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Tomasz Sośnicki 3 , Sławomir Stuglik 4 , Michał Frontczak 1 , Piotr Homola 4 ,
David E. Alvarez-Castillo 4 , Thomas Andersen 5 and Arman Tursunov 6 on behalf of CREDO Collaboration

����������
�������

Citation: Bar, O.; Bibrzycki, Ł.;
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Abstract: Reliable tools for artefact rejection and signal classification are a must for cosmic ray
detection experiments based on CMOS technology. In this paper, we analyse the fitness of several
feature-based statistical classifiers for the classification of particle candidate hits in four categories:
spots, tracks, worms and artefacts. We use Zernike moments of the image function as feature
carriers and propose a preprocessing and denoising scheme to make the feature extraction more
efficient. As opposed to convolution neural network classifiers, the feature-based classifiers allow for
establishing a connection between features and geometrical properties of candidate hits. Apart from
basic classifiers we also consider their ensemble extensions and find these extensions generally better
performing than basic versions, with an average recognition accuracy of 88%.

Keywords: CMOS sensors; feature-based classification; Zernike moments; machine learning;
computer vision

1. Introduction

Cosmic rays are actively studied by astrophysicists, due to their as-yet-unknown
unknown origin and enormous peak energies. They also have important implications
for radiation safety [1], the operation of electronic devices working both on Earth and
in space [2,3] and even earthquake prediction [4–6]. Studying cosmic rays by using a
worldwide network of mobile devices as an extremely distributed radiation detector
was proposed by several research groups [7–9] and can be treated as an example of the
citizen science paradigm. Practical application of this paradigm requires overcoming
several obstacles like the identification and rejection of artefacts: i.e., images that cannot be
attributed to a particle’s passage through the sensor. The emergence of artefacts may result
from deficiencies of the registration procedure, the finite rejection capability of the online
trigger algorithm, or the fact that some users cheat.

In this paper, we describe a method of signal classification for cosmic ray images,
called hits, obtained from CMOS sensors mounted in smartphones equipped with the
specialized CREDO Detector application [10]. Unlike other solutions discussed in the
literature [11–13] where Convolutional Neural Networks were used for the online or offline
trigger and offline signal classification, respectively, we instead use a feature-based solution.
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As feature carriers we use Zernike moments which are known to faithfully map the complex
geometrical properties of images albeit at the cost of substantial noise sensitivity [14–17].

We have performed feature-based classification using a series of statistical classi-
fiers based on supervised learning, such as k-nearest neighbour, decision trees, Gaussian
Naive Bayes, linear and quadratic discriminant analysis, logistic regression, support vector
machine, and neural network [18–20]. For some of the above classifiers we also tested
their ensemble versions [21–23]. The search for optimal settings for each classifier was
implemented as a two-phase process. The first phase was concerned with identifying the
optimal set of hyperparameters for the classifier model under analysis. The second phase
involved a more precise evaluation of the performance of a given classifier by assessing its
generalization potential and evaluating statistical uncertainty.

Feature-based classifiers, even though not entirely explainable, have the advan-
tage that they make it possible to establish a connection between the components of
feature vectors and image properties observable with the naked eye. In what follows,
we focus on the morphological properties of particle tracks rather than their physi-
cal interpretation. Such interpretations can be found in the literature [13,24] where
e.g., long thin tracks were associated with muons while wavy tracks (worms) with
Compton recoil electrons. However, unambiguous mapping between track shapes and
radiation types is difficult for commodity smartphones. It requires detailed studies of
radiation propagation in a sensor of a given geometry and to the authors’ best knowl-
edge had not been performed so far for the representative set of the devices available on
the market. Such an analysis is complicated in many respects. From the theoretical point
of view, to be able to assign a specific shape to a given particle (e.g., muon, electron or
proton) it is necessary to do tests and investigations under laboratory conditions during
which a device with a CCD/CMOS matrix would be irradiated with only one particle
species. Such tests could show how a given particle looks like and if it always has the
same shape, e.g., if a muon is always a line. There are quite a few publications on the
analysis and identification of particles based on traces [25] with a catalogue of shape
names like spots, track and worms, that we adopt here.

From the practical point of view, the problem is how to recognize if a trace is caused
by a genuine cosmic ray rather than by a local radiation event without the knowledge
of energy or the environmental conditions (local sources) in which the application was
used. Moreover, very often a trace cannot be assigned to a specific category - it has an
intermediate shape between two categories.

Notwithstanding the large number of applications, like in nuclear and particle
physics [26], astroparticle physics [27,28] or medical imaging [29], all semiconductor
detectors are based on the same principle of collecting and analysing the charge liberated
by incident radiation in the depletion region. Noteworthy, these same physical processes
occur in CMOS sensors in domestic electronic devices like video recorders or the digital
cameras used by mobile phones. Combined, smartphone ubiquity and their internet
connectivity made them an ideal framework for creating a global network of radiation
detectors coupled to central data storage. This idea underpinned several particle de-
tection initiatives like CRAYFIS [7,30], DECO [8,13] and CREDO [9,10]. Our analysis is
based on the CREDO detection data set, as currently, this is the largest publicly available
data set of particle images obtained with mobile phones. The span of the CREDO device
worldwide infrastructure is shown in Figure 1. It is worth noting that currently the total
number of registering devices is over 10 thousand and is on the rise.

Such a large number of detections requires an effective and efficient tool to recognize
various types of hits and filter out artefacts. To give an idea of the scale of the CREDO
experiment and its associated data set of images, in Table 1 we show key metrics drawn
from the CREDO database as of September 2021.
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Figure 1. Approximate locations of phone-based detectors registered by the CREDO project (as of
the beginning of 2021).

Table 1. Key metrics related to the CREDO data set as of September 2021.

User base 1.4× 104

Device base 1.5× 104

Operation time 3.9× 105 days (~1050 years)
Candidate detections 1.0× 107

2. Classification of Candidate Hits: Strategy Overview
2.1. Overall Problem Formulation

In the paper, we discuss the problem of image classification of candidate cosmic ray
hits represented as 3-channel RGB arrays. Images have been divided into four classes:
spots, tracks, worms, and artefacts, as described in the next subsection.

On the formal side, the classification task undertaken in this paper can be defined as
the search for some mapping A described by Equation (1):

A : D −→ I, (1)

where: A denotes the function describing the classification process, D denotes the input
data in the form of an array representing an RGB image and I denotes the set of classes
to be the result of recognition. The mapping A is realized in practice as a composition of
three transformations according to Equation (2)

A = D f ·M f · RF, (2)

where: RF denotes feature reception, M f denotes the process of computing the values of
the membership function and D f denotes the process of deciding the final classification.

The reception of features is understood here as the conversion of d ∈ D objects
into points of a certain space X. This transformation is carried out by selecting and then
measuring the features of the objects represented by the input data, i.e., the implementation
of the mapping defined by Equation (3)

R f : D −→ X, (3)

The mapping M f is about a measure of the similarity of the unknown d ∈ D object
to individual classes Di and indexed with the numbers i ∈ I. Assuming the choice of L
features for object description, this type of mapping can be described by Equation (4)

M f : X −→ RL, (4)
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For the statistical classifiers considered in this paper, the inference of the form of the
mapping A is basically performed in two steps as per Equation (5)

A = C · RF, (5)

where C denotes a complex classifier algorithm that integrates D f and M f processes in
its structure. In this reformulation, the feature determination process is separated from
the modelling of the recognition function and decision making which is performed by the
classifier e.g., SVM, kNN or RF. On the other hand, in the model implemented in the deep
learning paradigm, even this entire process along with feature reception is performed in an
integrated process by the classifier itself e.g., CNN or RNN. Therefore, the complex process
of data flow and transformations were undertaken to achieve the end-to-end statistical
classification considered in this paper can be defined by the following separated steps:

Step 1. Data augmentation (Section 3.1),
Step 2. Data preprocessing (Section 3.2),
Step 3. Two-phase model evaluation (Sections 4 and 5).

The dataset preprocessing usually is performed at the beginning of the analysis. In our
study, we have had at our disposal event classes of very disproportional sizes, which we
split into test and validation sets. In addition, data augmentation had been performed
before data preprocessing. A more detailed description of computation experiments with
flowcharts describing these experiments are given in Section 4.

2.2. Annotated Dataset

In this study, we use the data set originally introduced in [12]. Recall that this set was
annotated so that each image was assigned to one of the four classes: spots, tracks, worms
and artefacts. The multiplicities of each class are indicated in Table 2.

To have a better idea of the three main types of images appearing in the set of detec-
tions, in Figure 2 we show examples of spots, tracks and worms. In addition, Figure 3 shows
artefacts, i.e., images that do not correspond to particle’s passage through the detector.

Table 2. Class multiplicities in the annotated data set. The symbol # indicates the cardinality of a
subset for a given class, and % indicates the relative quantitative contribution of such a subset to the
entire training set.

Spots Tracks Worms Artefacts

# 535 393 304 1150
% 22.5 16.5 12.8 48.2

(a) spots

(b) tracks

(c) worms

Figure 2. Four representatives of spots (a) , tracks (b) and worms (c).
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Figure 3. Example of bad detections in an application classified as artefacts. Artefacts are usually the result of not covering
the camera, being too close to a light source or user interference in creating detections.

Compared to the basic classes of detection images (i.e., spots, tracks, and worms),
the artefacts exhibit high brightness and large morphological diversity, making it difficult
to classify them. Therefore this class of images was the most numerous in the data set.

2.3. Classification Methods

The classification methods that have been investigated for their usefulness in recogniz-
ing particle tracks in images are briefly discussed below. The three-letter acronyms denote
the types of classifiers and are then used in Section 5 to describe the results. The imple-
mentations of the classifiers are provided in the scikit-learn software library [31] were used
during the computations. The parameters of the models tested that are not listed below
were set to the default values.

• DTC – The decision tree classifier with the criterion parameter tested for values: gini
and entropy, and the splitter parameter tested for values: best and random.

• GNB – The Gaussian Naive Bayes (GaussianNB) based classifier with no parameters
to be optimized.

• kNN – k nearest neighbors classifier with the n_neighbors tested in range from 1 to 10
and distance metric parameter for values from set: {euclidean, manhattan, chebyshev
and minkowski}.

• LDA – The Linear Discriminant Analysis based classifier with the solver parameter
tested for values: {svd, lsqr, eigen}, and the shrinkage parameter tested for values:
None and auto.

• LRC – The Logistic Regression (aka logit, MaxEnt) based classifier with the penalty
parameter tested for values from {l1, l2, elasticnet, none, the max_iter equal to 100, 000,
and the solver parameter tested for values from set: {newton-cg, lbfgs, liblinear, sag, saga}.

• LSV – The Linear Support Vector Classification - SVM based classifier with the
C parameter tested in range from 10 to 50, the max_iter equal to 10, 000, and the
class_weight parameter equal to 1 or balanced as inversely proportional to
class frequencies.

• MLP – The Multi-layer Perceptron based classifier with activation parameter tested
for values from set {identity, logistic, tanh, relu}, the solver parameter tested for values
from set: {lb f gs, sgd, adam}, the max_iter equal to 100, 000, and the number of hidden
layers equal to 2 or 3 with the hidden_layer_sizes tested in range from 100 to 200
with step 20.

• NSV – The ν-Support Vector Classification based classifier with the radial basis func-
tion kernel - RBF, the ν parameter tested in range from 0.01 to 0.10 with step 0.01 and
the gamma parameter tested in range from 0.1 to 10.0 with step equal to 0.5.

• QDA – The Quadratic Discriminant Analysis based classifier with the parameter reg_param
to regularize the per-class covariance estimates tested in range from 0.0001 to 0.1000 with
step 0.0001.
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• SGD – The Linear SVM based classifier with SGD training was tested with parameter
loss from set: {hinge, log, modi f ied_huber, squared_hinge, perceptron, squared_loss,
huber, epsilon_insensitive, squared_epsilon_insensitive}, the penalty parameter equal
to l1, alpha parameter values tested from 0.00001 to 0.00010 with step 0.00001, and the
max_iter equal to 100, 000.

• SVC – The C-Support Vector Classifier with radial basis function - RBF as a kernel,
the C regularization parameter tested in the range from 500 to 1000 with step 20,
and gamma parameter for the RBF kernel tested for values in the range from 0.01 to
0.20 with step 0.01.

The difficulty of solving the classification problem addressed in this paper stems directly
from the complexity of the multi-class analysis itself and the limited size of the reference
image dataset. Furthermore, the research task is complicated by the fact that at least two
of the identified classes, i.e., tracks and worms, appear to be difficult to separate due to
their similar visual morphology. An extensive analysis of the problem defined in such
terms encouraged us to investigate how ensemble strategies perform under such constraints.
Therefore, in addition to classifiers based on basic models, we also evaluated the recogni-
tion performance of selected metaheuristics that generate ensemble models. The types of
classifiers considered and their parameters under optimization are presented below:

• ETC—An extra-trees classifier is the meta estimator for decision trees with the param-
eter n_estimators tested in a range from 10 to 100 with step equal to 10, the criterion
parameter set either to gini or entropy values, the max_ f eatures tested in range from 1
to 10 with step 1 and the bootstrap parameter set to True or False.

• GBC—The Gradient Boosting for classification with the n_estimators parameter tested
in the range from 10 to 90 with step equal to 20, the max_depth of the individual
regression estimators in range from 1 to 10 with step equal to 2, the learning_rate
parameter in range from 0.1 to 0.9 with step equal to 0.2.

• RFC—A random forest classifier, a meta estimator for decision trees with the same
parameters tested as for the extra-trees classifier described above.

• BAG—A Bagging classifier that fits base classifier on random subsets to further
aggregate their joint predictions was tested for the max_samples parameter in the
range from 0.1 to 0.9 with step 0.1, and the n_estimators set to 100.

• OVO—The classifier that implements one-vs.-one multiclass strategy with no parame-
ters being optimized.

• OVR—The classifier that implements the one-vs.-rest multiclass strategy with no
parameters being optimized.

• VOT—The hard voting based classifier with weights determining the impact of indi-
vidual classifiers on the final class assignment.

2.4. Zernike Moments as Feature Carriers

Recent analyses of data acquired by the CREDO experiment employed various CNN
architectures to detect potentially relevant signals [12] and classify them [32]. Here, rather
than CNN based classifiers, we discuss an approach based on the classical statistical
learning classifiers implemented in the sci-kit-learn library [31]. The Zernike moments
were chosen as feature carriers [14–17] and the Mahotas [33] library was used to compute
them. We chose to employ Zernike moments up to order 8. Numerical experiments showed
that the use of higher-order moments did not improve the classification results. Zernike
moments are defined on a unit disc in terms a complete and orthonormal set of functions
Vnm(x, y) = Vnm(r, θ) = Rnm(r)eimθ , where r is the distance from the disc center and θ
is the polar angle defined with respect to the x−axis. The radial polynomials Rnm are
defined as
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Rnm(r) =

n−|m|
2

∑
j=0

(−1)j (n− j)!

j!
(

n+|m|
2 − j

)
!
(

n−|m|
2 − j

)
!
rn−2j (6)

where n index is non-negative and m index is bound by conditions that the difference
n− |m| has even value and |m| ≤ n. The basis functions are orthonormal on the unit disc
so that ∫ 2π

0
dθ
∫ 1

0
drV∗nm(r, θ)Vpq(r, θ) =

π

n + 1
δnpδpq. (7)

Zernike moments are thus projections of the f (x, y) = f (r, θ) image function on the
above defined basis functions

Anm =
n + 1

π

∫ ∫
x2+y2≤1

f (x, y)V∗nm(x, y)dxdy. (8)

For the computation of Zernike moments of the discrete image function, the integrals
are replaced by the summation over the pixels

Anm =
n + 1

π ∑
x

∑
y

f (x, y)V∗nm(x, y), x2 + y2 ≤ 1, (9)

with x and y indexing the columns and rows of the image array. A straightforward
consequence of the Zernike moments definition is the rotational invariance of their moduli.
This considerably, but not entirely, reduces the need for feature augmentation. Some
augmentation is still needed to account for the discrete nature of the images which breaks
the exact rotational invariance and induces some error [16,34,35]. Still, 10th order Zernike
moments are efficient feature extractors for the face expression recognition even in the
presence of noise [36]. Given the relative simplicity of the cosmic ray hits, we use 8th order
Zernike moments as feature extractors.

To verify this choice we examined the accuracy dependence on the maximum Zernike
moment order. We performed this study for three classifiers, i.e., SVM, MLP and RF.
The results of this comparison are shown in Figure 4 where we average classification
accuracies and their standard deviations are shown. Additionally, we overlaid these results
with lowest order polynomial (which turned out to be 2) able to fit them.

Figure 4. Dependence of the total accuracy on the maximum order of the Zernike moment for SVM (left column), MLP
(middle column) and RF (right column). Error bars represent the standard deviation.

2.5. Efficiency of Zernike Moment Based Features

The comparison of the total brightness of the samples (Figures 2 and 3), shows that
this parameter obviously divides the samples into 3 classes: 1—spots, 2—tracks+worms, 3—
artefacts, which is demonstrated in Figure 5. The luminosity based separation of artefacts
vs. other classes was employed in the discussion of the CNN based trigger in [12].
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Figure 5. Illustration of the separation of different signal categories with respect to the cumulative brightness and number
of illuminated points: (left) brightness and number of pixels plot, (right) brightness plot.

This qualitative division is also supported by the properties of the Zernike moment
spectrum. Figure 6 shows parallel coordinate plots for Zernike moments up to n = 8, m = 8,
for spots, worms, tracks, and artefacts. It is clear that the sets of moments activated across
various classes vary considerably. In particular spots activate fewer moments than the
other classes with the artefacts activating almost all moments. It is also evident that the
difference between worms and tracks as well as between worms and artefacts is less
dramatic, compare e.g., Figure 6b–d. These qualitative properties are reflected in the
classification results, which we discuss in what follows. Zernike moments (in Mahotas
implementation [33]) are normalised to absolute luminance, so to recover this information,
we have added it as an additional feature in the form of average luminance.

00 11 20 22 31 33 40 42 44 51 53 55 60 62 64 66 71 73 75 77 80 82 84 86 88
a)

0.0

0.2

0.4

0.6

0.8

1.0 spots

00 11 20 22 31 33 40 42 44 51 53 55 60 62 64 66 71 73 75 77 80 82 84 86 88
b)

0.0

0.2

0.4

0.6

0.8

1.0 tracks

00 11 20 22 31 33 40 42 44 51 53 55 60 62 64 66 71 73 75 77 80 82 84 86 88
c)

0.0

0.2

0.4

0.6

0.8

1.0 worms

00 11 20 22 31 33 40 42 44 51 53 55 60 62 64 66 71 73 75 77 80 82 84 86 88
d)

0.0

0.2

0.4

0.6

0.8

1.0 artefacts

Figure 6. Parallel coordinate plots showing normalized values of Zernike moments for 95 examples of spots (a), tracks (b),
worms (c) and artefacts (d). Numbers on the horizontal axes exhibit the n and m indices as per Equation (9).

Our experiments proved that adding this additional feature improves the results
significantly, as expected from Figures 5 and 6. Consequently, the input data vector has a
dimension of 25 (24 absolute values of the Zernike moments + 1 average brightness).
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3. Classifier Input Representation
3.1. Data Augmentation

A frequently used method to improve machine learning efficiency is the augmentation.
It consists in increasing the size of the training set using simple image transformations that
do not change their fundamental properties. In the case discussed here, the motivation for
the augmentation stems from two facts: the approximate character of the image rotation
invariance and the apparent imbalance of the annotated dataset as shown in Table 2. In
continuous space Zernike moments acquire a trivial phase factor under rotation, thus their
moduli are rotation invariant. This invariance is broken, however, due to the finite size of
the pixelization. To account for that, apart from the moments computed for original images,
we also compute and use in training, the moments obtained from images augmented
by a random rotation within ±20o limits (see Figure 7). It was also verified that other
transformations (such as scaling and translations) do not improve the performance of the
classifiers. Due to the imbalance in the annotated dataset, the track and worm classes are
strongly underrepresented: thus, precisely these two classes were subject to augmentation,
with multiplication factors of 6 and 12 respectively. Another reason to exclude spots and
artefacts from the augmentation was their de facto rotational invariance. The datasets
resulting from the augmentation are summarized in Tables 3 and 4 below.

Figure 7. Original track (upper row) and worm (lower row) and their augmented versions.

3.2. Data Preprocessing

The raw data of the single hit has been stored as a three-channel RGB images [37]
and represented as 60 × 60 × 3 arrays with 8-bit precision per channel. The original
images were then subject to the grayscale transformation realized by summing up the
luminosities across the channels. Finally, the grayscaled images were denoised by applying
the threshold calculated as a linear function of the mean and standard deviation of pixel
values as defined in Equations (10) and (11).

t = b + 5σ (10)

where b denotes the mean of brightness and σ is a standard deviation of brightness. Finally,
the formula that defines the noise cut-off level reads:

threshold =

{
t for t < 100
100 for t ≥ 100

(11)

In Figure 8 we show the original track and worm images as well as their grayscaled
and thresholded versions.
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Figure 8. Original track (upper row) and worm (lower row) and their grayscaled and thresholded versions.

3.3. Feature Extraction

After denoising, for each image the feature vector is obtained by computing the set of
Zernike moments absolute values, which are rotation invariant. The length of this vector
depends on the maximum degree of Zernike moments taken into consideration - 8th in our
analysis. The moduli of Zernike moments are normalized to the integrated brightness, so
z00 is constant. Therefore we skip this moment and take into account moments z11 to z88
(24 moments). To recover the information on the image total brightness b, we add it as an
additional feature. So, the final form of the feature vector reads

v = (z11, . . . , z88, b) (12)

and consists of 25 components. The final step of data preprocessing was feature scaling
which could be performed in several ways: the particular method chosen is detailed in
Tables 5 and 6 of Section 5.

4. Two-Phase Model Evaluation Scheme
4.1. Phase One—Hyperparameter Optimization

The first phase aimed to select the most accurate classification system for the dataset
under consideration. This goal was directly realized by searching for the optimal hyper-
parameters for each type of classifier. The general scheme of the procedure is shown in
Figure 9. The lines in the diagram represent the operations being performed and the blocks
represent the input and result data/objects.

First, the annotated dataset was divided into a training subset and a test subset in a
ratio of 80 to 20. The data was divided in a stratified manner, meaning that the abundances
of each class in the two resulting subsets were maintained. The training subset was further
augmented to increase the representativeness of the learning data. Only images belonging
to the track and worm classes underwent this operation. These signals are characterized
by similar morphology, so increasing the information potential of the training subset
by increasing the number of variants of these samples is justified. The operation was
implemented by applying a random rotation within the ±20 degrees interval as was
discussed in Section 3.1. For each sample, additional 6 (tracks) or 12 (worms) new elements
were generated. The relevant statistics for augmented data subsets are presented in Table 3.
Applying a larger value of the rotation angle is not necessary, nor advisable, since the
feature descriptor type used (absolute value of Zernike Moments) is basically rotation
invariant. The test subset is not subject to the augmentation process.

At the augmentation stage, all data are still stored as colour images (three channels,
RGB) and may contain significant noise. Extraction of the signal itself is performed by
converting it to grayscale format, followed by thresholding. The transformation to grayscale
is performed by directly summing up the luminance values in all color channels. In this
case, we do not use a luminance-preserving conversion mechanism that is suitable for
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human image perception. The goal is to determine the total energy deposit recorded at
each individual pixel in the image frame. The result is a monochrome image that is then
subjected to adaptive thresholding with hysteresis (Section 3.2). This operation is intended
to eliminate noise and extract the maximum spatially coherent representation of the signal.

Table 3. Statistics describing the partitioning and augmentation scheme of the dataset used in the
first phase of computation (Figure 9).

Spots Tracks Worms Artefacts Total

Data set 535 393 304 1150 2382
Test set 107 79 61 230 477

Optimization set 428 314 243 920 1905
Augmented opt. set 428 2198 3159 920 6705

Augmented training set 342 1758 2527 736 5363
Augmented validation set 86 440 632 184 1342

Annotated Dataset

Training
dataset

Test
dataset

Augmented dataset

Denoised images

Feature vectorsBrightness
Zernike moments

Denoised images

Feature vectors

Tracks: factor x6
Worms: factor x12

Random Splitting

Augmentation

Preprocessing

Features computation

Accuracy / Test

Evaluation
by single trial

Evaluation by
cross validation

Collection of ML
model types

Collection of
hyperparamaters

Grid Search
procedureCollection of ML

model types

Collection of
hyperparamaters

Accuracy / CV

Preprocessing

Features computation

80% 20%

Trained classifier

Best  found
hyperparameters

Figure 9. Descriptive scheme for the first phase of computation: parametric optimization of selected classifier models.

The monochromatic image obtained during these transformations is the basis for
computing the the feature vector (Sections 2.4, 2.5 and 3.3). For this purpose, a set of
features relating to the shape/morphology of the signal (a set of Zernike moments of
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appropriate order) and, as a complementary feature, a measure of the total energy carried
by the signal (brightness) are calculated.

Having a representation in the form of a feature vector, we can proceed to search for an
optimal classifier. For this purpose, the well-known Grid Search method is applied, which
uses the augmented training subset separated at an earlier stage. The optimization process
is performed for the key hyperparameters indicated for each classifier type. As an internal
mechanism for evaluating classifier performance, the method uses 5-fold cross-validation.
At this stage we use the Grid Search and Cross Validation implementation available in the
sci-kit-learn package. The result is an optimal set of hyperparameters, a trained classifier,
and classification accuracy (CV). The trained model is then pre-validated by evaluating it
against a separate test subset (Test).

4.2. Phase Two—Model Statistical Robustness

The second phase of the experiment is to statistically evaluate the performance of
the classifier obtained in phase one. In this phase the data set was randomly split into a
training set and test set. The train-test split was performed using stratified sampling with
proportions of 80 to 20. Next, the training data was augmented (see Section 3.1) and used
to train the model. The test set was used for evaluation of the model. The whole process
(splitting, training and evaluation) was performed 30 times. The data subset sizes used
in the second experiment are collected in Table 4. After completing this phase, we obtain
metrics in the form of the average accuracy of classification based on the measurements
taken (Mean30) and standard deviation (Std30).

Table 4. Statistics describing the partitioning and augmentation scheme of the dataset used in the
second phase of computation (Figure 10).

Spots Tracks Worms Artefacts Total

Data set 535 393 304 1150 2382
Test set 107 79 61 230 477

Training set 428 314 243 920 1905
Augmented training set 428 2198 3159 920 6705

Trained classifier

Accuracy
Mean30 | Std30

Evaluation

Evaluation by
30 times  
repeated trials

Set of tuned
hyperparameters 

1st Phase
Grid Search

Accuracy

Classifier

Training

Estimated statistics

Annotated Dataset

Training
dataset

Test
dataset

Augmented dataset

Denoised images

Feature vectors
(training)

Denoised images

Feature vectors
(validation)

Random Splitting

Augmentation

Preprocessing

Features computation

Preprocessing

Features computation

80% 20%

Figure 10. Descriptive scheme for the second phase of computation: model evaluation using
30 repeated classification trials.
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5. Experiment Results

In the following subsections, we present the classification results and optimal hyperpa-
rameters obtained in the optimization phase as well as their mean accuracies and standard
deviations from the evaluation phase for both basic classifiers and ensemble models. All
classification computations were performed using the scikit-learn [31] library from the
scientific Python ecosystem.

5.1. Basic Classifiers

In Table 5 we show results of the experiments obtained for basic classifiers. The first
column denotes tested classifiers. The second and third columns, labelled CV and Test,
denote the mean accuracy of a given classifier during parameters optimization (cross-
validation) and over the test set.

Table 5. Accuracy of the optimized basic classifiers (1st phase) and the results of their validation (2nd phase). The best
results, where each value of CV, Test, Mean30 > 0.85 are in bold. The scaling procedures are denoted as follows: z-score for
standardization and norm for normalization.

1ST PHASE 2ND PHASE
Classifier CV Test Scaling Hyperparameters Mean30 Std30

DTC 0.8037 0.7966 z-score

{’criterion’:
’entropy’,
’splitter’:

’random’}

0.8194 0.0183

GNB 0.4764 0.7191 z-score no parameters
were optimized 0.7017 0.0216

KNN 0.8415 0.7883 z-score

{’metric’:
’chebyshev’,

’n_neighbors’:
1}

0.7808 0.0188

LDA 0.6534 0.5723 z-score
{’shrinkage’:

None, ’solver’:
’lsqr’}

0.5538 0.0240

LRC 0.8847 0.8470 z-score
{’penalty’:

’none’, ’solver’:
’newton-cg’}

0.8292 0.0178

LSV 0.8449 0.8050 z-score
{’C’: 10,

’class_weight’:
None}

0.7843 0.0222

MLP 0.9154 0.8784 z-score

{’activation’:
’relu’,

’hidden’: (180, 120),
’solver’: ’adam’}

0.8799 0.0134

NSV 0.9016 0.9015 z-score
{’gamma’: 0.1,
’kernel’: ’rbf’,

’nu’: 0.05}
0.8711 0.0136

QDA 0.6999 0.7631 z-score {’reg_param’:
0.0001} 0.7422 0.0209

SGD 0.8683 0.8008 z-score
{’alpha’: 9e-05,

’loss’: ’log’,
’penalty’: ’l1’}

0.8027 0.0202

SVC 0.9177 0.8952 z-score
{’C’: 700,

’gamma’: 0.08,
’kernel’: ’rbf’}

0.8818 0.0124

These results in Table 5 show that the best performing methods are the MLP, NSV and
SVC. The results obtained in the first (optimization) phase are confirmed by the figures
obtained in the second (evaluation) phase. This makes us justifiably confident that our
results are statistically robust. In experiments discussed in Section 5.2 the best performing
basic classifiers were used as a basis for ensemble models utilizing the voting strategy.
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5.2. Ensemble Classifiers

In Table 6 we show the results of the optimization and evaluation for various ensemble
classifiers. The columns contain information in the same format as in previous tables.

Table 6. Accuracy of the optimized ensemble classifiers (1st phase) and the results of their validation (2nd phase). The results
are too similar to each other to determine a best result, so no model was chosen. The scaling procedures are denoted as
follows: z-score for standardization and norm for normalization.

1ST PHASE 2ND PHASE
Classifier CV Test Scaling Hyperparameters Mean30 Std30

ETC 0.8986 0.8973 norm

{’bootstrap’: False,
’max_features’: None,

’criterion’: ’gini’,
’n_estimators’: 70}

0.8758 0.0142

GBC 0.8950 0.8847 norm
{’learning_rate’: 0.7,
’n_estimators’: 90
’max_depth’: 9}

0.8741 0.0150

RFC 0.8853 0.8763 norm

{’bootstrap’: False,
’criterion’: ’entropy’,

’max_features’: 5,
’n_estimators’: 40}

0.8699 0.0137

VOT 0.9205 0.8973 z-score {’weights’: (4, 8, 8)} 0.8841 0.0123

BAG/SVC 0.9078 0.8868 z-score {’max_samples’: 0.7,
’n_estimators’: 100} 0.8805 0.0135

OvO/MLP 0.9101 0.8973 z-score no parameters were
optimized 0.8880 0.0145

OvO/SVC 0.9171 0.8889 z-score no parameters were
optimized 0.8850 0.0148

OvR/MLP 0.9138 0.8952 z-score no parameters were
optimized 0.8853 0.0139

Even though in the optimization phase some accuracy fluctuations across various clas-
sifiers can be observed, the validation phase results show that their scores are compatible
within one standard deviation.

5.3. Classifier Benchmarking

Comparing results in Tables 5 and 6, we conclude that best performing basic
classifiers ie. MLP, NSV and SVC achieve accuracies comparable to those of ensemble
classifiers. The three best performing basic classifiers are (1) the Multi-layer Perceptron-
based classifier with the relu activation function, the adam solver, and two hidden layers
of size respectively 180 and 120, (2) the ν-Support Vector Classification based classifier
with the radial basis function kernel - RBF, the ν parameter equal to 0.05 and the gamma
parameter equal to 0.1, and (3) the C-Support Vector Classifier with radial basis function
- RBF as a kernel, the C regularization parameter equal to 700, and the gamma parameter
for the RBF kernel equal to 0.08. All of these classifiers’ achieved accuracies over
0.87, calculated during cross-validation, test and the 30-fold procedure of random split,
train and test.

In Figure 11 we show the confusion matrices to illustrate the classification accuracy
rate of best-performing classifiers. Not surprisingly all classifiers perform best on the
spot class which is morphologically the simplest one. This class is most likely to be
confused with the track class. Seemingly, the annotators were not consistent in annotat-
ing the slightly elongated spots and annotated them as lines occasionally. The artefact
recognition rate was consistently higher than 90%. The worm class recognition rates
were generally lower than 90%. This class was usually confused with tracks and to lesser
extent with artefacts. The recognition rate of tracks was strongly conditioned by the
classifier’s capability to distinguish tracks and worms. Those classifiers which were able
to achieve this (such as MLP, νSV, SVC, OVO/SVC and OVR/MLP) performed with an
accuracy exceeding 90%.



Sensors 2021, 21, 7718 15 of 18

spots tracks worms artefacts

sp
ot
s

tra
ck
s

wo
rm

s
ar
te
fa
ct
s

96.26 2.80 0.93 0.00

0.00 96.20 2.53 1.27

0.00 11.48 85.25 3.28

0.45 0.89 4.91 93.75

(a)

spots tracks worms artefacts

sp
ot
s

tra
ck
s

wo
rm

s
ar
te
fa
ct
s

94.39 4.67 0.93 0.00

0.00 93.67 5.06 1.27

1.64 16.39 80.33 1.64

2.23 1.79 7.14 88.84

(b)

spots tracks worms artefacts

sp
ot
s

tra
ck
s

wo
rm

s
ar
te
fa
ct
s

93.46 3.74 1.87 0.93

1.27 92.41 3.80 2.53

0.00 8.20 80.33 11.48

0.00 2.23 8.04 89.73

(c)

spots tracks worms artefacts

sp
ot
s

tra
ck
s

wo
rm

s
ar
te
fa
ct
s

94.39 3.74 0.93 0.93

0.00 82.28 17.72 0.00

0.00 16.39 81.97 1.64

0.45 0.45 2.68 96.43

(d)

spots tracks worms artefacts

sp
ot
s

tra
ck
s

wo
rm

s
ar
te
fa
ct
s

94.39 3.74 0.93 0.93

1.27 83.54 13.92 1.27

0.00 8.20 80.33 11.48

0.00 1.79 1.79 96.43

(e)

spots tracks worms artefacts

sp
ot
s

tra
ck
s

wo
rm

s
ar
te
fa
ct
s

98.13 0.93 0.93 0.00

0.00 81.01 18.99 0.00

0.00 19.67 73.77 6.56

0.00 2.68 0.89 96.43

(f)

spots tracks worms artefacts

sp
ot
s

tra
ck
s

wo
rm

s
ar
te
fa
ct
s

94.39 4.67 0.93 0.00

0.00 78.48 21.52 0.00

0.00 11.48 83.61 4.92

0.00 1.79 4.91 93.30

(g)

spots tracks worms artefacts

sp
ot
s

tra
ck
s

wo
rm

s
ar
te
fa
ct
s

97.20 1.87 0.00 0.93

1.27 94.94 1.27 2.53

0.00 11.48 81.97 6.56

0.00 0.89 6.25 92.86

(h)

spots tracks worms artefacts

sp
ot
s

tra
ck
s

wo
rm

s
ar
te
fa
ct
s

98.13 1.87 0.00 0.00

0.00 93.67 5.06 1.27

1.64 1.64 88.52 8.20

1.79 0.89 5.36 91.96

(i)

Figure 11. Confusion matrices for best performing simple classifiers: (a) MLP, (b) νSV, (c) SVC and ensemble classi-
fiers: (d) ETC, (e) GBC, (f) RFC, (g) bagged SVC, (h) SVC with one-vs-one multiclass strategy, (i) MLP with one-vs-rest
multiclass strategy.

The analysis and comparison of the accuracy values in columns CV, Test, Mean30,
and Std30 for specific classifiers allow one, to some extent, to assess their general properties,
e.g., robustness, and the degree of confidence in their ability to generalize performance
on an unknown input set. The following simple conclusions seem legitimate with a high
degree of confidence:

• CV accuracy significantly higher than Test value indicates overfitting (e.g., KNN and
LDA).

• Mean30 accuracy significantly lower than Test value suggests that the classifier pa-
rameters were specific to the optimization set (this problem is marginally observable
for NSV).

• High Std30 value would suggests that the given classifier is unstable. We do not see
such cases in our results, therefore we conclude that all classifiers’ class assignments
are fairly robust.

We can generally conclude that most of the best performing classifiers utilize the
ensemble approach, achieving accuracies close to 90%.
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5.4. Ensemble Classifiers vs. CNNs

In the present work, the MLP classifiers with one-vs-rest multiclass strategy provide
good recognition capabilities for all four classes of events with small contamination from
wrong identification. These results are compared in Table 7 with results from [13,32].

Table 7. Comparison of final results for each class (spots, tracks, worms, artefacts) in selected
methods in different works (publications: Hachaj et al. [32], Winter et al. [13] and our model “MLP
with one-vs-rest multiclass strategy” from Figure 11i.

Class Hachaj et al. Winter et al. This Paper

Spots 98.71% 98.9% 98.13%
Tracks 88.89% 95.4% 93.67%
Worms 89.65% 92.9% 88.52%

Artefacts 97.70% 98.2% 91.96%

There is a certain improvement in the Track recognition capability with the new
approach when compared to [32] without too much deterioration in identifying the Worms.
Although, the contamination of worms identified as tracks and vice-versa is reduced. An
important difference, however, is that in [32] the threshold scheme was applied thus leaving
a significant fraction of events unclassified if they did not pass the probability threshold.
The recognition accuracy obtained in the present work seems to be consistently inferior
to that obtained by [13]. But again we note that in [13] the class assignment accuracies
were computed only for examples passing the threshold defined as at least 80% probability
to belong to a given class. Eg. for the spot class the rejection rate was over 50%. Our
approach does not admit inconclusive classifications which is reflected in slightly lower
overall accuracy. Using the absolute values of Zernike moments, that by definition are the
rotationally invariant, reduces the need for strong data augmentation through rotation. It
was observed that scaling and translations do not improve the performance of classifiers
when used with Zernike moments. Hence, as shown in the present work, the Zernike
moments when used with the best-performing ensemble classifiers give very similar results
when compared to the CNNs without the need for strong data augmentation.

6. Conclusions

In this paper, we have evaluated a series of statistical classifiers, both basic ones
as well as ensemble meta-estimators. After optimizing each classifiers hyperparameters,
the most successful of the trained classifiers performed with an accuracy close to 89%.
Classifiers that score high in classification accuracy are mostly ensemble models. This is
not surprising, as this type of meta estimator has a great potential to tackle the tasks that
require dealing with hard-to-distinguish object categories. An interesting observation is
that high performance was also obtained for the ensemble architecture based on a set of
heterogeneous classifiers. This is the case for an ensemble model using a voting strategy
involving a group of MLP, NSV and SVC classifiers. From a research point of view, it will
also be interesting to verify whether such heterogeneous ensemble classifiers as proposed
in this work behave similarly to homogeneous classifiers based on boosting or bagging in
terms of the shape of decision boundaries between classes.

Not surprisingly the classifiers perform best at recognising the spot and artefact
classes while having significantly worse precision and recall values for tracks and worms.
This, however, does not imply the failure of the classification method itself but rather is a
consequence of the underlying lack of annotators’ unanimous agreement.

Zernike moments proved their usefulness as feature extractors albeit with the necessity
to remove the noise with carefully developed preprocessing methods. Therefore the
solutions described in this paper can be applied for the real time analysis of the data stream
received from CREDO Detectors.

The application of models analyzed in this paper will allow for a more comprehensive
analyses of the full CREDO dataset from the point of view of the morphology of the
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registered particle trajectories. This will allow pioneering on large scale analyses of the
CREDO dataset, validating the actual effectiveness of the considered classifiers in terms of
filtering the recorded signals.

The development of reliable tools for distinguishing signals from various types of
noise, allowing precise filtering of the CREDO dataset is essential for further meta-research
involving the verification of relevant physical hypotheses, such as the detection of par-
ticle bursts, correlations between single bursts, determination of propagation directions
of primary particles, and more advanced astrophysical analyses. The procedures devel-
oped in the work described by this paper, including verified classifier models are, in our
opinion, an important step towards building a robust instrumentarium to increase the
potential of CREDO data analysis in this field and to enable physicists to perform more
authoritative analyses.
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12. Piekarczyk, M.; Bar, O.; Bibrzycki, Ł.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Andersen, T.; Budnev, N.M.; Alvarez-Castillo, D.E.;
Almeida Cheminant, K.; et al. CNN-Based Classifier as an Offline Trigger for the CREDO Experiment. Sensors 2021, 21, 4804.
[CrossRef] [PubMed]

https://github.com/credo-ml/feature-based-classifiers
http://doi.org/10.1109/TED.2019.2899056
http://dx.doi.org/10.3389/fphy.2020.00318
http://dx.doi.org/10.22201/igeof.00167169p.2008.47.3.79
http://dx.doi.org/10.1134/S0016793215010107
http://dx.doi.org/10.1029/2017JA024871
http://dx.doi.org/10.1016/j.astropartphys.2016.02.002
http://dx.doi.org/10.3390/sym12111835
http://dx.doi.org/10.3390/sym12111802
http://dx.doi.org/10.1088/1742-6596/898/3/032048
http://dx.doi.org/10.3390/s21144804
http://www.ncbi.nlm.nih.gov/pubmed/34300544


Sensors 2021, 21, 7718 18 of 18

13. Winter, M.; Bourbeau, J.; Bravo, S.; Campos, F.; Meehan, M.; Peacock, J.; Ruggles, T.; Schneider, C.; Simons, A.; Vandenbroucke, J.
Particle identification in camera image sensors using computer vision. Astropart. Phys. 2019, 104, 42–53. [CrossRef]

14. Teague, M.R. Image analysis via the general theory of moments∗. J. Opt. Soc. Am. 1980, 70, 920–930. [CrossRef]
15. Teh, C.; Chin, R.T. On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell. 1988, 10, 496–513.

[CrossRef]
16. Khotanzad, A.; Hong, Y.H. Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 1990,

12, 489–497. [CrossRef]
17. Zhu, H.; Yang, Y.; Zhu, X.; Gui, Z.; Shu, H. General Form for Obtaining Unit Disc-Based Generalized Orthogonal Moments.

IEEE Trans. Image Process. 2014, 23, 5455–5469. [CrossRef]
18. Murphy, K.P. Machine Learning: A Probabilistic Perspective. In Adaptive Computation and Machine Learning, 1st ed.; The MIT

Press: Cambridge, MA, USA, 2012.
19. Rutkowski, L. Computational Intelligence: Methods and Techniques, 1st ed.; Springer: Berlin, Germany, 2008.
20. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: Berlin,

Germany, 2014.
21. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
22. Friedman, J.H. (y X)-values, O.K. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 1999, 38, 367–378. [CrossRef]
23. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140.[CrossRef]
24. Groom, D. Cosmic Rays and Other Nonsense in Astronomical CCD Imagers. In Scientific Detectors for Astronomy; Amico, P.,

Beletic, J.W., Beletic, J.E., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 81–94.
25. Groom, D. Cosmic rays and other nonsense in astronomical CCD imagers. Exp. Astron. 2002, 14, 45–55. [CrossRef]
26. Szumlak, T. Silicon detectors for the LHC Phase-II upgrade and beyond RD50 Status report. Nucl. Instrument. Methods Phys. Res.

Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2020, 958, 162187. [CrossRef]
27. Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Al Samarai, I.; Albert, J.N. (The Pierre Auger Collaboration) The Pierre Auger Cosmic

Ray Observatory. Nucl. Instrument. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 798, 172–213. [CrossRef]
28. Ahlers, M.; Halzen, F. Opening a new window onto the universe with IceCube. Prog. Part. Nucl. Phys. 2018, 102, 73–88.

[CrossRef]
29. Ruat, M.; d’Aillon, E.G.; Verger, L. 3D semiconductor radiation detectors for medical imaging: Simulation and design.

In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008;
pp. 434–439. [CrossRef]

30. Kumar, R. Tracking Cosmic Rays by CRAYFIS (Cosmic Rays Found in Smartphones) Global Detector. In Proceedings of the
34th International Cosmic Ray Conference — PoS(ICRC2015), The Hague, The Netherlands, 30 July–6 August 2016; Volume 236,
p. 1234. [CrossRef]

31. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.
Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

32. Hachaj, T.; Bibrzycki, Ł.; Piekarczyk, M. Recognition of Cosmic Ray Images Obtained from CMOS Sensors Used in Mobile Phones
by Approximation of Uncertain Class Assignment with Deep Convolutional Neural Network. Sensors 2021, 21, 1963. [CrossRef]

33. Coelho, L.P. Mahotas: Open source software for scriptable computer vision. J. Open Res. Softw. 2013, 1, e3. [CrossRef]
34. Xin, Y.; Pawlak, M.; Liao, S. Accurate Computation of Zernike Moments in Polar Coordinates. IEEE Trans. Image Process. 2007,

16, 581–587. [CrossRef]
35. Wiliem, A.; Madasu, V.; Boles, W.; Yarlagadda, P. A Face Recognition Approach using Zernike Moments for Video Surveillance.

In Proceedings of the 2007 Recent Advances in Security Technology: RNSA Security Technology Conference Australia, Melbourne,
Australia, 28 September 2007; pp. 341–355.

36. Lajevardi, S.M.; Hussain, Z.M. Higher order orthogonal moments for invariant facial expression recognition. Digit. Signal Process.
2010, 20, 1771–1779. [CrossRef]
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