damaging agents. J. Radiat. Res. 1998, 39, 251–262. 

108. Kelly, M.; Norgard, S.; Liaaen-Jensen, S. Bacterial carotenoids. 31. C50-carotenoids 5. Carotenoids 

of Halobacterium. salinarium, especially bacterioruberin. Acta Chem. Scand. 1970, 24, 2169–2182. 

109. Becher, B.M.; Cassim, J.Y. Improved isolation procedures for the purple membrane of 

Halobacterium halobium. Prep. Biochem. 1975, 5, 161–178. 

110. Kushwaha, S.C.; Kates, M. Studies of the biosynthesis of C50 carotenoids in Halobacterium 

cutirubrum. Can. J. Microbiol. 1979, 25, 1292–1297. 

111. Shand, R.F.; Betlach, M.C. Expression of the bop gene cluster of Halobacterium halobium is 

induced by low oxygen tension and by light. J. Bacteriol. 1991, 173, 4692–4699. 

112. El-Sayed, W.S.; Takaichi, S.; Saida, H.; Kamekura, M.; Abu-Shady, M.; Seki, H.; Kuwabara, T. 

Effects of light and low oxygen tension on pigment biosynthesis in Halobacterium salinarum, 

revealed by a novel method to quantify both retinal and carotenoids. Plant Cell Physiol. 2002, 43, 

379–383. 

113. D’Souza, S.E.; Altekar, W.; D’Souza, S.F. Adaptive response of Haloferax mediterranei to low 

concentrations of NaCl (<20%) in the growth medium. Arch. Microbiol. 1997, 168, 68–71. 

114. Raghavan, T.M.; Furtado, I. Expression of carotenoid pigments of haloarchaeal cultures exposed 

to aniline. Environ. Toxicol. 2005, 20, 165–169. 

115. Raghavan, T.; Furtado, I. Occurrence of extremely halophilic Archaea in sediments from the 

continental shelf of west coast of India. Curr. Sci. 2004, 86, 1065–1067. 

116. Hamidi, M.; Abdin, M.Z.; Nazemyieh, H.; Hejazi, M.A.; Hejazi, M.S. Optimization of Total 

Carotenoid Production by Halorubrum sp. TBZ126 using response surface methodology.  

J. Microb. Biochem. Technol. 2014, 6, 286–294. 

117. Fendrihan, S.; Musso, M.; Stan-Lotter, H. Raman spectroscopy as a potential method for the 

detection of extremely halophilic archaea embedded in halite in terrestrial and possibly 

extraterrestrial samples. J. Raman Spectrosc. 2009, 40, 1996–2003. 

118. Miller, N.J.; Sampson, J.; Candeias, L.P.; Bramley, P.M.; Rice-Evans, C.A. Antioxidant activities 

of carotenes and xanthophylls. FEBS Lett. 1996, 384, 240–242. 

119. Albrecht, M.; Takaichi, S.; Steiger, S.; Wang, Z.Y.; Sandmann, G. Novel hydroxycarotenoids with 

improved antioxidative properties produced by gene combination in Escherichia coli. Nat. Biotechnol. 

2000, 18, 843–846. 

120. Tian, B.; Xu, Z.; Sun, Z.; Lin, J.; Hua, Y. Evaluation of the antioxidant effects of carotenoids from 

Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage 

analyses. Biochim. Biophys. Acta 2007, 1770, 902–911. 



Mar. Drugs 2015, 13 5531 

 

 

121. Saito, T.; Miyabe, Y.; Ide, H.; Yamamoto, O. Hydroxyl radical scavenging ability of 

bacterioruberin. Radiat. Phys. Chem. 1997, 50, 267–269. 

122. Kottemann, M.; Kish, A.; Iloanusi, C.; Bjork, S.; DiRuggiero, J. Physiological responses of the 

halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. 

Extremophiles 2005, 9, 219–227. 

123. Lazrk, T.; Wolff, G.; Albrecht, A.M.; Nakatani, Y.; Ourisson, G.; Kates. M. Bacterioruberins 

reinforce reconstituted halobacterium lipid-membranes. Biochim. Biophys. Acta 1988, 939, 160–162. 

124. Cao, Z.; Ding, X.; Peng, B.; Zhao, Y.; Ding, J.; Watts, A.; Zhao, X. Novel expression and 

characterization of a light driven proton pump archaerhodopsin-4 in a Halobacterium salinarum 

strain. Biochim. Biophys. Acta 2015, 1847, 390–398. 

125. Feng, J.; Liu, H.C.; Chu, J.F.; Zhou, P.J.; Tang, J.A.; Liu, S.J. Genetic cloning and functional 

expression in Escherichia coli of an archaerhodopsin gene from Halorubrum xinjiangense. 

Extremophiles 2006, 10, 29–33. 

126. Li, Q.; Sun, Q.; Zhao, W.; Wang, H.; Xu, D. Newly isolated archaerhodopsin from a strain of 

Chinese halobacteria and its proton pumping behavior. Biochim. Biophys. Acta 2000, 1466, 260–266. 

127. Yoshimura, K.; Kouyama, T. Structural role of bacterioruberin in the trimeric structure of 

archaerhodopsin-2. J. Mol. Biol. 2008, 375, 1267–1281. 

128. Sasaki, T.; Razak, N.W.; Kato, N.; Mukai, Y. Characteristics of halorhodopsin-bacterioruberin 

complex from Natronomonas pharaonis membrane in the solubilized system. Biochemistry 2012, 

51, 2785–2794.  

129. Google (Key words: caroten and haloarchaea). Available online: https://www.google.es/?tbm= 

pts&gws_rd=cr,ssl&ei=md8wVcesMYyCPeKdgdgC#tbm=pts&q=caroten+%26+haloarchaea+pa

tents (accessed on 13 April 2015). 

130. Pantentscope (Key words: halobacteria, carotenoids and haloarchaea). Available online: 

https://patentscope.wipo.int/search/en/result.jsf (accessed on 14 April 2015). 

131. Oficina Española de patentes y marcas - Invenciones. Available online: http://www.oepm.es/ 

es/invenciones/resultados.html?field=TITU_RESU&bases=0&keyword=carotenoid (accessed on 

15 April 2015). 

132. World Intellectual Property Organization Global Brand Database. Available online: 

http://www.wipo.int/branddb/en (accessed on 21 April 2015). 

133. Japan Platform for Patent information website. Available online: https://www.j-platpat.inpit.go.jp/ 

web/all/top/BTmTopEnglishPage (accessed on 22 April 2015). 

134. Espacenet Patent search. Available online: http://worldwide.espacenet.com/?locale=en_EP 

(accessed on 23 April 2015). 

135. European patent register. Available online: https://register.epo.org/regviewer (accessed on 23 

April 2015). 

136. Markets and markets website—New market reports. Available online: 

http://www.marketsandmarkets.com/search.asp?Search=carotenoid&x=0&y=0 (accessed on 24 

April 2015). 

137. Yachai, M. Carotenoid Production by Halophilic Archaea and Its Applications. Ph.D. Thesis, 

Prince of Songkla University, Songkhla, Thailand, 2009. 



Mar. Drugs 2015, 13 5532 

 

 

138. Varela, J.C.; Pereira, H.; Vila, M.; León, R. Production of carotenoids by microalgae: 

Achievements and challenges. Photosynth. Res. 2015, 125, doi:10.1007/s11120-015-0149-2. 

139. Norsker, N.; Barbosa, M.; Vermue, M.; Wijffels, R. Microalgal production: A close look at the 

economics. Biotechnol. Adv. 2001, 29, 24–27. 

140. Wichuk, K.; Brynjolfsson, S.; Fu, W. Biotechnological production of value-added carotenoids 

from microalgae: Emerging technology and prospects. Bioengineered 2014, 5, 204–208. 

141. Zeng, C.; Zhu, J.C.; Liu, Y.; Yang, Y.; Zhu, J.Y.; Huang, Y.P.; Shen, P.Investigation of the 

influence of NaCl concentration on Halobacterium salinarum growth. J. Therm. Anal. Calorim. 

2006, 84, 625–630. 

142. Mata, T.; Martins, A.; Caetano, N. Microalgae for biodiesel production and other applications:  

A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. 

143. Abbes, M.; Baati, H.; Guermazi, S.; Messina, C.; Santulli, A.; Gharsallah, N.; Ammar, E. 

Biological properties of carotenoids extracted from Halobacterium halobium isolated from a 

Tunisian solar saltern. BMC Complement. Altern. Med. 2013, 13, 255. 

144. Sikkandar, S.; Murugan, K.; Al-Sohaibani, S.; Rayappan, F.; Nair, A.; Tilton, F. Halophilic 

bacteria-A potent source of carotenoids with antioxidant and anticancer potentials. J. Pure Appl. 

Microbiol. 2013, 7, 2825–2830. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


